NPFL123 Dialogue Systems
9. Neural Policies & Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín
27. 4. 2021
Deep Reinforcement Learning

• Exactly the same as “plain” RL (see last time)
 • agent & environment, actions & rewards
 • Markov Decision Process

• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy

• NN = function approximation approach
 • such as REINFORCE / policy gradients
 • NN → complex non-linear functions

• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states

(NPFL123 L9 2020)
Value Function Approximation

• Searching for approximate $V(s)$ or $Q(s, a)$
 • exact values are too big to enumerate in a table
 • **parametric approximation** $V(s; \theta)$ or $Q(s, a; \theta)$

• Regression: **Mean squared value error**
 • weighted over states’ importance
 • useful for gradient descent
 • $\rightarrow \sim$ **any supervised learning approach possible**
 • not all work well though

• MC = stochastic gradient descent

• TD is **semi-gradient** (not true gradient descent)
 • \leftarrow using current weights in target estimate
 • faster than MC, but unstable for NNs!

- \[\overline{VE}(\theta) := \sum_{s \in S} \mu(s)(V_\pi(s) - V(s, \theta))^2 \]

- **target value** (which we don’t have!)
 \rightarrow using R_t in MC

- using $r_{t+1} + \gamma V(s', \theta)$ in TD
Deep Q-Networks

• Q-learning with function approximation
 • Q function represented by a neural net

• Causes of poor convergence in basic Q-learning with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability

• Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

 \[
 \text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]
 \]

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

 “generate your own ‘supervised’ training data”

 “have a fixed target, like in supervised learning”
DQN algorithm

• initialize θ randomly
• initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
• repeat over all episodes:
 • for episode, set initial state s
 • select action a from ϵ-greedy policy based on $Q(\theta)$
 • take a, observe reward r' and new state s'
 • store (s, a, r', s') in D
 • $s \leftarrow s'$
 • once every k steps:
 • sample a batch B of random (s, a, r', s')’s from D
 • update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]$

often \rightarrow once every k steps:
 • “replay” a. k. a. training

rarely \rightarrow once every λ steps:
 • $\overline{\theta} \leftarrow \theta$

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
https://youtu.be/V1eYniJ0Rnk?t=18
a simple DQN can drive a dialogue system’s action selection
- DQN is function approximation – works fine for POMDPs
- no summary space tricks needed here

rule-based simulator with agenda running on DA level

DQN – feed-forward, 1 hidden ReLU layer

error model controller (simulating ASR/NLU noise)

movie ticket booking: better than rule-based

replay memory initialized using a simple handcrafted policy

Policy Networks

- Learning policy directly – **policy network**
 - can work better than Q-learning
 - NN: input = state, output = prob. dist. over actions
 - actor-critic: network predicts both π and V/Q

- Training can’t use/doesn’t need the DQN tricks
 - just REINFORCE with baseline
 - reward – baseline = **advantage**
 - these are on-policy → no experience replay
 - minibatches used anyway

policy gradient theorem guarantees convergence
Natural Language Generation

- conversion of **system action semantics → text** (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model
 - dialogue history
 - can be any kind of knowledge representation
 - e.g. “user wants short answers”
 - e.g. for referring expressions, avoiding repetition
- general NLG objective:
 - given input & communication goal
 - create accurate + natural, well-formed, human-like text
- additional NLG desired properties:
 - variation
 - simplicity
 - adaptability
NLG Use Cases

- **dialogue systems**
 - very different for task/non-task-oriented/QA systems

- **standalone**
 - data-to-text
 - short text generation for web & apps
 - weather, sports reports
 - personalized letters
 - creative generation (stories)

- **machine translation**
 - now mostly integrated end-to-end
 - formerly not the case

- **summarization**
Inputs

- **Content/text/document planning**
 - content selection according to communication goal
 - basic structuring & ordering

Content plan

- **Sentence planning/microplanning**
 - aggregation (facts → sentences)
 - lexical choice
 - referring expressions

Sentence plan

- **Surface realization**
 - linearization according to grammar
 - word order, morphology

Text

deciding what to say

typically handled by dialogue manager in dialogue systems

organizing content into sentences & merging simple sentences

this is needed for NLG in dialogue systems

e.g. restaurant vs. it

deciding how to say it
NLG Implementations

• Few systems implement the whole pipeline
 • All stages: mostly domain-specific data-to-text, standalone
 • e.g. weather reports
 • Dialogue systems: just sentence planning + realization
 • Systems focused on content + sentence planning with trivial realization
 • frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
 • Surface realization only
 • requires very detailed input
 • some systems: just ordering words

• Pipeline vs. end-to-end approaches
 • planning + realization in one go – popular for neural approaches
 • pipeline: simpler components, might be reusable (especially realizers)
 • end-to-end: no error accumulation, no intermediate data structures
NLG Basic Approaches

• **canned text**
 • most trivial – completely hand-written prompts, no variation
 • doesn’t scale (good for DTMF phone systems)

• **templates**
 • “fill in blanks” approach
 • simple, but much more expressive – covers most common domains nicely
 • can scale if done right, still laborious
 • most production dialogue systems

• **grammars & rules**
 • grammars: mostly older research systems, realization
 • rules: mostly content & sentence planning

• **machine learning**
 • modern research systems
 • pre-neural attempts often combined with rules/grammar
 • neural nets made it work *much* better
Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

(Facebook, 2015)

![Inflection rules example](https://github.com/UFAL-DSG/alex)

(Alex public transport information rules)

NPFL123 L9 2020
Grammar/Rules for Sentence Planning

• Handcrafted grammar/rules
 • input: base semantics (e.g. dialogue acts)
 • output: detailed sentence representation (=realizer inputs, see →)

• Statistical enhancements:
 generate more options & choose the best
 • generate multiple outputs
 • underspecified grammar
 • rules with multiple options…
 • choose the best one
 • train just the selection – learning to rank
 • any supervised approach possible
 a) “top” = 1, “not top” = 0
 b) loss incurred by relative scores
 loss = max(0, “not top” − “top”)

NB: this is slow!

SpoT trainable planner (RankBoost ranking)

(input DA)

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003
Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)
- Typically general-domain, reusable
 - KPML – multilingual
 - systemic functional grammar
 - FUF/SURGE – English
 - functional unification grammar
 - OpenCCG – English
 - combinatory categorial grammar

KPML input for *A dog is in the park.*

```
(10 / spatial-locating
 :speechact (a0 / assertion :polarity positive
 :speaking-time t0)
 :reference-time-id t0
 :event-time (t0 / time)
 :theme do
 :domain (do / object :lex dog
 :identifiability-q notidentifiable)
 :range (p0 / three-d-location :lex park
 :identifiability-q identifiable))
```

FUF/SURGE input for *She hands the draft to the editor.*

```
<cat process
<partic
<affected
<posse ssor
<posse ssor

agent [Lex gender feminine up "editor"]
affected [Lex up "draft"]
possessor [Lex up "draft"]
```

OpenCCG input for *The cheapest flight is on Ryanair.*

```
be [tense=pres info=th id=n1]
<Arg> flight [num=sg dot=the info=th id=f2]
<HasProp> cheapest [kon=+ id=n2]
<Prop> has-rel [id=n3]
<Of> f2
<Airline> Ryanair [kon=+ id=n4]
```
Procedural realizer: SimpleNLG

- A simple Java API
 - “do-it-yourself” style – only cares about the grammar
 - input needs to be specified precisely
 - building up ~syntactic structure
 - final linearization

- built for English
 - large coverage lexicon included
 - ports to multiple languages available

SimpleNLG generation procedure

```java
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createClass();
p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");
p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613
Grammar/Procedural Realizers

- procedural, but based on grammar formalisms
- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics \rightarrow surface syntax \rightarrow morphology
- **Treex** (Functional Generative Description)
 - deep syntax \rightarrow surface syntax \rightarrow morphology and linearization
 - simple Perl program
 - copy deep syntax
 - fix morphology agreement
 - add prepositions, conjunctions & articles
 - add auxiliary verbs
 - inflect words
 - add punctuation & capitalization

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://www.aclweb.org/anthology/W15-3009
Trainable Realizers

- **Overgenerate & Rerank**
 - same approach as for sentence planning
 - assuming a flexible handcrafted realizer (e.g., OpenCCG)
 - underspecified input \rightarrow more outputs possible
 - generate more & use statistical reranker, based on:
 - n-gram language models
 - Tree language models
 - expected text-to-speech output quality
 - personality traits & alignment/entrainment
 - more variance, but at computational cost

- **Grammar/Procedural-based**
 - same as RealPro or TectoMT, but predict each step using a classifier

This means the grammar may be smaller

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007

CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012
Non-Neural End-to-End NLG

- NLG as language models
 - hierarchy of language models (HMM/MEMM/CRF style)
 - DA → slot → word level

- NLG using context-free grammars
 a) “language models” by probabilistic CFGs
 • approximate search for best CFG derivation
 b) synchronous PCFGs – MRs & text
 • “translation” with hierarchical phrase-based system
 • parsing MR & generating text

<table>
<thead>
<tr>
<th>rule</th>
<th>prob./parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S → R(start)</td>
<td>$P(r) = 1$</td>
</tr>
<tr>
<td>2. R(r, r) → FS(r, stnt) R(r, r)</td>
<td>$P(r, r, r, ., r, ., r)$</td>
</tr>
<tr>
<td>3. R(r, r) → FS(r, stnt)</td>
<td>$P(r, r, r, ., r)$</td>
</tr>
<tr>
<td>4. FS(r, r, r) → F(r, r, f) FS(r, r, f)</td>
<td>$P(f, f)$</td>
</tr>
<tr>
<td>5. FS(r, r, f) → F(r, r, f)</td>
<td>$P(f)$</td>
</tr>
<tr>
<td>6. F(r, r, f) → W(r, r, f) F(r, r, f)</td>
<td>$P(w, w, r, f)$</td>
</tr>
<tr>
<td>7. F(r, r, f) → W(r, r, f)</td>
<td>$P(w, w, r, f)$</td>
</tr>
<tr>
<td>8. W(r, r, f) → α</td>
<td>$P(\alpha)$</td>
</tr>
<tr>
<td>9. W(r, r, f) → g(f)</td>
<td>$P(g(f)$, mode $r, r, f, f = int) [\alpha]$</td>
</tr>
</tbody>
</table>

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

(a) English
(b) Cland

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003
Neural Generation: Seq2seq RNNs (see NLU for RNN intro)

token representation: **embeddings**
= vectors of ~100-1000 numbers

source “word” embeddings

```
0  <pad>
1   inform
2    request
3      food
4       area
5         price
6        [name]
...  ...
```

vocabulary is numbered

```
2    request
4     area
```

encoder outputs - “hidden states”
(=again, vectors of numbers)

```
10   which
5     area
```

attention = weighted combination
(weights different for each step)

```
softmax
```

probability distribution over the whole vocabulary

```
0  <pad>
1   <start>
2    <stop>
3      the
4    restaurant
5       area
6        is
...  ...
```

```
10   which
```

target word embeddings

```
softmax
```

cells: identical (compound) neural layers
input: prev. output + token embedding

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473
Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
 • no need to know which word/phrase corresponds to which slot

• 1st system: RNN language model conditioned on DA (~decoder only)
 • input: binary-encoded DA
 • 1 if intent-slot-value present, 0 if not
 • delexicalized: much fewer values, shorter vector
 • modified LSTM cells
 • input DA passed in every time step
 • generating delexicalized texts word-by-word
 • i.e. decoder only

(name [Loch Fyne], eatType [restaurant], food [Japanese], price [cheap], familyFriendly [yes])

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

Seq2seq NLG with reranking (TGen)

- Encode DAs as sequences, apply standard RNN seq2seq
 - encoder: triples <DA type, slot, value>
 - decoder: words (possibly delexicalized)
- Beam search & reranking
 - DA classification of outputs
 - checking against input DA

(Dušek & Jurčiček, 2016)
https://aclweb.org/anthology/P16-2008
Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

feed-forward (fully connected) network
- ReLU activations
- tricks for better training

attention over all of input

no recurrent connections

positional encoding (indicate position in sentence)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Transformers & Pretrained Language Models

• Transformer architecture
 - encoder-decoder, but using feed-forward & attention instead of RNNs
 - positional encoding used to indicate sentence position
 - predefined “pattern” functions (based on sin & cos)
 - simply added to word embeddings
 - no RNN → parallel training → faster, allows larger models (more layers)

• Large models pretrained on open-domain texts
 - guess masked word (encoder only: BERT)
 - generate next word (decoder only: GPT)
 - fixed distorted sentences (both: BART, T5)

• Can be finetuned for your domain & task
 - relatively little data is enough
 - extremely fluent

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
(Radford et al., 2019) https://openai.com/blog/better-language-models/
(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703
(Raffel et al., 2020) http://jmlr.org/papers/v21/20-074.html
(Chen et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.18/
Problems with neural NLG

• Checking the semantics
 • neural models tend to forget input / make up irrelevant stuff
 • reranking works, but isn’t perfect

• Delexicalization needed (at least some slots)
 • otherwise the data would be too sparse
 • alternative: copy mechanisms

• Diversity & complexity of outputs
 • still can’t match humans
 • needs specific tricks to improve this

• Still more hassle than writing up templates 😞

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)
Summary

- **Deep Reinforcement Learning**
 - same as plain RL – agent + states, actions, rewards – just \(Q \) or \(\pi \) is a NN
 - function approximation for \(Q \) – mean squared value error
 - **Deep Q Networks** – Q learning where \(Q \) is a NN + tricks
 - experience replay, target function freezing
 - **Policy networks** – policy gradients where \(\pi \) is a NN

- **Natural Language Generation**
 - steps: content planning, sentence planning, surface realization
 - not all systems implement everything (content planning is DM’s job in DS)
 - pipeline vs. end-to-end
 - approaches: templates, grammars, statistical
 - templates work great
 - neural: RNN / Transformer, reranking
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial: https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf