NPFL123 Dialogue Systems
8. Dialogue Policy
(non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda
& Jan Cuřín, Petr Fousek

21. 3. 2022
Dialogue Management

- Two main components:
 - **State tracking** (last lecture)
 - **Action selection with a policy** (today)

- action selection – deciding what to do next
 - based on the current belief state – under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic

- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

Follow convention, don’t be repetitive

E.g. ask for all information you require
DM/Action Selection Approaches

- **Finite-state machines**
 - simplest possible
 - dialogue state is machine state

- **Frame-based** (VoiceXML)
 - slot-filling + providing information – basic agenda

- **Rule-based**
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning

- Note that state tracking differs with different action selection
FSM Dialogue Management

- Dialogues = graphs going through possible conversations
 - nodes = system actions
 - edges = possible user response semantics
- advantages:
 - easy to design
 - predictable
- disadvantages:
 - very rigid – not real conversations (ignores anything that’s not a reply to last question)
 - doesn’t scale to complex domains
- Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

- Making the interaction more flexible
- State = frame with slots
 - required slots need to be filled
 - this can be done in any order
 - more information in one utterance possible
- If all slots are filled, query the database
- Multiple frames (e.g. flights, hotels...)
 - needs frame tracking
- Standard implementation: VoiceXML
- Still not completely natural, won’t scale to more complex problems

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEPT DATE</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEPT TIME</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

(from Hao Fang’s slides)

```
<form>
  <field name="transporttype">
    <prompt>Please choose airline, hotel, or rental car. </prompt>
    <grammar type="application/x=nuance-gsl">
      [airline hotel "rental car"]
    </grammar>
  </field>
  <block>
    <prompt>You have chosen <value expr="transporttype">. </prompt>
  </block>
</form>
```

(from Pierre Lison’s slides)
Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

```python
elif fact['we did not understand']:
    NLG("Sorry, I did not understand")
    res_da = DialogueAct("notunderstood")
    res_da.extend(self.getLimitedContext())
    dialogue_state['ludsit'].reset()

else:
    NLG("Ok.")
    res_da = DialogueAct("help")
    dialogue_state['ludsit'].reset()
    res_da.extend(self.getLimitedContext())
    dialogue_state['ludsit'].reset()

eif fact['user thanked']:
    NLG("Díky.")
    res_da = DialogueAct("inform")
    dialogue_state['ludsit'].reset()

eif fact['user wants restart']:
    NLG("Dobře, zanášem znovu. Jak jste?")
    dialogue_state['ludsit'].restart()
    res_da = DialogueAct("restart")
    dialogue_state['ludsit'].reset()

eif fact['user wants us to repeat']:
    NLG("-use the last dialogue act")
    res_da = DialogueAct("irepeat")
    dialogue_state['ludsit'].reset()
```

(Jurčiček et al., 2014)
https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py

"The fact structure is derived from the belief state."

"Directly choose reply DA + update state."

"Updated: 10 July 2014.}"
DM with supervised learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You need sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s no single correct next action – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • DSs **should** behave differently – make the best of what they have
DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an **environment**:
 - has internal state $s_t \in S$
 - takes actions $a_t \in A$
 - actions chosen according to **policy** $\pi: S \rightarrow A$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - Markov property – state defines everything
 - no other temporal dependency

- let’s assume we know the state for now
 - let’s go with MDPs,
 see how they map to POMDPs later

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)
Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

• RL = finding a policy that maximizes long-term reward
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

\[
R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}
\]

\(\gamma \in [0,1] = \text{discount factor} \) (immediate vs. future reward trade-off)

\(\gamma < 1 : R_t \) is finite (if \(r_t \) is finite)
\(\gamma = 0 : \) greedy approach (ignore future rewards)

return: accumulated long-term reward (from timestep \(t \) onwards)

\textbf{state transition is stochastic} \rightarrow \textbf{maximize expected return}

\[\mathbb{E}[R_t | \pi, s_0]\] expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
State-value Function

• Using return, we define the **value of a state** s under policy π: $V^\pi(s)$
 - Expected return for starting in state s and following policy π
• Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
• This gives us a recursive equation (**Bellman Equation**):

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))
\]

• $V^\pi(s)$ defines a **greedy policy**:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{ of } a'} & \text{for } a = \arg\max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\
0 & \text{otherwise}
\end{cases}
\]
Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of **taking action a in state** s, under policy π
 - Same principle as value $V^\pi(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

- $Q^\pi(s, a)$ also defines a greedy policy:

\[
\pi(s, a) := \begin{cases} \frac{1}{\# \text{ of } a'} & \text{for } a = \arg \max_a Q^\pi(s, a) \\ 0 & \text{otherwise} \end{cases}
\]

again, “actions that look best for the next step”

simpler: no need to enumerate s', no need to know $p(s'|s, a)$ and $r(s, a, s')$

but Q tables are bigger than V tables
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either $\pi^*, V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agent Taxonomy

• Quantity to optimize:
 • value function – **critic**
 • policy – **actor**
 • (both – actor-critic – omitted)

• Environment model:
 • **model-based** (assume known \(p(s'|s, a), r(s, a, s')\))
 • makes for mathematically nice solutions
 • but you can only know the full model in limited settings
 • **model-free** (don’t assume anything, sample)
 • this is the one for “real-world” use
 • using \(Q\) instead of \(V\) comes handy here (“hiding” \(p(s'|s, a)\))
• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment (=must be model-based)
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
Value Iteration

1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily

2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:

 for all s: $V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s,a)(r(s,a,s') + \gamma V_i(s'))$

 $i \leftarrow i + 1$

- At convergence, we’re less than τ away from optimal state values
 - resulting greedy policy is typically already optimal in practice
- Can be done with $Q_i(s,a)$ instead of $V_i(s)$
- Assumes known $p(s'|s,a)$ and $r(s,a,s')$
 - can be estimated from data if not known – but it’s expensive
Value iteration example (Gridworld)

- Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 - reward +1 for staying at “G”
 - reward -1 for hitting a wall
 - discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf
https://youtu.be/9YN1R6Lh9Jo
(note that rewards here come from states, not movements)
Monte Carlo Methods

- $V(s)$ or $Q(s,a)$ estimated iteratively, on-policy
 - explores states with more value more often
- Loop over episodes (dialogues)
 - record (s_t, a_t, r_t) for $t = 0, \ldots, T$ in the episode
 - for all s, a in the episode:
 - $R(s, a) \leftarrow$ list of all returns for taking action a in state s (sum of rewards till end of episode)
 - $Q(s, a) \leftarrow$ mean($R(s, a)$)
- To converge, we need to explore – using ϵ-greedy policy:

 $$a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}$$

 ϵ can be large initially, then gradually lowered

 $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

off-policy extensions exist (omitted)
SARSA (state-action-reward-state-action)

- estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 - **TD**: don’t wait till the end of episode
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s, initial a according to ε-greedy policy based on Q
 - for each step:
 - take action a, observe reward r and state s'
 - choose action a' from s' acc. to ε-greedy policy based on Q
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 - $s \leftarrow s'$, $a \leftarrow a'$
- typically converges faster than MC (but not always)

![Diagram](https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce)
Q-Learning (off-policy TD)

- off-policy – directly estimate $Q^*(s, a)$
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 - $s \leftarrow s'$

update uses best a', regardless of current policy:

a' is not necessarily taken in the actual episode
• we assume a differentiable parametric policy \(\pi(a|s, \theta) \)
• MC search for policy parameters by stochastic gradient ascent
 • looking to maximize performance \(J(\theta) = V^{\pi_\theta}(s_0) \)
• choose learning rate \(\alpha \), initialize \(\theta \) arbitrarily
• loop forever:
 • generate an episode \(s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T \), following \(\pi(\cdot | \cdot, \theta) \)
 • for each \(t = 0, 1, \ldots, T \):
 \[\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta) \]

variant: discounting a **baseline** \(b(s) \) (predicted by any model)
returns \(R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1} \)
this is stochastic \(\nabla J(\theta) \)
• from **policy gradient** theorem

\(a \) good \(b(s) \) is actually \(V(s) \)
POMDP Case

- POMDPs – belief states instead of dialogue states
 - probability distribution over states
 - can be viewed as **MDPs with continuous-space states**
- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- **REINFORCE/policy gradients work out of the box**
 - function approximation approach, allows continuous states

(from Milica Gašić's slides)

<table>
<thead>
<tr>
<th>grey</th>
<th>= observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>= unobserved</td>
</tr>
</tbody>
</table>

Summary Space

• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = **summary space**
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = **summary actions**
 • e.g. just DA types (*inform, confirm, reject*)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates

(from Milica Gašić's slides)
Simulated Users

- We can’t really learn just from static datasets
 - on-policy algorithms don’t work
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k’s dialogues used for training, depending on method
- solution: **user simulation**
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE policy from data

(from Milica Gašić's slides)
Summary

• Action selection – deciding what to do next
• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)
• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html