NPFL123 Dialogue Systems

2. What happens in a dialogue?

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín

9. 3. 2021
How do you “define” dialogue?

• Spoken/written conversational (interactive, collaborative) communication between two or more people

• **verbal** + (possibly) non-verbal
 • can be multimodal (language + gestures, pitch, expressions…)

• **collaborative**, social
 • participants aim at communicative goal(s)
 • involves inference about intended meanings

• **practical**, related to actions

• **interactive**, incremental, messy!

Dialogue systems – simpler than that
Describing a dialogue

- Levels of linguistic description
 - **phonetics / phonology** – sounds
 - **morphology** – word forms
 - **syntax** – sentence structure
 - **semantics** – sentence (propositional) meaning
 - **pragmatics** – meaning in context, communication goal

- This lecture is (a lot) about **pragmatics**

(I don’t remember it well)

http://lindat.mff.cuni.cz/services/udpipe/

http://cohort.inf.ed.ac.uk/amreager.html
Turn-taking (interactivity)

• Speakers **take turns** in a dialogue
 • **turn** = continuous utterance from one speaker

• Normal dialogue – very fluent, fast
 • minimizing **overlaps & gaps**
 • little silence (usually <250ms), little overlap (~5%)
 • (fuzzy) rules, anticipation
 • cues/markers for turn boundaries:
 • linguistic (e.g. finished sentence), voice pitch
 • timing (gaps)
 • eye gaze, gestures (…)

• overlaps happen naturally
 • ambiguity in turn-taking rules (e.g. two start speaking at the same time)
 • **barge-in** = speaker starts during another one’s turn
20 seconds of a semi-formal dialogue (talk show):

S: um uh, you're about to start season [six,]
J: [yes]
S: you probably already started but [it launches]
J: [yes thank you]
A: (cheering)
J: we're about to start thank you yeah.. we're starting, we- on Sunday yeah, we've been eh- we've been prepping some [things]
S: [confidence] is high. feel good?
J: (scoffs)
S: think you're gonna [squeeze out the shows this time? think you're gonna do it?]
J: (laughing) [you're talking to me like I'm an a-]

confidence high? no!
S: [no]
J: [my confidence] is never high.
S: okay
J: self loathing high. concern astronomical.
Speech vs. text

• Natural speech is **very different from written text**
 • ungrammatical
 • restarts, hesitations, corrections
 • overlaps
 • pitch, stress
 • accents, dialect

• See more examples in speech corpora
 • https://kontext.korpus.cz/ (Czech)
 • select the “oral” corpus and search for a random word
• consecutive turns are typically assumed
 • system waits for user to finish their turn (~250ms non-speech)

• **voice activity detection**
 • binary classification problem – “is it user’s speech that I’m hearing?”[Y/N]
 • segments the incoming audio (checking every X ms)
 • actually a hard problem
 • nothing ever works in noisy environments

• **wake words** – making VAD easier
 • listen for a specific phrase, only start listening after it

• some systems allow user’s barge-in
 • may be tied to the wake word

hey Siri
okay Google
Alexa
Voice activity detection

- Overlapping windows of ~30ms + binary classifier
- Features – actually similar to speech recognition itself
 - energy (loudness)
 - autocorrelation
 - checking for fundamental voice frequency
 - MFCCs (mel frequency spectrum)
 - deltas (trends over time)
- **Onset is easier to detect** than end of speech
 - they’re louder, more pronounced
 - hard to detect speech towards the system vs. someone else
 - that’s why wake words are used
 - how long can pauses/hesitations be?
- Postprocessing
 - smoothing out short-term errors
Speech acts (by John L. Austin & John Searle)

• each utterance is an **act**
 • intentional
 • changing the state of the world
 • changing the knowledge/mood of the listener (at least)
 • influencing the listener’s behavior

• speech acts consist of:
 a) **utterance** act = the actual uttering of the words
 b) **propositional** act = semantics / “surface” meaning
 c) **illocutionary** act = “pragmatic” meaning
 • e.g. command, promise [...]
 d) **perlocutionary** act = effect
 • listener obeys command, listener’s worldview changes [...]

X to Y: *You’re boring!*
 a) [jʊr ˈbɔrɪŋ]
 b) boring(Y)
 c) statement
 d) Y is cross

X to Y: *Can I have a sandwich?*
 a) [kæn ɪ hæv ə ˈsændwɪʧ]
 b) can_have(X, sandwich)
 c) request
 d) Y gives X a sandwich
Speech acts

• Types of speech acts:
 • **assertive**: speaker commits to the truth of a proposition
 • statements, declarations, beliefs, reports […]
 • **directive**: speaker wants the listener to do something
 • commands, requests, invitations, encouragements
 • **commissive**: speaker commits to do something themselves
 • promises, swears, threats, agreements
 • **expressive**: speaker expresses their psychological state
 • thanks, congratulations, apologies, welcomes
 • **declarative**: performing actions (“performative verbs”)
 • sentencing, baptizing, dismissing

It’s raining outside.
Stop it!
I’ll come by later.
Thank you!
You’re fired!
Speech acts

• Explicit vs. implicit
 • explicit – using a verb directly corresponding to the act
 • implicit – without the verb

 explicit: *I promise* to come by later.
 implicit: *I’ll come by later.*

• Direct vs. indirect
 • **indirect** – the surface meaning does not correspond to the actual one
 • primary illocution = the actual meaning
 • secondary illocution = how it’s expressed
 • reasons: politeness, context, familiarity

 direct: *Please close the window.*
 indirect: *Could you close the window?*
 even more indirect: *I’m cold.*

 direct: *What is the time?*
 indirect: *Have you got a watch?*
Conversational Maxims (by Paul Grice)

- based on Grice’s **cooperative principle** ("dialogue is cooperative")
 - speaker & listener cooperate w. r. t. communication goal
 - speaker wants to inform, listener wants to understand

- 4 Maxims (basic premises/principles/ideals)
 - M. of **quantity** – don’t give too little/too much information
 - M. of **quality** – be truthful
 - M. of **relation** – be relevant
 - M. of **manner** – be clear

- By default, speakers are assumed to adhere to maxims
 - apparently breaking a maxim suggests a different/additional meaning

[YouTube Video: https://youtu.be/IJEaMtNN_dM]
Conversational Implicatures

• **implicatures** = implied meanings
 • standard – based on the assumption that maxims are obeyed
 • maxim flouting (obvious violation) – additional meanings (sarcasm, irony)

John ate some of the cookies → [otherwise too little/low-quality information] not all of them

A: I’ve run out of gas.
B: There’s a gas station around the corner. → [otherwise irrelevant] the gas station is open

A: Will you come to lunch with us?
B: I have class. → [otherwise irrelevant] B is not coming to lunch

A: How’s John doing in his new job?
B: Good. He didn’t end up in prison so far. → [too much information] John is dishonest / the job is shady
Speech acts & maxims & implicatures in dialogue systems

• Learned from data / hand-coded

• **Understanding**
 • tested on real users → usually knows indirect speech acts
 • **implicatures limited** – there’s no common sense
 • (other than what’s hand-coded or found in training data)

 system: The first train from Edinburgh to London leaves at 5:30 from Waverley Station.
 user: I don’t want to get up so early. → [fails]

• **Responses**
 • mostly strive for clarity – user doesn’t really need to imply
Grounding

• dialogue is cooperative → need to ensure mutual understanding

• **common ground** = shared knowledge, mutual assumptions of dialogue participants
 • not just shared, but *knowingly* shared
 • \(x \in \text{CG}(A, B) \):
 • A & B must know \(x \)
 • A must know that B knows \(x \) and vice-versa
 • expanded/updated/refined in an informative conversation

• validated/verified via **grounding signals**
 • speaker *presents* utterance
 • listener *accepts* utterance by providing evidence of understanding
Grounding signals / feedback

- used to notify speaker of (mis)understanding
- positive – understanding/acceptance signals:
 - **visual** – eye gaze, facial expressions, smile […]
 - **backchannels** – particles signalling understanding
 - **explicit feedback** – explicitly stating understanding
 - **implicit feedback** – showing understanding implicitly in the next utterance

- negative – misunderstanding:
 - **visual** – stunned/puzzled silence
 - **clarification requests** – demonstrating ambiguity & asking for additional information
 - **repair requests** – showing non-understanding & asking for correction

U: find me a Chinese restaurant
S: I found three Chinese restaurants close to you […]
A: Do you know where John is?
B: John? Haven’t seen him today.

A: Do you know where John is?
B: Do you mean John Smith or John Doe?

A: Do you know where John is?
B: Oh, so you’re not flying to London? Where are you going then?
T: [...] And the ideology is also very against mixed-race couples. So that was also a target. Whenever we saw mixed-race couples, we attacked them.

E: Was there ever a moment back there where you felt a tiny bit bad about it?
T: No.

E: **No? So you were** absolutely convinced that you're doing the right thing…
T: Yeah, for quite some time *(nods), yeah.*
E: … for the sake of the white race and et cetera?
E: No doubt at all?
T: Well I got **doubt** eventually, roughly a year before I left the movement [...]
Grounding in dialogue systems

- Crucial for successful dialogue
 - e.g. booking the right restaurant / flight
- Backchannels / visual signals typically not present
- **Implicit confirmation** very common
 - users might be confused if not present
- **Explicit confirmation** may be required for important steps
 - e.g. confirming a reservation / bank transfer
- **Clarification & repair requests** very common
 - when input is ambiguous or conflicts with previously said
- Part of dialogue management
 - uses NLU confidence in deciding to use the signals
Deixis

- **deixis** = “pointing” – relating between language & context/world
 - this is very important in dialogue
 - dialogue is typically set/situated in a specific context
- **deictic expressions** = words/grammar expressing deixis
 - their meaning depends on the context
 - who is talking, when, where
 - pronouns
 - verbs: tense & person markers
 - adverbs
 - other (lexical meaning)
 - non-verbal (gestures, gaze…)

Examples:
- *I, you, him, this*
- *goes* [3rd ps. sg.], *went* [past]
- *here, now, yesterday*
- *come / go [=here/away]*
Deixis

• (typically) **egocentric**: I – here – now is the center (origo)

• main types of deixis:
 • personal – I/me/you/she…
 • temporal (time) – now, yesterday, later, on Monday…
 • local (space) – here, there…

• other:
 • social (politeness)
 • formal/informal address (Cz. ty/vy, Ger. du/Sie), honorifics in Asian languages
 • discourse/textual
 • referring to words/portions of texts – next chapter, how do you spell that?
Anaphora/Coreference

- expression referring to something mentioned in context
 - **anaphora** = referring back
 - **cataphora** = referring forward

- avoiding repetition, faster expression
- can refer to basically anything
 - objects/persons/events
 - qualities
 - actions/full sentences/portions of text

- used frequently in dialogue
- may be ambiguous

Susan dropped the plate. It shattered.

His friends describe John as smart and hard-working.

I don’t like it as much as he does.

Her dress is green. So is mine.

Bill stands next to John. He is tall.
Bill tickled John. He squirmed.

(Smaby, 1978)
https://link.springer.com/chapter/10.1007/978-94-009-9775-2_2
Deixis & anaphora in dialogue systems

• systems typically assume a **single user**
 • this makes personal deixis much easier

• most systems are aware of time, location is more complicated
 • pronouns are often avoided – clearer, although less natural

• coreference resolution – separate problem
 • a whole area of research, specific resolution systems developed
 • some dialogue systems don’t include it, some do, sophistication varies
Prediction

• Dialogue is a **social interaction**
 • people view dialogue partners as goal-directed, intentional agents
 • they analyze their partners’ goals/agenda
• Brain does not listen passively
 • projects hypotheses/interpretations on-the-fly
• **prediction** is crucial for human cognition
 • people predict what their partner will (or possibly can) say/do
 • continuously, incrementally
 • unconsciously, very rapidly
 • guides the cognition
• this is (part of) why we understand in adverse conditions
 • noisy environment, distance
Entropic (Claude Shannon)

• Information theory: dialogue is information transfer
 • **communication channel** – speaker to listener (in the given situation)
 • **entropy** – expected value of information conveyed (in bits)

\[
H(\text{text}) = - \sum_{\text{word} \in \text{text}} \frac{\text{freq}(\text{word})}{\text{len}(\text{text})} \log_2 \left(\frac{\text{freq}(\text{word})}{\text{len}(\text{text})} \right)
\]

• Plays well with the social interaction perspective
 • people tend to use all available channel capacity
 • limiting factors: noise, listener’s hearing ability, mental capacity
 • people tend to spread information evenly
 • words carrying more information are emphasized

XXX : entropy = 0
WXYZ : entropy = 2

Over vocabulary
Conditional entropy

• how hard it is to guess the next word in the sentence?
 • given preceding context (n-gram)
 • related to Shannon entropy, but may differ
 • typically much lower than Shannon entropy
 • better estimate of prediction difficulty
 • although humans work with “unlimited” preceding context and reevaluate using following context

\[
H_{\text{cond}}(\text{text}) = - \sum_{(c,w) \in \text{text}} \frac{\text{freq}(c,w)}{\text{len}(\text{text})} \log_2 \left(\frac{\text{freq}(c,w)}{\text{freq}(c)} \right)
\]

\(<s>\) The cat sat on the mat.
\(P(\text{cat} \mid <s> \text{The})\)
\(P(\text{sat} \mid \text{the cat})\)
\(P(\text{on} \mid \text{the cat sat})\)
\(P(\text{the} \mid \text{the cat sat on})\)
Prediction in dialogue systems

- Used a lot in speech recognition
 - **language models** – based on information theory
 - statistical, trained on a text corpus (bunch of texts)
 - predicting likely next word given context
 - weighted against acoustic information
- Not as good as humans
 - may not reflect current situation (noise etc.)
 - (often) does not adapt to the speaker
- Less use in other DS components
Alignment/entrainment

• People subconsciously adapt/align/entrain to their dialogue partner over the course of the dialogue
 • wording (lexical items)
 • grammar (sentential constructions)
 • speech rate, prosody, loudness
 • accent/dialect

• This helps a successful dialogue
 • also helps social bonding, feels natural

(Oppenheim & Jones, 2018)
http://oppenheim-lab.bangor.ac.uk/pubs/OppenheimJones_2018_COM_Americanisms_poster.pdf
Alignment in dialogue systems

• Systems typically don’t align
 • NLG is rigid
 • templates
 • machine learning trained without context
 • experiments: makes dialogue more natural

• People align to dialogue systems
 • same as when talking to people

(context)

is there a later option

response DA implicit_confirm(alternative=next)

base NLG Next connection.

+ alignment You want a later option.

(context)

I need to find a bus connection

response DA inform_no_match(vehicle=bus)

base NLG No bus found, sorry.

+ alignment I’m sorry, I cannot find a bus connection.

<table>
<thead>
<tr>
<th>Words</th>
<th>D1 Freq. (%)</th>
<th>D2 freq (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: next</td>
<td>13204 (99.9%)</td>
<td>492 (82.9%)</td>
</tr>
<tr>
<td>V2: following</td>
<td>3 (0.1%)</td>
<td>101 (17.1%)</td>
</tr>
<tr>
<td>V1: previous</td>
<td>3086 (100%)</td>
<td>78 (44.8%)</td>
</tr>
<tr>
<td>V2: preceding</td>
<td>0 (0%)</td>
<td>96 (55.2%)</td>
</tr>
<tr>
<td>V1: now</td>
<td>6241 (99.8%)</td>
<td>237 (80.1%)</td>
</tr>
<tr>
<td>V2: immediately</td>
<td>10 (0.2%)</td>
<td>59 (19.9%)</td>
</tr>
<tr>
<td>V1: leaving</td>
<td>4843 (98.4%)</td>
<td>165 (70.8%)</td>
</tr>
<tr>
<td>V2: departing</td>
<td>81 (1.6%)</td>
<td>68 (29.2%)</td>
</tr>
<tr>
<td>V1: route/schedule</td>
<td>2189 (99.9%)</td>
<td>174 (94.5%)</td>
</tr>
<tr>
<td>V2: itinerary</td>
<td>2 (0.1%)</td>
<td>10 (5.5%)</td>
</tr>
<tr>
<td>V1: okay/correct</td>
<td>1371 (49.3%)</td>
<td>48 (27.7%)</td>
</tr>
<tr>
<td>V2: right</td>
<td>1409 (50.7%)</td>
<td>125 (72.3%)</td>
</tr>
<tr>
<td>V1: help</td>
<td>2189 (99.9%)</td>
<td>17 (65.3%)</td>
</tr>
<tr>
<td>V2: assistance</td>
<td>1 (0.1%)</td>
<td>9 (34.7%)</td>
</tr>
<tr>
<td>V1: query</td>
<td>6256 (99.9%)</td>
<td>70 (20.4%)</td>
</tr>
<tr>
<td>V2: request</td>
<td>3 (0.1%)</td>
<td>272 (79.6%)</td>
</tr>
</tbody>
</table>

(Dušek & Jurčiček, 2016)

http://www.aclweb.org/anthology/W16-3622

(Parent & Eskenazi, 2010)

https://www.isca-speech.org/archive/interspeech_2010/i10_3018.html

D1 = V1 was in system prompts

D2 = V2 was in system prompts

(frequencies in user utterances)
Dialogue as social interaction – follows **social conventions**

indirect is polite
- this is the point of most indirect speech acts
- clashes with conversational maxims (m. of manner)
- appropriate level of politeness might be hard to find
 - culturally dependent

face-saving (Brown & Lewinson)
- positive face = desire to be accepted, liked
- negative face = desire to act freely
- **face-threatening acts** – potentially any utterance
 - threatening other’s/own negative/positive face
- politeness softens FTAs

<table>
<thead>
<tr>
<th>threat to</th>
<th>positive face</th>
<th>negative face</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>apology, self-humiliation</td>
<td>accepting order / advice, thanks</td>
</tr>
<tr>
<td>other</td>
<td>criticism, blaming</td>
<td>order, advice, suggestion, warning</td>
</tr>
</tbody>
</table>

Open the window.
Can you open the window?
Would you be so kind as to open the window?
Would you mind closing the window?
Politeness in dialogue systems

- Typically **handcrafted** by system design
 - does not adapt to situation very much
 - typically not much indirect speech, but trying to stay polite
- Learning from data can be tricky
 - **check your data** for offensive speech!
 - not just swearwords – problems can be hard to find

I already have a woman to sleep with.

(Experimental chatbot we trained at Heriot-Watt using Reddit data)
Summary

- Dialogue is messy
 - **turn** overlaps, **barge-ins**, weird grammar […]
- Dialogue utterances are acts
 - **illocution** = pragmatic meaning
- Dialogue needs understanding
 - **grounding** = mutual understanding management
 - backchannels, confirmations, clarification, repairs
- Dialogue takes place in context
 - lot of pointing – **deixis**
- Dialogue is cooperative, social process
 - **conversational maxims** ~ “play nice”
 - all while following **social conventions** (politeness)
 - people **predict & adapt** to each other
- Next week: where & how to get data, how to evaluate dialogue systems
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:
https://ufal.cz/npfl123

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on:

- Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Ralf Klabunde’s lectures and slides (Ruhr-Universität Bochum):
 https://www.linguistics.ruhr-uni-bochum.de/~klabunde/lehre.htm
- Arash Eshghi & Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Gina-Anne Levow’s slides (University of Washington): https://courses.washington.edu/ling575/
- Eika Razi’s slides: https://www.slideshare.net/eikarazi/anaphora-and-deixis
- Wikipedia: Anaphora (linguistics) Conversation Cooperative_principle Coreference Deixis Grounding_in_communication Implicature Speech_act Sprechakttheorie

Next week:
Lab questions 9am
Lab assignment 9:50
Lecture 10:40