NPFL123 Dialogue Systems

7. Neural NLU & State Tracking

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín

13. 4. 2021
Neural networks

• Can be used for both classification & sequence models
• **Non-linear functions**, composed of basic building blocks
 • stacked into **layers**
• Layers are built of **activation functions**:
 • linear functions
 • nonlinearities – sigmoid, tanh, ReLU
 • softmax – probability estimates:
 \[
 \text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^{n} \exp(x_j)}
 \]

• Fully differentiable – training by gradient descent
 • gradients **backpropagated** from outputs to all parameters
 • (composite function differentiation)

Sigmoid
\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

tanh
\[
tanh(x)
\]

ReLU
\[
\max(0, x)
\]

https://medium.com/@shrutijson10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Neural networks – features

• You can use same ones as for LR/SVM…
 • but it’s a lot of work to code them in

• **Word embeddings**
 • let the network learn features by itself
 • input is just words (vocabulary is numbered)
 • top ~50k words + `<unk>`, or subwords
 • distributed word representation
 • each word = **vector of floats** (~50-2000 dims.)
 • part of network parameters – trained
 a) random initialization
 b) pretraining
 • the network learns which words are used similarly
 • they end up having close embedding values
 • different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

Recurrent Neural Networks

• Many identical layers with shared parameters (**cells**)
 • ~ the same layer is applied multiple times, taking its own outputs as input
 • ~ same number of layers as there are tokens
 • output = **hidden state** – fed to the next step
 • additional input – next token features

• **Cell types**
 • **basic RNN**: linear + tanh
 • problem: vanishing gradients
 • can’t hold long recurrences
 • **GRU, LSTM**: more complex, to make backpropagation work better
 • “gates” to keep old values

Encoder-Decoder Networks

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells over vectors of ~ embedding size
- MT, dialogue, parsing…
 - more complex structures linearized to sequences

$h_0 = 0$

$h_t = \text{cell}(x_t, h_{t-1})$

$s_0 = h_T$

$p(y_t | y_1, \ldots, y_{t-1}, x) = \text{softmax}(s_t)$

$s_t = \text{cell}(y_{t-1}, s_{t-1})$

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Attention Models

- Encoder-decoder too crude for complex sequences
 - the whole input crammed into a fixed-size vector (last hidden state)
- **Attention** = “memory” of all encoder hidden states
 - weighted combination
 - re-weighted every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer

attention value = **context vector**
\[c_t = \sum_{i=1}^{n} \alpha_{ti} h_i \]

- encoder hidden state
- decoder state
- trained parameters

attention weights = **alignment model**
\[\alpha_{ti} = \text{softmax}(v_\alpha \cdot \tanh(W_\alpha \cdot s_{t-1} + U_\alpha \cdot h_i)) \]

- Self-attention – over previous decoder steps

https://skymind.ai/wiki/attention-mechanism-memory-network

Neural NLU

• Various architectures possible
• Classification
 • feed-forward NN
 • RNN + attention weight → softmax
 • convolutional networks
• Sequence tagging
 • RNN (LSTM/GRU) → softmax over hidden states
 • default version: label bias (like MEMM)
 • CRF over the RNN possible
 • Still treats intent + slots independently

• Same network for both tasks

• **Bidirectional encoder**
 • 2 encoders: left-to-right, right-to-left
 • concatenate hidden states
 • “see the whole sentence before you start tagging”

• Decoder – tag word-by-word, inputs:
 a) attention
 b) input encoder hidden states (“aligned inputs”)
 c) both

• Intent classification:
 softmax over last encoder state
 • + specific intent context vector (attention)
• Extended version: use slot tagging in intent classification
 • Bidi encoder
 • Slots decoder with encoder states & attention
 • Intent decoder – attention over slots decoder states

• Works slightly better

• Dialogue management consist of:
 • **State update** ← here we need DST
 • Action selection (later)

• **Dialogue State** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the city centre.

S: OK, what kind of food do you like?

U: Chinese.

X

S: What part of town do you have in mind?

X

S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.

✔

S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the **city centre**.
Dialogue State Contents

• “All that is used when the system decides what to say next”

• **User goal/preferences ~ NLU output**
 • slots & values provided (search constraints)
 • information requested

• **Past system actions**
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested

• **Other semantic context**
 • user/system utterance: bye, thank you, repeat, restart etc.

(Henderson, 2015)
https://ai.google/research/pubs/pub44018
Ontology

- To describe possible states
- Defines all concepts in the system
 - List of slots
 - Possible range of values per slot
 - Possible actions per slot
 - requestable, informable etc.
- Dependencies
 - some concepts only applicable for some values of parent concepts

food_type – only for type=restaurant
has_parking – only for type=hotel

“if entity=venue, then…”

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

some slot names may need disambiguation
(venue type vs. landmark type)

(Young, 2009)
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
Belief State

• Assume we don’t know the true dialogue state
 • but we can estimate a **probability distribution over all possible states**
 • In practice: per-slot distributions

• More robust
 • **accumulates probability** mass over **multiple turns**
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over **NLU n-best lists**

• Plays well with probabilistic dialogue policies
 • but not only them – rule-based, too
Belief State

1. "I'm looking for a Thai restaurant.

- **belief states**: hello(type=restaurant) 0.6, inform(type=restaurant, food=Thai) 0.4
- **actions**: You are looking for a restaurant right?

2. Thai.

- **belief states**: hello() 0.5, inform(food=Turkish) 0.3, inform(food=Thai) 0.2
- **actions**: You are looking for a restaurant right?

no probability accumulation (1-best, no state)

accumulating over NLU n-best list (still no state)

accumulating over NLU n-best + turns

(this is what we need (=belief state)

(from Milica Gašić's slides)
Dialogue as a Markov Decision Process

- MDP = probabilistic control process
 - model – Dynamic Bayesian Network
 - random variables & dependencies in a graph/network
 - “dynamic” = structure repeats over each time step \(t \)
 - \(s_t \) – dialogue states = what the user wants
 - \(a_t \) – actions = what the system says
 - \(r_t \) – rewards = measure of quality
 - typically slightly negative for each turn, high positive for successful finish
 - \(p(s_{t+1}|s_t, a_t) \) – transition probabilities
- Markov property – state defines everything
- Problem: we’re not sure about the dialogue state

(from Milica Gašić’s slides)
Dialogue states are **not observable**
- modelled probabilistically – belief state \(b(s) \) is a prob. distribution over states
- states (what the user wants) influence **observations** \(o_t \) (what the system hears)

Still Markovian
- \(b'(s') = \frac{1}{Z} p(o|s') \sum_{s \in S} p(s'|s, a) b(s) \)
- \(b(s) \) can be modelled by an HMM

Partially Observable (PO)MDP
Digression: Generative vs. Discriminative Models

What they learn:

• **Generative** – whole distribution \(p(x, y) \)
• **Discriminative** – just decision boundaries between classes \(\sim p(y|x) \)

To predict \(p(y|x) \)...

• **Generative models**
 • Assume some functional form for \(p(y), p(x|y) \)
 • Estimate parameters of \(p(y), p(x|y) \) directly from training data
 • Use Bayes rule to calculate \(p(y|x) \)

• **Discriminative models**
 • Assume some functional form for \(p(y|x) \)
 • Estimate parameters of \(p(y|x) \) directly from training data

they get the same thing, but in different ways
Example: elephants vs. dogs

- **Discriminative:**
 - establish decision boundary (~find distinctive features)
 - classification: just check on which side we are

- **Generative**
 - ~2 models – what elephants & dogs look like
 - classification: match against the two models

- Discriminative – typically better results
- Generative – might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely \((x, y)\)’s
Naïve Generative Belief Tracking (= Belief Monitoring)

• Using the HMM model
 • estimate the transition & observation probabilities from data

\[b(s) = \frac{1}{Z} p(o_t | s_t) \sum_{s_{t-1} \in S} p(s_t | a_{t-1}, s_{t-1}) b(s_{t-1}) \]

• Problem: too many states
 • e.g. 10 slots, 10 values each → \(10^{10}\) distinct states – intractable

• Solutions: pruning/beams, additional assumptions…
 • or different models altogether
Generative BT: Pruning/Beams

• Tricks to make the naïve model tractable:
 • only track/enumerate states supported by NLU
 • “other” = all equal, don’t even keep the rest in memory explicitly
 • just keep n most probable states (beam)
 • prune others & redistribute probability to similar states
 • merge similar states (e.g. same/similar slots, possibly different history)
 • along with probability mass

• Model parameters estimated from data
 • transition probabilities $p(s_{t+1}|s_t, a_t)$
 • observation probabilities $p(o_t|s_t)$
 • this is hard to do reliably, so they’re often set by hand
Hypotheticals not supported by NLU are ignored.

- Pruning an unlikely state & redistributing probability to similar ones.
- Merging similar states (note they're not the same).

(from Filip Jurčiček’s slides)
Generative BT: Independence Assumptions

- **Partition the state** by assuming conditional independence
 - track parts of the state independently → reduce # of combinations
 - e.g. “each slot is independent”:
 - state \(s = [s^1, \ldots, s^N] \), belief \(b(s_t) = \prod_i b(s^i_t) \)
 - other partitions possible – speed/accuracy trade-off

- Per-slot updates:
 \[
 b(s^i_t) = \sum_{s_{t-1}, o_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})
 = \sum_{s_{t-1}, o_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}) p(o^i_t | s^i_t) b(s^i_{t-1})
 \]
 - per-slot dependencies only
 - transition probability
 - observation probability
 - last belief

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Generative BT: Parameter Tying

- Further simplification: keep the partition + tie some parameters
 - you basically end up with 2 parameters only 😊

transition probabilities:

$$p(s_t^i | a_{t-1}^i, s_{t-1}^i) = \begin{cases}
\theta_T & \text{if } s_t^i = s_{t-1}^i \\
1 - \theta_T & \text{otherwise}
\end{cases}$$

$\theta_T =$ “rigidity” (bias for keeping previous values), otherwise all value changes have the same probability

observation probabilities:

$$p(o_t^i | s_t^i) = \begin{cases}
\theta_O p(o_t^i) & \text{if } o_t^i = s_t^i \\
1 - \theta_O & \text{otherwise}
\end{cases}$$

$\theta_O \sim$ confidence in NLU

$p(o_t^i) =$ NLU output

i.e. believe in value given by NLU with θ_O, distribute rest of probability equally

(Žilka et al., 2013)

https://www.aclweb.org/anthology/W13-4070/
Basic Discriminative Belief Tracker

- Based on the previous model
 - same slot independence assumption
- Even simpler – “always trust the NLU”
 - this makes it parameter-free
 - …and kinda rule-based
 - but very fast, with reasonable performance

update rule: $b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})$

substitution

$\frac{\text{the rule is now deterministic}}{\begin{cases} s^i_t = \bigcirc: & p(s^i_{t-1} = \bigcirc) p(o^i_t = \bigcirc) \\ s^i_t \neq \bigcirc: & p(o^i_t = s^i_t) + p(o^i_t = \bigcirc) p(s^i_t = s^i_{t-1}) \end{cases}}$

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Discriminative Trackers

• Generative trackers – need many assumptions to be tractable
 • cannot exploit arbitrary features
 • … or they can, but not if we want to keep them tractable
 • often use handcrafted parameters
 • … may produce unreliable estimates (Williams, 2012) https://ieeexplore.ieee.org/document/6424197

• Discriminative trackers – can use any features from dialogue history
 • parameters estimated from data more easily

• General distinction
 • **static models** – encode whole history into features
 • **dynamic/sequence models** – explicitly model dialogue as sequential
Static Discriminative Trackers

• Generally predict $p(s_t | o_1, a_1, ..., a_{t-1}, o_t)$
 • any kind of classifier (SVM, LR…)
 • need fixed feature vector from $o_1, a_1, ..., a_{t-1}, o_t$ (where t is arbitrary)
 • current turn, cumulative, sliding window
 • per-value features & tying weights – some values are too rare

• Global feature examples: (Metallinou et al., 2013) [https://www.aclweb.org/anthology/P13-1046]
 • NLU n-best size, entropy, lengths (current turn, cumulative)
 • ASR scores

• Per-value v examples:
 • rank & score of hypo with v on current NLU n-best + diff vs. top-scoring hypo
 • # times v appeared so far, sum/average confidence of that
 • # negations/confirmations of v so far
 • reliability of NLU predicting v on held-out data
Dynamic Discriminative Trackers

- Dialogue as a sequence \(p(s_1, \ldots, s_t | o_1, \ldots, o_t) \)
- **CRF** models
 - similar features as static
 - feature value: NLU score for the given thing (e.g. DA type + slot + value)
 - target: per-slot BIO coding

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Goals</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>Hello, How may I help you?</td>
<td>Persian, South</td>
</tr>
<tr>
<td>(U_1)</td>
<td>I need a Persian restaurant in the south part of town.</td>
<td></td>
</tr>
<tr>
<td>(S_2)</td>
<td>What kind of food would you like?</td>
<td>Persian, South</td>
</tr>
<tr>
<td>(S_3)</td>
<td>I'm sorry but there is no restaurant serving persian food.</td>
<td></td>
</tr>
<tr>
<td>(U_3)</td>
<td>How about Portuguese food?</td>
<td>Portuguese, South</td>
</tr>
<tr>
<td>(S_4)</td>
<td>Peking restaurant is a nice place in the south of town.</td>
<td></td>
</tr>
<tr>
<td>(U_4)</td>
<td>Is that Portuguese?</td>
<td>Portuguese, South</td>
</tr>
<tr>
<td>(S_5)</td>
<td>Nandos is a nice place in the south of town serving tasty Portuguese food.</td>
<td></td>
</tr>
<tr>
<td>(U_5)</td>
<td>Alright. What's the phone number?</td>
<td>Portuguese, South</td>
</tr>
<tr>
<td>(U_6)</td>
<td>The phone number of nandos is 01233 323908.</td>
<td></td>
</tr>
<tr>
<td>(S_6)</td>
<td>And the address?</td>
<td>Portuguese, South</td>
</tr>
<tr>
<td>(S_7)</td>
<td>Start, nandos is on Cambridge Leisure Park Clifton Way.</td>
<td></td>
</tr>
<tr>
<td>(U_7)</td>
<td>Thank you good bye.</td>
<td></td>
</tr>
</tbody>
</table>

(Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345
Neural State Trackers

• discriminative, many architectures
• basic **static** example:
 use a **feed-forward** as your classifier
 • input – features (w.r.t. slot-value \(v \) & time \(t \))
 • NLU score of \(v \)
 • n-best rank of \(v \)
 • user & system intent (**inform/request**)
 • … – other domain-independent, low-level NLU features
• 3 tanh layers
• output – softmax
 (= probability distribution over values)
• static – uses a **sliding window**:
 current time \(t \) + few steps back + \(\sum \text{previous} \)

(Imagine this part for all \(v \)'s)

(\(T \) previous timesteps)

sum of everything before then

\(f_1 \) \(f_1(t, v) \) \(f_1(t - T + 1, v) \) \(\sum_{t=0}^{T-1} f_1(t, v) \)
\(f_2 \) \(f_2(t, v) \) \(f_2(t - T + 1, v) \) \(\sum_{t=0}^{T-1} f_2(t, v) \)
\(\vdots \)
\(f_M \) \(f_M(t, v) \) \(f_M(t - T + 1, v) \) \(\sum_{t=0}^{T-1} f_M(t, v) \)

\(h_1 [= \tanh(W_0 f^T + b_0)] \)
\(h_2 [= \tanh(W_1 h_1^T + b_1)] \)
\(h_3 [= \tanh(W_2 h_3^T + b_2)] \)

\(E(t, v) [= W_3 h_3^T] \)

softmax over all possible \(v \)'s + “other”

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Dynamic Neural State Trackers

- Based on RNNs (turn-level or word-level)
- Typically **not** using NLU – directly ASR/words → belief
- Simple example: RNN over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)

(Žilka & Jurčiček, 2015)
http://arxiv.org/abs/1507.03471
Summary

• Neural networks primer
 • embeddings
 • layers (sigmoid, tanh, ReLU)
 • recurrent networks (LSTM, GRU), attention

• NN NLU examples: classifier/sequence

• Dialogue state vs. belief state

• Dialogue as (Partially observable) Markov Decision Process

• Tracker examples:
 • Generative (partitioning, parameter tying)
 • Discriminative (basic “rule-based”, classifier, neural)
 • static vs. dynamic

• Next time: dialogue policies
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Next week:
Lab questions 9am
Lab assignment 9:50
Lecture 10:40