NPFL123 Dialogue Systems 5. Neural NLU & State Tracking

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidtová, Vojtěch Hudeček & Jan Cuřín 13. 3. 2023

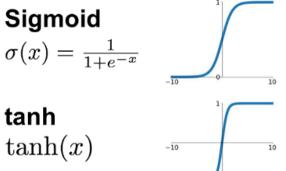
Neural networks

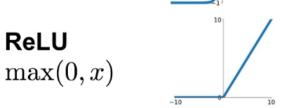
https://playground.tensorflow.org/ - look at the internals (very simple network)

- Can be used for both classification & sequence models
- Non-linear functions, composed of basic building blocks
 - stacked into layers
 - whole network ~ "pipeline"/"flow"
- Layers are built of activation functions:
 - linear functions
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

$$\operatorname{softmax}(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$$

- Fully differentiable training by gradient descent
 - gradients backpropagated from outputs to all parameters
 - (composite function differentiation)





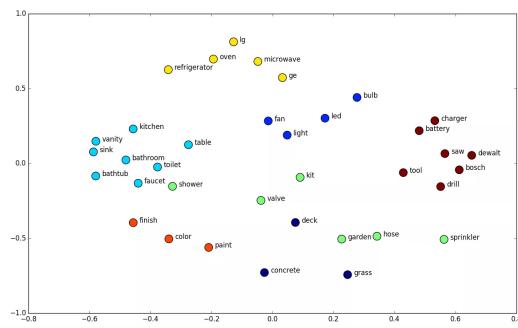
https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Neural networks - features

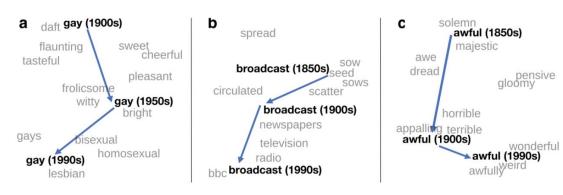
- You can use the same ones as for LR/SVM...
 - but it's a lot of work to code them in

Word embeddings

- let the network learn features by itself
 - input is just words (vocabulary is numbered)
 - top ~50k words + <*unk*>, or **subwords**
- distributed word representation
 - each word = vector of floats (~50-2000 dims.)
- part of network parameters trained
 - a) random initialization
 - b) pretraining
- the network learns which words are used similarly
 - they end up having close embedding values
 - different embeddings for different tasks



http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/



http://ruder.io/word-embeddings-2017/

Recurrent Neural Networks

Many identical layers with shared parameters (cells)

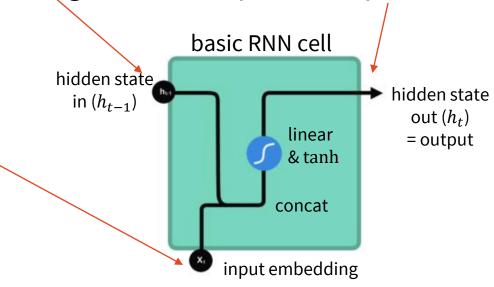
• ~ the same layer is applied multiple times, taking its own outputs as input

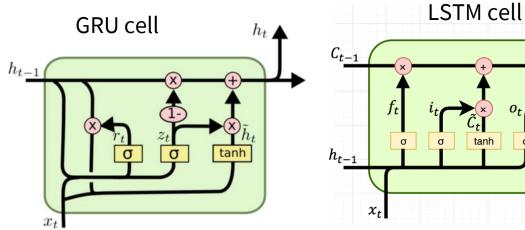
~ same number of layers as there are tokens

output = hidden state – fed to the next step

additional input – next token features

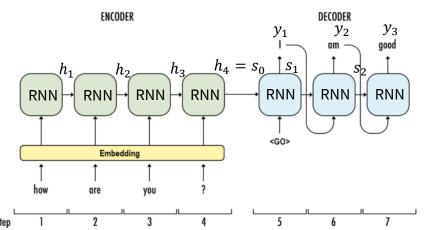
- Cell types
 - basic RNN: linear + tanh
 - problem: vanishing gradients
 - can't hold long recurrences
 - GRU, LSTM: more complex, to make backpropagation work better
 - "gates" to keep old values

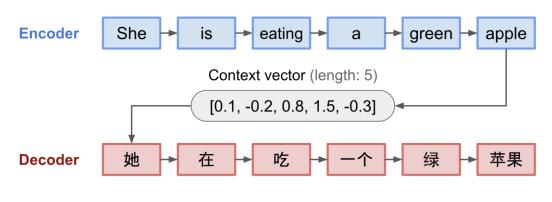




Encoder-Decoder Networks

- Default RNN paradigm for sequences/structure prediction
 - encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - MT, dialogue, parsing...
 - more complex structures linearized to sequences





 $s_0 = h_T$

 $p(y_t|y_1, \dots y_{t-1}, \mathbf{x}) = \operatorname{softmax}(\mathbf{s}_t)$

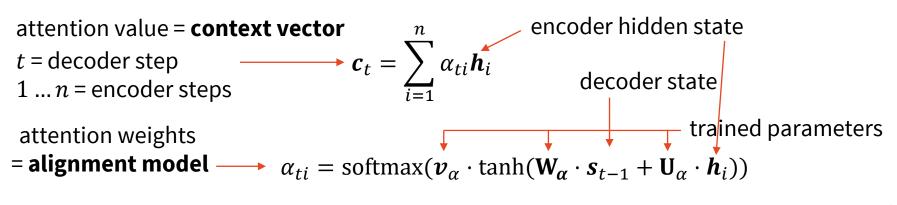
 $\mathbf{s}_t = \operatorname{cell}(\mathbf{y}_{t-1}, \mathbf{s}_{t-1})$

 $\mathbf{h}_0 = \mathbf{0}$ $\mathbf{h}_t = \operatorname{cell}(\mathbf{x}_t, \mathbf{h}_{t-1})$

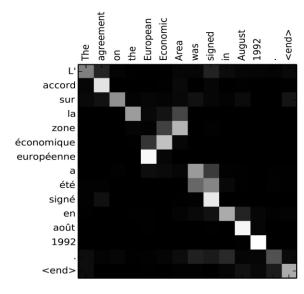
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention Models

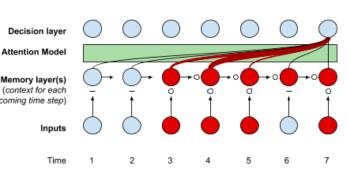
- Encoder-decoder too crude for complex sequences
 - the whole input crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination
 - re-weighted every decoder step
 ⇒ can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer



• Self-attention – over previous decoder steps



Attention Mechanism



Neural NLU

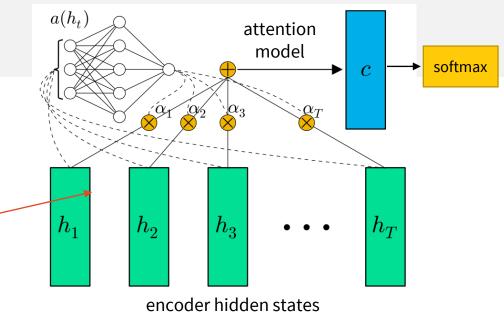
Various architectures possible

Classification

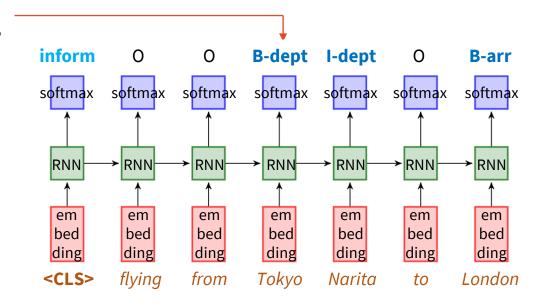
- feed-forward NN
- RNN + attention weight → softmax
- convolutional networks
- Transformer (attention + feed-forward →→)

Sequence tagging

- RNN (LSTM/GRU) → softmax over hidden states
 - default version: label bias (like MEMM)
 - CRF over the RNN possible
- Transformer works the same
- Intent can be tagged at start of sentence

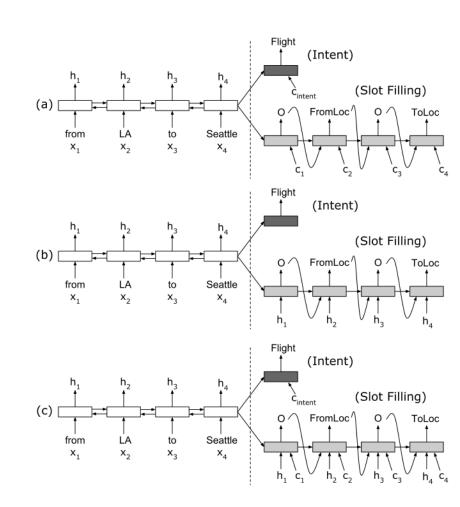


(Raffel & Ellis, 2016) https://colinraffel.com/publications/iclr2016feed.pdf



https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/https://medium.com/swlh/nlu-for-everyone-with-bert-7bedaa609a61 (Chen et al., 2019) http://arxiv.org/abs/1902.10909

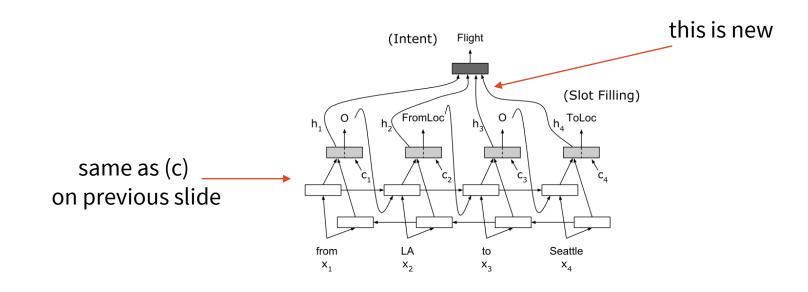
- Same network for both tasks
- Bidirectional encoder
 - 2 encoders: left-to-right, right-to-left
 - concatenate hidden states
 - "see the whole sentence before you start tagging"
- **Decoder** tag word-by-word, inputs:
 - a) attention
 - b) input encoder hidden states ("aligned inputs")
 - c) both
- Intent classification: softmax over last encoder state
 - + specific intent context vector (attention)



NN NLU - Joint Intent & Slots

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

- Extended version: use slot tagging in intent classification
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder attention over slots decoder states
- Works slightly better



Dialogue State Tracking

- Dialogue management consist of:
 - State update ← here we need DST
 - Action selection (later)
- Dialogue State needed to remember what was said in the past
 - tracking the dialogue progress
 - summary of the whole dialogue history
 - basis for action selection decisions

U: I'm looking for a restaurant in the <u>city centre</u>.

S: OK, what kind of food do you like?

U: Chinese.

- ★ S: What part of town do you have in mind?
- X S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
- ✓ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the <u>city centre</u>.

Dialogue State Contents

- "All that is used when the system decides what to say next"
- **User goal**/preferences ~ NLU output

(Henderson, 2015) https://ai.google/research/pubs/pub44018

U: Give me the address of the first one you talked about.

U: Is there <u>any other</u> place in this area?

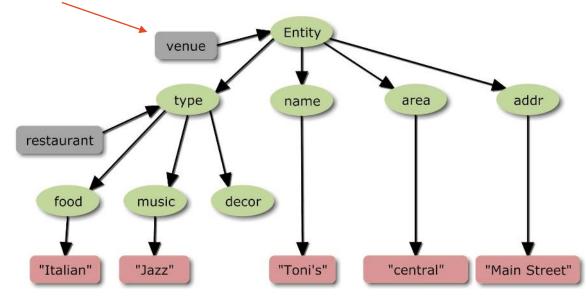
- slots & values provided (search constraints)
- information requested
- Past system actions
 - information provided
 - slots and values
 - list of venues offered
 - slots confirmed
 - S: OK, Chinese food. [...]
 - slots requested S: What time would you like to leave?
- Other semantic context
 - user/system utterance: bye, thank you, repeat, restart etc.

Ontology

- To describe possible states
- Defines all concepts in the system
 - List of slots
 - Possible range of values per slot
 - Possible actions per slot
 - requestable, informable etc.
 - Dependencies
 - some concepts only applicable for some values of parent concepts

food_type - only for type=restaurant
has_parking - only for type=hotel

"if entity=venue, then..."



```
entity = {venue, landmark}
venue.type = {restaurant, bar,...}
```

some slot names may need disambiguation (venue type vs. landmark type)

(Young, 2009) http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

Problems with Dialogue State

- NLU is unreliable

 takes unreliable ASR output
 makes mistakes by itself some utterances are ambiguous
 output might conflict with ontology

 Possible solutions:

 detect contradictions, ask for confirmation

 ASR: 0.5 I'm looking for an expensive hotels

 0.5 I'm looking for inexpensive hotels

 NLU: 0.3 inform(type=restaurant, stars=5)

 only hotels have stars!
 - what's "low"?
 - what if we ignore 10x the same thing?

• ignore low-confidence NLU input

• Better solution: make the state probabilistic – **belief state**

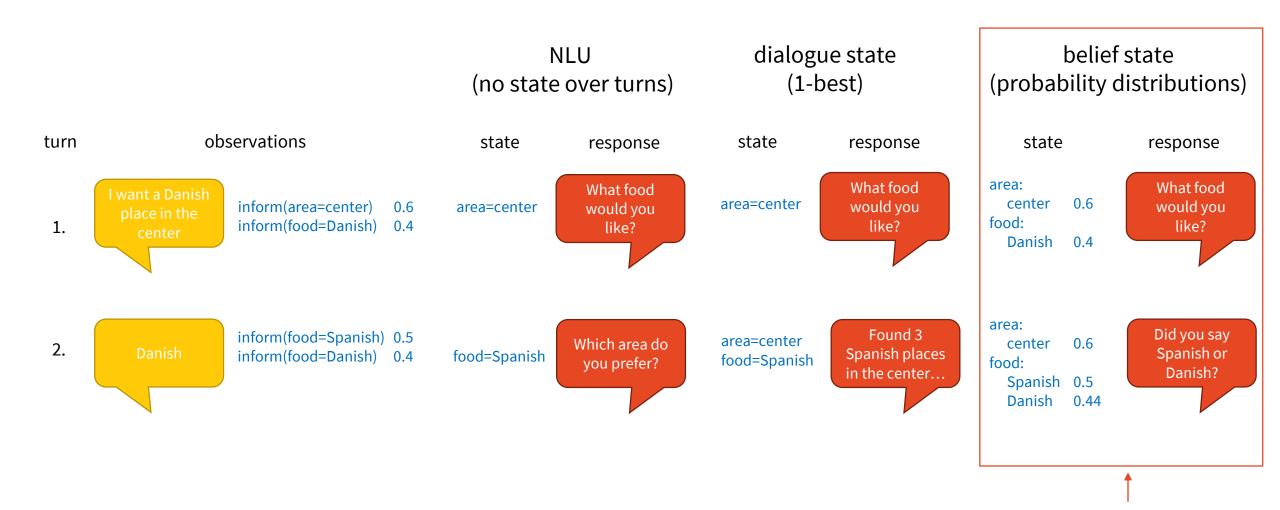
NPFL123 L5 2023 13

Belief State

- Assume we don't know the true dialogue state
 - but we can estimate a probability distribution over all possible states
 - In practice: per-slot distributions
- More robust
 - accumulates probability mass over multiple turns
 - low confidence if the user repeats it, we get it the 2nd time
 - accumulates probability over NLU n-best lists
- Plays well with probabilistic dialogue policies
 - but not only them rule-based, too

Belief State

(based on Milica Gašić's slides)

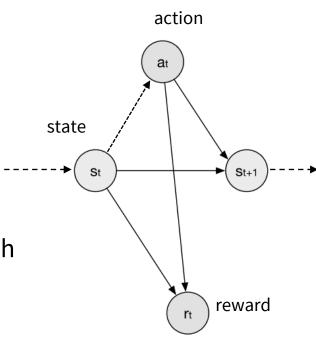


NPFL123 L5 2023

this is what we want

Dialogue as a Markov Decision Process

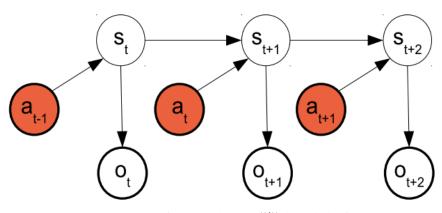
- MDP = probabilistic control process
 - model Dynamic Bayesian Network
 - random variables & dependencies in a graph/network
 - "dynamic" = structure repeats over each time step t
 - s_t dialogue **states** = what the user wants
 - a_t **actions** = what the system says
 - r_t **rewards** = measure of quality
 - typically slightly negative for each turn, high positive for successful finish
 - $p(s_{t+1}|s_t, a_t)$ transition probabilities
- Markov property state defines everything
- Problem: we're not sure about the dialogue state



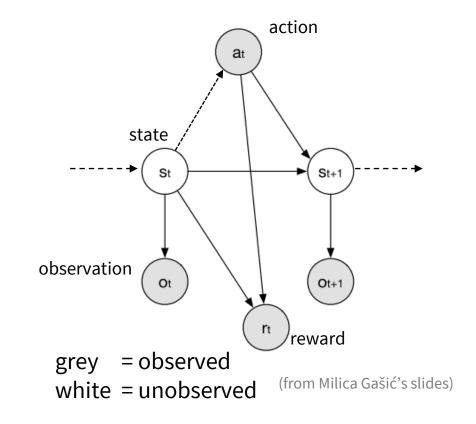
(from Milica Gašić's slides)

Partially Observable (PO)MDP

- Dialogue states are not observable
 - modelled probabilistically belief state b(s) is a prob. distribution over states
 - states (what the user wants) influence **observations** o_t (what the system hears)
- Still Markovian
 - $b'(s') = \frac{1}{z}p(o|s')\sum_{s\in S}p(s'|s,a)b(s)$
 - b(s) can be modelled by an HMM



(from Filip Jurčíček's slides)



Digression: Generative vs. Discriminative Models

What they learn:

- Generative whole distribution p(x, y)
- **Discriminative** just decision boundaries between classes ~ p(y|x)

To predict p(y|x)...

Generative models

- Assume some functional form for p(y), p(x|y)
- Estimate parameters of p(y), p(x|y) directly from training data
- Use Bayes rule to calculate p(y|x)

Discriminative models

- Assume some functional form for p(y|x)
- Estimate parameters of p(y|x) directly from training data

they get the same thing, but in different ways

Generative vs. Discriminative Models

Example: elephants vs. dogs http://cs229.stanford.edu/notes/cs229-notes2.pdf

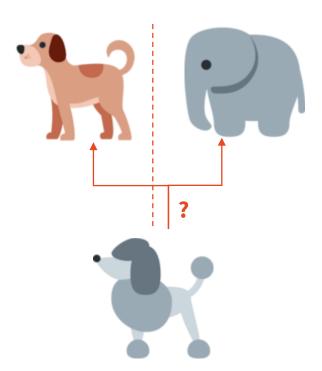
• Discriminative:

- establish decision boundary (~find distinctive features)
- classification: just check on which side we are

Generative

- ~ 2 models what elephants & dogs look like
- classification: match against the two models

- Discriminative typically better results
- Generative might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely (x, y)'s



Naïve Generative Belief Tracking

- Using the HMM model
 - estimate the transition & observation probabilities from data

$$b(s) = \frac{1}{Z} p(o_t | s_t) \sum_{s_{t-1} \in S} p(s_t | a_{t-1}, s_{t-1}) b(s_{t-1})$$
observation probability transition probability previous belief

- Problem: too many states
 - e.g. 10 slots, 10 values each $\rightarrow 10^{10}$ distinct states intractable
- Solutions:
 - only track stuff that appeared in NLU
 - only track n most probable (beam)
 - merge similar states
 - partition the state assume slots are independent, use per-slot beliefs
 - state $\mathbf{s} = [s^1, \dots s^N]$, belief $b(\mathbf{s}_t) = \prod_i b(s_t^i)$

Generative BT: Parameter Tying

• Per-slot:
$$b(s_t^i) = \sum_{s_{t-1},o_t^i} p(o_t^i|s_t^i) p(s_t^i|a_{t-1}^i,s_{t-1}^i) b(s_{t-1}^i)$$
 observation probability transition probability previous belief

- Further simplification: tie most parameters
 - estimates from data are unreliable anyway → basically uses 2 parameters only ©

transition probabilities:

$$p(s_t^i | a_{t-1}^i, s_{t-1}^i) = \begin{cases} \theta_T \text{ if } s_t^i = s_{t-1}^i \\ \frac{1-\theta_T}{\text{#values}^{i-1}} \text{ otherwise} \end{cases}$$

 θ_T = "rigidity" (bias for keeping previous values), otherwise all value changes have the same probability

observation probabilities:

$$p(o_t^i|s_t^i) = \begin{cases} \theta_O p(o_t^i) & \text{if } o_t^i = s_t^i \\ \frac{1 - \theta_O}{\text{#values}^{i-1}} p(o_t^i) & \text{otherwise} \end{cases}$$

 $\theta_O \sim \text{confidence in NLU}$ $p(o_t^i) = \text{NLU output}$

i.e. believe in value given by NLU with θ_O , distribute rest of probability equally

Basic Discriminative Belief Tracker

- Based on the previous model
- - ...and kinda rule-based
 - but very fast, with reasonable performance

 $b(s_t^i) = \sum_{s_{t-1}^i, o_t^i} p(s_t^i | a_{t-1}^i, s_{t-1}^i, o_t^i) b(s_{t-1}^i)$ update model

NLU output "user mentioned this value" • same slot independence assumption
• Even simpler – "always trust the NLU" $p(s_t^i|a_{t-1}^i,s_{t-1}^i,o_t^i) = \begin{cases} p(o_t^i) \text{ if } s_t^i = o_t^i \wedge o_t^i \neq \textcircled{s} \\ p(o_t^i) \text{ if } s_t^i = s_{t-1}^i \wedge o_t^i = \textcircled{s} \\ 0 \text{ otherwise} \end{cases}$ • this makes it parameter-free user silent about slot i

> "null value" "not mentioned earlier" "not mentioned now" $\begin{cases} s_t^i = \textcircled{s}: & p(s_{t-1}^i = \textcircled{s})p(o_t^i = \textcircled{s}) \\ \text{else:} & p(o_t^i = s_t^i) + p(o_t^i = \textcircled{s})p(s_t^i = s_{t-1}^i) \end{cases}$

substitution

"mentioned now"

(Žilka et al., 2013)

https://www.aclweb.org/anthology/W13-4070/

Tracker types

- Generative trackers need many assumptions to be tractable
 - cannot exploit arbitrary features
 - ... or they can, but not if we want to keep them tractable
 - often use handcrafted parameters
 - ... may produce unreliable estimates (Williams, 2012) https://ieeexplore.ieee.org/document/6424197
- **Discriminative** trackers can use any features from dialogue history
 - parameters estimated from data more easily
 - generally used nowadays
- Another general distinction
 - static models encode whole history into features
 - dynamic/sequence models explicitly model dialogue as sequential

Static Discriminative Trackers

- Generally predict $p(s_t|o_1, a_1, ..., a_{t-1}, o_t)$
 - any kind of classifier (SVM, LR, ...)
 - need fixed feature vector from $o_1, a_1, ..., a_{t-1}, o_t$ (where t is arbitrary)
 - current turn, cumulative, sliding window
 - per-value features & tying weights some values are too rare
- Global feature examples: (Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046
 - NLU n-best size, entropy, lengths (current turn, cumulative)
 - ASR scores
- Per-value *v* examples:
 - rank & score of hypo with v on current NLU n-best + diff vs. top-scoring hypo
 - # times v appeared so far, sum/average confidence of that
 - # negations/confirmations of v so far
 - reliability of NLU predicting v on held-out data

Dynamic Discriminative Trackers

- Dialogue as a sequence $p(s_1, ... s_t | o_1, ... o_t)$
- CRF models
 - similar features as static
 - feature value: NLU score for the given thing (e.g. DA type + slot + value)
 - target: per-slot BIO coding

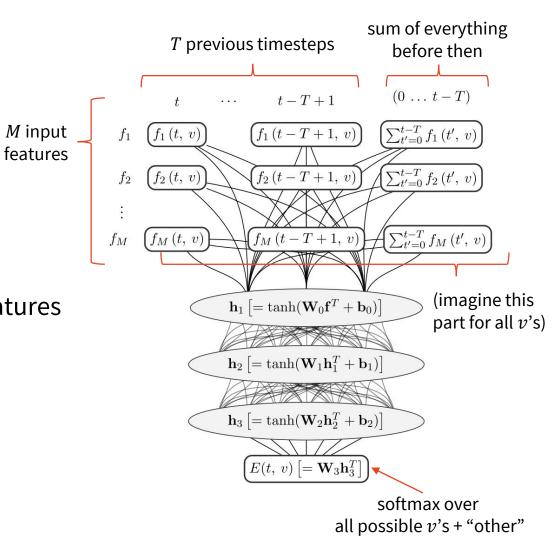
	Utterance	Goals	
		Food	Area
s_1	Hello, How may I help you?		
U_1	I need a Persian restaurant in the south part of	Persian	South
	town.		
S_2	What kind of food would you like?		
U_2	Persian.	Persian	South
S_3	I'm sorry but there is no restaurant serving persian		
	food		
U_3	How about Portuguese food?	Portuguese	South
S_4	Peking restaurant is a nice place in the south of		
	town.		
U_4	Is that Portuguese?	Portuguese	South
S_5	Nandos is a nice place in the south of town serving		
	tasty Portuguese food.		
U_5	Alright. Whats the phone number?	Portuguese	South
S_6	The phone number of nandos is 01223 327908.		
U_6	And the address?	Portuguese	South
S_7	Sure, nandos is on Cambridge Leisure Park Clifton		
	Way.		
U_7	Thank you good bye.		



phone

Static Neural State Trackers

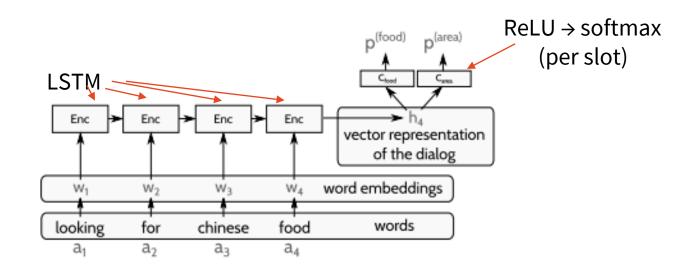
- discriminative, many architectures
- basic static example: use a feed-forward as your classifier
 - input features (w.r.t. slot-value v & time t)
 - NLU score of v
 - n-best rank of v
 - user & system intent (inform/request)
 - ... other domain-independent, low-level NLU features
 - 3 tanh layers
 - output softmax
 (= probability distribution over values)
 - static uses a **sliding window**: current time t + few steps back + \sum previous



(Henderson et al., 2013) https://aclweb.org/anthology/W13-4073

Dynamic Neural State Trackers

- Based on RNNs (turn-level or word-level)
- Typically **not** using NLU directly ASR/words → belief
- Simple example: RNN over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)



27

Summary

- Neural networks primer
 - embeddings
 - layers (sigmoid, tanh, ReLU)
 - recurrent networks (LSTM, GRU), attention
- NN SLU examples: classifier/sequence
- Dialogue state vs. belief state
- Dialogue as (Partially observable) Markov Decision Process
- Tracker examples:
 - Generative (partitioning, parameter tying)
 - **Discriminative** (basic "rule-based", classifier, neural)
 - static vs. dynamic
- Next time: dialogue policies

Thanks

Contact us:

Labs in 10 mins

https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
- Žilka et al. (2013): Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking
 https://aclweb.org/anthology/W13-4070 (+David Marek's MSc. thesis https://is.cuni.cz/webapps/zzp/detail/122733/)
- Liu & Lane (2016): Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling http://arxiv.org/abs/1609.01454
- Kim & Banchs (2014): Sequential Labeling for Tracking Dynamic Dialog States https://www.aclweb.org/anthology/W14-4345