
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL123 Dialogue Systems

6. Dialogue Policy
(non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidtová, Vojtěch Hudeček & Jan Cuřín

20. 3. 2023

https://ufal.cz/npfl123

• Two main components:
• State tracking (last lecture)

• Action selection with a policy (today)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal

Dialogue Management

2NPFL123 L6 2023

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

DM/Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning

• Note that state tracking differs with different action selection

3NPFL123 L6 2023

FSM Dialogue Management

• Dialogues = graphs going through possible conversations
• nodes = system actions

• edges = possible user response semantics

• advantages:
• easy to design

• predictable

• disadvantages:
• very rigid – not real conversations

(ignores anything that’s not a reply to last question)

• doesn’t scale to complex domains

• Good for basic DTMF (tone-selection) phone systems

4NPFL123 L6 2023

(from Pierre Lison’s slides)

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…

system-initiative

Frame-based Approach

• Making the interaction more flexible

• State = frame with slots
• required slots need to be filled

• this can be done in any order

• more information in one utterance possible

• If all slots are filled, query the database

• Multiple frames (e.g. flights, hotels…)
• needs frame tracking

• Standard implementation: VoiceXML

• Still not completely natural,
won’t scale to more complex problems

5NPFL123 L6 2023

mixed-initiative

(from Hao Fang’s slides)

(from Pierre Lison’s slides)

Rule-based

• We can use a probabilistic belief state
• DA types, slots, values

• With if-then-else rules in programming code
• using thresholds over belief state for reasoning

• Output: system DA

• Very flexible, easy to code
• allows relatively natural dialogues

• Gets messy

• Dialogue policy is still pre-set
• which might not be the best thing to do

6

the fact structure is derived
from the belief state

directly choose reply DA
+ update state

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py

(Jurčíček et al., 2014)
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

DM with supervised learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have

7NPFL123 L6 2023

DM as a Markov Decision Process

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮

• takes actions 𝑎𝑡 ∈ 𝒜

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• Markov property – state defines everything
• no other temporal dependency

• let’s assume we know the state for now
• let’s go with MDPs,

see how they map to POMDPs later

8NPFL123 L6 2023

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)

𝜋

Deterministic vs. stochastic policy

• Deterministic = simple mapping 𝜋: 𝒮 → 𝒜
• always takes the same action 𝜋 𝑠 in state 𝑠

• enumerable in a table

• equivalent to a rule-based system

• but can be learned instead of hand-coded!

• Stochastic = specifies a probability distribution 𝜋 𝑠, 𝑎
• 𝜋(𝑠, 𝑎) ~ probability of choosing action 𝑎 in state 𝑠 – 𝑝(𝑎|𝑠)

• decision = sampling from 𝜋(𝑠, 𝑎)

9NPFL123 L6 2023

Reinforcement learning

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return

10NPFL123 L6 2023

𝑅𝑡 =෍

𝑖=0

∞

𝛾𝑖𝑟𝑡+𝑖+1
return: accumulated

long-term reward
(from timestep 𝑡 onwards)

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

State-value Function

• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠)
• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1
• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:

11NPFL123 L6 2023

𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 = ෍

𝑎∈𝒜

𝜋 𝑠, 𝑎 ෍

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing
𝑎 from 𝑠 under 𝜋

transition
probs.

expected
immediate

reward

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step

Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) – exp. return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎 also defines a greedy policy:

12NPFL123 L6 2023

𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 = ෍

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾 ෍

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 tables are bigger than 𝑉 tables

Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return 𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗ 𝑠 ≥ 𝑉𝜋′(𝑠) ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max
𝜋

𝑉𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max
𝜋

𝑄𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠 and 𝑄∗ 𝑠, 𝑎 are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages

13NPFL123 L6 2023

RL Agent Taxonomy

• Quantity to optimize:
• value function – critic

• policy – actor

• (both – actor-critic – omitted)

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠′))

• makes for mathematically nice solutions

• but you can only know the full model in limited settings

• model-free (don’t assume anything, sample)
• this is the one for “real-world” use

• using 𝑄 instead of 𝑉 comes handy here (“hiding” 𝑝(𝑠′|𝑠, 𝑎))

14NPFL123 L6 2023

(from David Silver’s slides)

RL Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment (=must be model-based)

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates:
• on-policy – improve the policy while you’re using it for decisions

• off-policy – decide according to a different policy

15NPFL123 L6 2023

Value Iteration

1) Choose a threshold τ, Initialize 𝑉0(𝑠) arbitrarily

2) While 𝑉𝑖 𝑠 − 𝑉𝑖−1 𝑠 ≥ 𝜏 for any 𝑠:

for all 𝑠: 𝑉𝑖+1 𝑠 ← max
𝑎

σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖 𝑠
′

𝑖 ← 𝑖 + 1

• At convergence, we’re less than 𝜏 away from optimal state values
• resulting greedy policy is typically already optimal in practice

• Can be done with 𝑄𝑖(𝑠, 𝑎) instead of 𝑉𝑖(𝑠)

• Assumes known 𝑝(𝑠′|𝑠, 𝑎) and 𝑟 𝑠, 𝑎, 𝑠′

• can be estimated from data if not known – but it’s expensive

16NPFL123 L6 2023

DP | model-based | value

apply greedy policy according to current 𝑽𝒊 𝒔 ,
update estimate

as long as we’re still improving

Value iteration example (Gridworld)

• Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
• reward +1 for staying at “G”

• reward -1 for hitting a wall

• discount factor 𝛾 = 0.9

17NPFL123 L6 2023

optimal policy 𝜋∗optimal state-value function 𝑉∗(𝑠)maze

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf

https://youtu.be/9YN1R6Lh9Jo
(note that rewards here come from states,
not movements)

https://christian-igel.github.io/paper/RLiaN.pdf
https://youtu.be/9YN1R6Lh9Jo

Monte Carlo Methods

• 𝑉(𝑠) or 𝑄(𝑠, 𝑎) estimated iteratively, on-policy
• explores states with more value more often

• Loop over episodes (dialogues)
• record (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) for 𝑡 = 0,…𝑇 in the episode

• for all 𝑠, 𝑎 in the episode:
• 𝑅 𝑠, 𝑎 ← list of all returns for taking action 𝑎 in state 𝑠 (sum of rewards till end of episode)

• 𝑄 𝑠, 𝑎 ← mean(𝑅(𝑠, 𝑎))

• To converge, we need to explore – using 𝛜-greedy policy:

18NPFL123 L6 2023

MC | model-based/free | value

off-policy extensions
exist (omitted)

𝑎 =
argmax

𝑎
𝑄(𝑠, 𝑎) with probability 1 − ϵ

random action with probability ϵ

𝜖 can be large initially,
then gradually lowered

here: model-free for 𝑄’s,
but also works

model-based for 𝑉’s

𝑅𝑡 = ෍

𝑖=𝑡

𝑇−1

𝛾𝑖−𝑡𝑟𝑖+1

SARSA (state-action-reward-state-action)

• estimate 𝑄(𝑠, 𝑎) iteratively, on-policy, with immediate updates
• TD: don’t wait till the end of episode

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠,

initial 𝑎 according to 𝜖-greedy policy based on 𝑄

• for each step:
• take action 𝑎, observe reward 𝑟 and state 𝑠′

• choose action 𝑎′ from 𝑠′ acc. to 𝜖-greedy policy based on 𝑄

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 ⋅ 𝑟 + 𝛾𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′, 𝑎 ← 𝑎′

• typically converges faster than MC (but not always)

19

TD | model-free | value

(Sutton & Barto, 2018)

update
https://towardsdatascience.com/td-in-
reinforcement-learning-the-easy-way-f92ecfa9f3ce

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Q-Learning (off-policy TD)

• off-policy – directly estimate 𝑄∗ 𝑠, 𝑎
• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝜖-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′

20NPFL123 L6 2023

TD | model-free | value

update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

any policy that chooses all
actions & states enough times

will converge to 𝑄∗(𝑠, 𝑎)

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

REINFORCE: Policy gradients

• we assume a differentiable parametric policy 𝜋(𝑎|𝑠, 𝜽)

• MC search for policy parameters by stochastic gradient ascent
• looking to maximize performance 𝐽 𝜽 = 𝑉𝜋𝜃 𝑠0

• choose learning rate 𝛼, initialize 𝜽 arbitrarily

• loop forever:
• generate an episode 𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇, following 𝜋(⋅ | ⋅, 𝜽)

• for each 𝑡 = 0,1…𝑇: 𝜽 ← 𝜽 + 𝛼𝛾𝑡𝑅𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡 , 𝜽)

21NPFL123 L6 2023

MC | model-free | policy

returns 𝑅𝑡 = σ𝑖=𝑡
𝑇−1 𝛾𝑖−𝑡𝑟𝑖+1variant: discounting a baseline

𝑏 𝑠 (predicted by any model)
𝑅𝑡 − 𝑏(𝑠𝑡) instead of 𝑅𝑡

gives better performance

this is stochastic ∇𝐽 𝜽
• from policy gradient theorem

a good 𝑏(𝑠) is actually 𝑉(𝑠)

POMDP Case

• POMDPs – belief states instead of dialogue states
• probability distribution over states

• can be viewed as MDPs with continuous-space states

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• REINFORCE/policy gradients work out of the box
• function approximation approach, allows continuous states

NPFL123 L6 2023 https://en.wikipedia.org/wiki/Voronoi_diagram

(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates

23NPFL123 L6 2023

(from Milica Gašić’s slides)

Simulated Users

• We can’t really learn just from static datasets
• on-policy algorithms don’t work

• data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE policy from data
24

(from Milica Gašić’s slides)

Summary

• Action selection – deciding what to do next

• Approaches
• Finite-state machines (system-initiative)

• Frames (VoiceXML)

• Rule-based

• Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)

• optimizing value function or policy

• learning on-policy or off-policy

• learning with or without a model

• using summary space

• training with a user simulator

25NPFL123 L6 2023

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Barnabás Póczos’s slides (Carnegie-Mellon University): https://www.cs.cmu.edu/~mgormley/courses/10601-s17/

26

Labs in 10 mins

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
http://incompleteideas.net/book/the-book.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf
https://sites.google.com/site/olemon/conversational-agents
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
https://hao-fang.github.io/ee596_spr2018/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/

