NPFL123 Dialogue Systems
8. Dialogue Policy
(non-neural)

https://ufal.cz,npfl123

Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín
20. 4. 2021
Dialogue Management

• Two main components:
 • **State tracking** (last lecture)
 • **Action selection** with a **policy** (today)

• action selection – deciding what to do next
 • based on the current belief state – under uncertainty
 • following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 • controlling the coherence & flow of the dialogue
 • actions: linguistic & non-linguistic

• DM/policy should:
 • manage uncertainty from belief state
 • recognize & follow dialogue structure
 • plan actions ahead towards the goal

Did you say Indian or Italian?

Did you say Indian or Italian?

Follow convention, don’t be repetitive

E.g. ask for all information you require
DM/Action Selection Approaches

- **Finite-state machines**
 - simplest possible
 - dialogue state is machine state

- **Frame-based** (VoiceXML)
 - slot-filling + providing information – basic agenda

- **Rule-based**
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning

- Note that state tracking differs with different action selection
FSM Dialogue Management

• Dialogues = graphs going through possible conversations
 • nodes = system actions
 • edges = possible user response semantics
• advantages:
 • easy to design
 • predictable
• disadvantages:
 • very rigid – not real conversations (ignores anything that’s not a reply to last question)
 • doesn’t scale to complex domains
• Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

• Making the interaction more flexible
• State = frame with slots
 • required slots need to be filled
 • this can be done in any order
 • more information in one utterance possible
• If all slots are filled, query the database
• Multiple frames (e.g. flights, hotels…)
 • needs frame tracking
• Standard implementation: **VoiceXML**
 • Still not completely natural, won’t scale to more complex problems

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEPT DATE</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEPT TIME</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

mixed-initiative

(from Hao Fang’s slides)

(from Pierre Lison’s slides)

```
<form>
  <field name="transporttype">
    <prompt>Please choose airline, hotel, or rental car. </prompt>
    <grammar type="application/x=nuance-gsl">
      [airline hotel "rental car"]
    </grammar>
  </field>
  <block>
    <prompt>You have chosen <value expr="transporttype">. </prompt>
  </block>
</form>
```
Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

```python
elif fact['we did not understand']:
    # NLG("Sorry, I did not understand.
    res_da = DialogueAct("notunderstood")
    res_da.extend(self.get_limit_com())
    dialogue_state["ludsit"]').reset()

elif fact['user wants help']:
    # NLG(""Pomoc.")
    res_da = DialogueAct("help")
    dialogue_state["ludsit"]').reset()

elif fact['user thanked']:
    # NLG("Díky.")
    res_da = DialogueAct("inform(cord)
    dialogue_state["ludsit"]').reset()

elif fact['user wants restart']:
    # NLG("Dobře, zanášeme znovu. Jak
    dialogue_state.restart()
    res_da = DialogueAct("restart")
    dialogue_state["ludsit"]').reset()

elif fact['user wants us to repeat']:
    # NLG - use the last dialogue act
    res_da = DialogueAct("irepeat")
    dialogue_state["ludsit"]').reset()
```

(Jurčíček et al., 2014)
https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
DM with supervised learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You **need** sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s **no single correct next action** – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • DSs **should** behave differently – make the best of what they have
DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an **environment**:
 - has internal **state** \(s_t \in S \)
 - takes **actions** \(a_t \in A \)
 - actions chosen according to **policy** \(\pi : S \rightarrow A \)
 - gets **rewards** \(r_t \in \mathbb{R} \) & state changes from the environment
 - Markov property – state defines everything
 - no other temporal dependency

- let’s assume we know the state for now
 - let’s go with MDPs,
 see how they map to POMDPs later
Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

\[
R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}
\]

- state transition is stochastic \(\rightarrow\) maximize expected return

\[
\mathbb{E}[R_t | \pi, s_0] \quad \text{expected } R_t \text{ if we start from state } s_0 \text{ and follow policy } \pi
\]
State-value Function

• Using return, we define the **value of a state** s under policy π: $V^\pi(s)$
 - Expected return for starting in state s and following policy π

• Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$

• This gives us a recursive equation (**Bellman Equation**):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))$$

• $V^\pi(s)$ defines a **greedy policy**:

$$\pi(s, a) := \begin{cases} \frac{1}{\text{# of } a's} & \text{for } a = \arg \max_a \sum_{s' \in \mathcal{S}} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\ 0 & \text{otherwise} \end{cases}$$

NPFL123 L8 2021
Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of **taking action a in state s**, under policy π
 - Same principle as value $V^\pi(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

- $Q^\pi(s, a)$ also defines a greedy policy:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{ of } a' \text{'s}} & \text{for } a = \arg \max_a Q^\pi(s, a) \\
0 & \text{otherwise}
\end{cases}
\]

again, “actions that look best for the next step”

- simpler: no need to enumerate s', no need to know $p(s'|s, a)$ and $r(s, a, s')$

but Q tables are bigger than V tables
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi] \rightarrow$ use it to define π^*

- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^{\pi}(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
• Quantity to optimize:
 • value function – **critic**
 • policy – **actor**
 • (both – actor-critic – omitted)

• Environment model:
 • **model-based** (assume known \(p(s'|s, a), r(s, a, s') \))
 • makes for mathematically nice solutions
 • but you can only know the full model in limited settings
 • **model-free** (don’t assume anything, sample)
 • this is the one for “real-world” use
 • using \(Q \) instead of \(V \) comes handy here (“hiding” \(p(s'|s, a) \)
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment (=must be model-based)
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
Value Iteration

1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily
2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:

 for all s: $V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s,a)(r(s,a,s') + \gamma V_i(s'))$

 $i \leftarrow i + 1$

• At convergence, we’re less than τ away from optimal state values
 • resulting greedy policy is typically already optimal in practice

• Can be done with $Q_i(s,a)$ instead of $V_i(s)$

• Assumes known $p(s'|s,a)$ and $r(s,a,s')$
 • can be estimated from data if not known – but it’s expensive
Value iteration example (Gridworld)

- Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 - reward +1 for staying at “G”
 - reward -1 for hitting a wall
 - discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf
https://youtu.be/9YN1R6Lh9Jo
(note that rewards here come from states, not movements)
Monte Carlo Methods

• $V(s)$ or $Q(s, a)$ estimated iteratively, on-policy
 • explores states with more value more often
• Loop over episodes (dialogues)
 • record (s_t, a_t, r_t) for $t = 0, ... T$ in the episode
 • for all s, a in the episode:
 • $R(s, a) \leftarrow$ list of all returns for taking action a in state s (sum of rewards till end of episode)
 • $Q(s, a) \leftarrow$ mean($R(s, a)$)
• To converge, we need to explore – using ϵ-greedy policy:
 $$a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}$$
 ϵ can be large initially, then gradually lowered

off-policy extensions exist (omitted)

$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

here: model-free for Q’s, but also works model-based for V’s
SARSA (state-action-reward-state-action)

- estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 - **TD**: don’t wait till the end of episode
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s, initial a according to ϵ-greedy policy based on Q
 - for each step:
 - take action a, observe reward r and state s'
 - choose action a' from s' acc. to ϵ-greedy policy based on Q
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 - $s \leftarrow s'$, $a \leftarrow a'$
- typically converges faster than MC (but not always)

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
Q-Learning (off-policy TD)

- off-policy – directly estimate \(Q^* (s, a) \)
 - regardless of policy used for sampling
- choose learning rate \(\alpha \), initialize \(Q \) arbitrarily
- for each episode:
 - choose initial \(s \)
 - for each step:
 - choose \(a \) from \(s \) according to \(\epsilon \)-greedy policy based on \(Q \)
 - take action \(a \), observe reward \(r \) and state \(s' \)
 - \(Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right) \)
 - \(s \leftarrow s' \)

update uses best \(a' \), regardless of current policy:
\(a' \) is not necessarily taken in the actual episode

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
REINFORCE: Policy gradients

- we assume a differentiable parametric policy $\pi(a|s, \theta)$
- MC search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\theta) = V^\pi_{\theta}(s_0)$
- choose learning rate α, initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1 \ldots T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \theta)$

variant: discounting a baseline $b(s)$ (predicted by any model)

$R_t - b(s_t)$ instead of R_t
gives better performance

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

this is stochastic $\nabla J(\theta)$
- from policy gradient theorem

a good $b(s)$ is actually $V(s)$
POMDP Case

- POMDPs – belief states instead of dialogue states
 - probability distribution over states
 - can be viewed as **MDPs with continuous-space states**
- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- REINFORCE/policy gradients work out of the box
 - function approximation approach, allows continuous states

(from Milica Gašić’s slides)

https://en.wikipedia.org/wiki/Voronoi_diagram
Summary Space

• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = **summary space**
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = **summary actions**
 • e.g. just DA types (**inform**, **confirm**, **reject**)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates

(from Milica Gašić's slides)
Simulated Users

• We can’t really learn just from static datasets
 • on-policy algorithms don’t work
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE policy from data
Summary

• Action selection – deciding what to do next
• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)
• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Next week:
Lab questions 9am
Lab assignment 9:50
Lecture 10:40

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

- Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
- David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html