NPFL123 Dialogue Systems

1. Introduction

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda & Jan Cuřín, Petr Fousek

14. 2. 2022
• Lecture (Mon 3:40pm) + labs (Mon 5:20pm)
• Lecture: intro, theory
• Labs: practical examples, hands-on exercises
• To pass the course:
 • Written exam – 10 freeform questions, covered by the lectures
 • list of questions available on the web (may be updated slightly)
 • Lab exercises – weekly small homework
 • implementing your system for a domain
 • other small dialogue-related exercises
• Slides, news etc. at ufal.cz/npfl123
• Slack channel for discussions (https://ufal-dsg.slack.com/)
 • you got an invite per email, let me know if not
About Us

• **Ondřej Dušek**: lectures, course guarantor
 • PhD at ÚFAL ‘17, 2 years at Heriot-Watt Uni Edinburgh, back ‘19
 • mostly language generation, also chatbots (Alexa Prize)

• **Vojtěch Hudeček**: labs, a bit of lectures
 • PhD student at ÚFAL (5th year)
 • dialogue management & language understanding

• **Tomáš Nekvinda**: labs
 • PhD student at ÚFAL (2nd year)
 • end-to-end dialogue, merging chitchat & task-based dialogues

• **Jan Cuřín & Petr Fousek**: dialogue authoring & speech recognition lectures
 • both ex-IBM Research, founded THE MAMA.AI in ‘21
1. Introduction (today)
2. Dialogue system data & how to evaluate
3. What happens in a dialogue?
4. Language understanding (NLU)
5. NLU + Dialogue state tracking
6. Dialogue management (DM)
7. DM + Language generation
8. Voice assistants (Alexa, Siri, Google etc.), question answering
9. Dialogue authoring/tooling systems
10. Speech synthesis
11. Speech recognition
12. Chatbots
Recommended Reading

Primary:

• Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2021, Chap. 24 & 26 (https://web.stanford.edu/~jurafsky/slp3/) – brief, good intro

• McTear: Conversational AI. Morgan & Claypool 2021. (https://doi.org/10.2200/S01060ED1V01Y202010HLT048) – bit more advanced, very new

Other (see also website):

• Gao et al.: Neural Approaches to Conversational AI, 2019 (http://arxiv.org/abs/1809.08267)

What’s a dialogue system?

Definition:

• A (spoken) dialogue system is a computer system designed to interact with users in (spoken) natural language

• Wide definition – covers lots of different cases
“AI”: sci-fi vs. reality

- Lots of talk about AI now
- Hype around Siri/Alexa/Google
- Sci-fi expectations – AI-complete
 - *Star Trek* – know-it-all
 - *2001 Space Odyssey* – mutiny
 - *Her* – personality
- We’re not there – probably for long
 - main bottleneck: understanding
 (not speech comprehension, meaning!)
 - … more like the *Red Dwarf* talkie toaster

[Links to videos related to the content are provided.]
Example: Google Assistant

• Handling call for a client (Google IO 2018 demo)
 • very natural speech
 • show’s what’s possible in a limited domain
 • redirects to a human if it can’t handle a shop’s request
• Deployed now in the US, but more limited
 • + some shops may just hang up

https://youtu.be/d40jgFZ5hXk
Example: Alana Chatbot (Heriot-Watt University)

- Open-domain
Why take interest in Dialogue Systems?

• It’s *the ultimate natural interface* for computers
• Exciting & **active research topic**
 • some stuff works, but there’s a long way to go
 • potential in many domains
 • integrates many different technologies
 • lots of difficult AI problems – **dialogue is hard!**
• **Commercially viable**
 • interest & investment from major IT companies
Basic Dialogue System Types

Task-oriented
• focused on completing a certain task/tasks
 • booking restaurants/flights, finding bus schedules, smart home…
• most actual DS in the wild
• “backend access” vs. “agent/assistant”

Non-task-oriented
• chitchat – social conversation, entertainment
 • getting to know the user, specific persona
• gaming the Turing test
Communication Domains

• “domain” = conversation topic / area of interest

• traditional: single/closed-domain
 • one well-defined area, small set of specific tasks
 • e.g. banking system on a specific phone number

• multi-domain
 • basically joining several single-domain systems

• open-domain
 • “responds to anything” – mostly chitchat
Application Areas

- **phone** (traditional)
 - users call a phone number, a dialogue system picks up
 - even DTMF systems belong here (e.g. banks, phone operators)
 - information – buses (Let’s Go), restaurants/tourist info

- **apps**
 - assistant apps for your phone/computer
 - language learning, navigation (Spacebook)
 - companions (Xiaolce)

- **smart speakers**
 - home automation, assistants (Alexa/Google Home)

- **appliances**
 - voice operated TVs
 - other devices connect to smart speakers

http://www.speech.cs.cmu.edu/letsgo/example.html
https://youtu.be/lHflr1MF7DI

Application Areas

• cars
 • hands-free car-specific functions
 • Android Auto, Apple CarPlay, vendor-specific solutions

• web
 • search assistants (IKEA Anna, ČS George, Anežka)
 • Facebook Messenger chatbots
 • chit-chat chatbots (Pandorabots)

• embodied (robots)
 • information assistants

• virtual characters
 • computer games
 • therapy, elderly care
Modes of Communication

- **text**
 - most basic/oldest
 - easiest to implement, robust
 - not completely natural

- **voice**
 - more difficult, but can be more natural
 - easy to deploy over the phone

- **multimodal**
 - voice/text + graphics
 - additional modalities: video – gestures, mimics; touch
 - most complex

(Johnston et al., 2002)
https://www.aclweb.org/anthology/P02-1048/

(Skantze & Al Moubayed, 2012)
https://doi.org/10.1145/2388676.2388698
Dialogue Initiative

• **system-initiative**
 • “form-filling” (“Hello. Please tell me your date of birth.”)
 • system asks questions, user must reply in order to progress
 • traditional, most robust, but least natural

• **user-initiative**
 • user asks, machine responds (“Alexa, set the timer for two minutes”)

• **mixed-initiative**
 • system and user both can ask & react to queries
 • most natural, but most complex

S: Hello. How may I help you?
U: I’m looking for a restaurant.
S: What price do you have in mind?
U: Something in the city center please.
S: OK, city center. What price are you looking for?
Dialogue Systems Architecture

• main loop:
 • voice → text
 • text → meaning
 • meaning → reaction
 • reaction → text
 • text → voice
• access to backend
• multimodal systems: additional components

what's the time?

request(time)

inform(time=15:30)

it is currently 3:30 p.m.
Automatic Speech Recognition (ASR)

• Converting **speech signal** (acoustic waves) **into text**
• Typically produces several possible hypotheses with confidence scores
 • **n-best list**
 • lattice
 • confusion network
• Very good in ideal conditions
• **Problems:**
 • noise, accents, distance, channel (phone)...

Kazemian et al., ICMR 2008
DOI 10.1145/1460096.1460112
Speech Recognition

• Also: voice activity detection
 • detect when the user started & finished speaking
 • wake words ("OK, Google")

• ASR implementation: mostly neural networks
 • take acoustic features (frequency spectrum)
 • compare with previous
 • emit letters

• Limited domain: use of language models
 • some words/phrases more likely than others
 • previous context can be used

Natural/Spoken Language understanding (NLU/SLU)

• **Extracting the meaning** from the (now textual) user utterance
• Converting into a structured semantic representation
 • **dialogue acts:**
 • act type/intent (*inform, request, confirm*)
 • slot/attribute (*price, time...*)
 • value (*11:34, cheap, city center...*)
 • other, more complex – e.g. syntax trees, predicate logic

• Specific steps:
 • **named entity recognition** (NER)
 • identifying task-relevant names (London, Saturday)
 • **coreference resolution**
 • (“it” –> “the Athletic Arms bar”)

Example utterances:
- inform(food=Chinese, price=cheap)
- request(address)
Language Understanding

• Implementation varies
 • (partial) **handcrafting** viable for limited domains
 • keyword spotting
 • regular expressions
 • handcrafted grammars
 • **machine learning** – various methods
 • intent classifiers + slot/value extraction

• Can also provide n-best outputs

• Problems:
 • recovering from bad ASR
 • ambiguities
 • variation

S: Leaving Baltimore. What is the arrival city?
U: fine Portland [ASR error]
S: Arriving in Portland. On what date?
U: No not Portland Frankfurt Germany

[On a Tuesday]
U: I’d like to book a flight from London to New York for next Friday

U: Chinese city center
U: uhm I’ve been wondering if you could find me a restaurant that has Chinese food close to the city center please
Dialogue Manager (DM)

- Given NLU input & dialogue so far, responsible for **deciding on next action**
 - keeps track of what has been said in the dialogue
 - keeps track of user profile
 - interacts with backend (database, internet services)
- Dialogue so far = **dialogue history**, modelled by **dialogue state**
 - managed by **dialogue state tracker**
- System actions decided by **dialogue policy**
Dialogue state / State tracking

• Stores (a summary of) dialogue history
 • User requests + information they provided so far
 • Information requested & provided by the system
 • User preferences

• Implementation
 • **handcrafted** – e.g. replace value per slot with last-mentioned
 • good enough in some circumstances
 • **probabilistic** – keep an estimate of per-slot preferences based on SLU output
 • more robust, more complex

price	0.8 cheap	0.1 moderate	0.1 <null>
food	0.7 Chinese	0.3 Vietnamese	
area	0.5 riverside	0.3 <null>	0.2 city center
Dialogue Policy

- Decision on next system action, given dialogue state
- Involves backend queries
- Result represented as system dialogue act
- Handcrafted:
 - **if-then-else** clauses
 - **flowcharts** (e.g. VoiceXML)
- Machine learning
 - often trained with **reinforcement learning**
 - POMDP (Partially Observable Markov Decision Process)
 - recurrent neural networks

confirm(food=Chinese)
inform(name=Golden Dragon, food=Chinese, price=cheap)

https://www.w3.org/2004/Talks/05-www2004-voice/dialog.png
Natural Language Generation (NLG) (Response Generation)

• Representing system dialogue act in natural language (text)
 • reverse NLU

• How to express things might depend on context
 • Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: templates
 • Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 • Works well for limited domains

inform(name=Golden Dragon, food=Chinese, price=cheap)

<name> is a <price>-ly priced restaurant serving <food> food

Golden Dragon is a cheaply priced restaurant serving Chinese food.
Natural Language Generation

• Grammar-based approaches
 • grammar/semantic structures instead of templates
 • NLG realizes them (=converts to linear text) by applying syntactic transformation rules

• Statistical approaches
 • most prominent: recurrent neural networks
 • generating word-by-word
 • input: encoded semantics + previous words

(Wen et al., 2015)
https://aclweb.org/anthology/W15-4639

(Kozlowski, 2002)

NPFL123 L1 2022
Text-to-speech (TTS) / Speech Synthesis

• Generate a speech signal corresponding to NLG output
 • text → sequence of **phonemes**
 • minimal distinguishing units of sound (e.g. [p], [t], [ŋ] “ng”, [ə] “eh/uh”, [i:] “ee”)
 • + pitch/intonation, speed, pauses, volume/accents

• Standard pipeline:
 • text normalization
 • abbreviations
 • punctuation
 • numbers, dates, times
 • pronunciation analysis (**grapheme** → **phoneme conversion**)
 • intonation/stress generation
 • waveform synthesis

take bus number 3 at 5:04am
take bus number three at five o four a m
Speech Synthesis

• TTS Methods:
 • Formant-based: phoneme-specific frequencies
 • oldest, not very natural, but works on limited hardware
 • Concatenative
 • record a single person, cut into phoneme transitions (diphones), glue them together
 • Hidden Markov Models
 • phonemes in context modelled as hidden Markov models
 • Model parameters estimated from data (machine learning)
 • Neural networks
 • HMMs swapped for a recurrent neural network
 • can go directly from text, no need for phoneme conversion

http://www.festvox.org/history/klatt.html (example 33)
https://en.wikipedia.org/wiki/MBROLA
http://flite-hts-engine.sp.nitech.ac.jp/
https://google.github.io/tacotron/
Organizing the Components

• Basic: pipeline
 • ASR → NLU → DM → NLG → TTS
 • components oblivious of each other

• Interconnected
 • read/write changes to dialogue state
 • more reactive (e.g. incremental processing), but more complex

• Joining the modules (experimental)
 • ASR + NLU
 • NLU + state tracking
 • NLU & DM (& NLG sometimes)
Dialogue Systems Research

• Multi/open domains
 • reusability, domain transfer
• Joint models ("end-to-end", all in one neural network)
• Multimodality
 • adding video (input/output)
• Context dependency
 • understand/reply in context (grounding, speaker alignment)
• Incrementality
 • don’t wait for the whole sentence to start processing
Summary

• We’re far from AI sci-fi dreams, but it still works a bit
 • dialogue is hard

• DSs have many forms & usage areas
 • task-oriented vs. non-task-oriented
 • closed, multi vs. open domain
 • system vs. user initiative

• Main components: ASR → NLU → DM → NLG → TTS
 • implementation varies

• It’s an active and interesting research topic!
• Next week: data & evaluation
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on slides and syllabi by:
• Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
• Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
• Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/

Labs in 10 mins, S4