
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL123 Dialogue Systems

4. Language Understanding
(non-neural)

https://ufal.cz/npfl123

Ondřej Dušek, Patrícia Schmidtová, Vojtěch Hudeček & Jan Cuřín

6. 3. 2023

https://ufal.cz/npfl123

Natural Language Understanding

• words → meaning
• whatever “meaning” is – can be different tasks

• typically structured, explicit representation

• alternative names/close tasks:
• spoken language understanding

• semantic decoding/parsing

• integral part of dialogue systems, also explored elsewhere
• stand-alone semantic parsers

• other applications:
• human-robot interaction

• question answering

• machine translation (not so much nowadays)

2NPFL123 L4 2023

NLU Challenges

• non-grammaticality

• disfluencies
• hesitations – pauses, fillers, repetitions

• fragments

• self-repairs (~6%!)

• ASR errors

• synonymy

• out-of-domain utterances

3NPFL123 L4 2023

uhm I want something in the west the west part of town

uhm find something uhm something cheap no I mean moderate

I’m looking for a for a chip Chinese rest or rant

oh yeah I’ve heard about that place my son was there last month

find something cheap for kids should be allowed

uhm I’m looking for a cheap

Chinese city centre
uhm I’ve been wondering if you could find me

a restaurant that has Chinese food close to
the city centre please

Semantic representations

• syntax/semantic trees
• typical for standalone semantic parsing

• different variations

• frames
• technically also trees, but not directly connected to words

• (mostly older) DSs, some standalone parsers

• graphs (AMR)
• more of a toy task, but popular

• dialogue acts = intent + slots & values
• flat – no hierarchy

• most DSs nowadays

4NPFL123 L4 2023

(Seneff, 1992)
https://www.aclweb.org/anthology/J92-1004

oui l’hôtel don’t le prix ne dépasse pas cent dix euros

(Bonneau-Maynard et al., 2005)
https://www.isca-speech.org/
archive/interspeech_2005/i05_3457.html

(Damonte et al., 2017)
https://www.aclweb.org/anthology/E17-1051/

inform(date=Friday, stay=“2 nights”)

https://www.aclweb.org/anthology/J92-1004
https://www.isca-speech.org/archive/interspeech_2005/i05_3457.html
https://www.aclweb.org/anthology/E17-1051/

NLU basic approaches

For trees/frames/graphs:

• grammar-based parsing
• handwritten/probabilistic grammars & chart parsing algorithms

• statistical
• inducing structure using machine learning

• grammar is implicit (training treebanks)

For DAs (shallow parsing):

• classification

• sequence labelling

5NPFL123 L4 2023

Grammars vs. shallow parsing

Grammars are:

• more expressive
• hierarchical structure better captures relations

• harder to maintain
• sparser

• harder to build rules by hand

• statistical parsers need more data

• training data is harder to get

• more hardware-hungry
• chart parsing: 𝑂 𝑛3 , shallow: 𝑂(𝑛) for simplest approaches

• more brittle
• shallow parsing is typically less sensitive to ASR errors, variation, etc.

6NPFL123 L4 2023

(Wang et al., 2005)
http://ieeexplore.ieee.org/document/1511821/

inform(from=SEA, to=BOS)

Show me flights from Seattle to Boston

http://ieeexplore.ieee.org/document/1511821/

Grammars: CFG (Context-free Grammar)

• Simple recursive grammar
• rules: X → A B C

• splitting a phrase into adjacent parts

• terminals = words

• non-terminals = phrases (spanning multiple words)

• parsable using dynamic programming
• (chart parsing)

• too simple for full natural language
• but may be OK for a limited domain

• especially with probabilistic extensions

7NPFL123 L4 2023

sentence

prepositional
phrase

noun
phrase

verbal
phrase

determiner

preposition

noun
alternative rules

ambiguous

http://www.dfki.de/compling/pdfs/cfg-slides.pdf

verb

http://www.dfki.de/compling/pdfs/cfg-slides.pdf

CFG: Phoenix Parser (ATIS, 90’s)

• CFG hierarchy based on semantic frames
• Frames → slots / other frames

• multiple CFGs, one per slot

• Robustness attempts
• ignore stuff not belonging

to any frame

• Chart parsing
• left to right

• maximize coverage

• minimize # of different slots

8NPFL123 L4 2023

I would like to go to Boston tomorrow from San Francisco

[Depart Location] → LEAVE from ENT
LEAVE → leaving | departing | ∅
ENT → <city> | <airport>

all networks matching
a span are added to parse chart,

they’re pruned afterwards

NLU as classification

• using DAs – treating them as a set of semantic concepts
• concepts:

• intent

• slot-value pair

• binary classification: is concept Y contained in utterance X?

• independent for each concept

• consistency problems
• no conflicting intents (e.g. affirm + negate)

• no conflicting values (e.g. kids-allowed=yes + kids-allowed=no)

• need to be solved externally, e.g. based on classifier confidence

9NPFL123 L4 2023

NLU as classification

• classification:
features → labels (classes)
• here: classes are binary (-1/1 or 0/1)

• one classifier per concept

• features
• binary – is X present?

or count – how many X’s are present?

• words

• n-grams

• word pairs/triples
(position-independent)

• regex

• presence of named entities

10NPFL123 L4 2023

I’m looking for something cheap in the city centre.

(from Milica Gašić’s slides)

NER + delexicalization

Approach:

1) identify slot values/named entities

2) delexicalize = replace them
with placeholders (indicating entity type)
• or add the NE tags as more features for classification

• generally needed for NLU as classification
• otherwise in-domain data is too sparse

• this can vastly reduce the number of concepts to classify & classifiers

• NER is a problem on its own
• but general-domain NER tools may need to be adapted

• added gazetteers with in-domain names

• in-domain gazetteers alone may be enough

• NE supplemented by NE linking/disambiguation (usually not needed in DS) 11

What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.

NLU Classifiers

• note that data is usually scarce!

• handcrafted / rules
• simple mapping: word/n-gram/regex match → concept

• can work really well for a limited domain

• no training data, no retraining needed (tweaking on the go)

• logistic regression

• SVM (support vector machine)

• neural nets
• different, “automatic” features (embeddings, see later)

• only applicable if a lot of data is available

12NPFL123 L4 2023

Machine Learning (Grossly Oversimplified)

ML is basically function approximation

• function: data (features)→ labels
• discrete labels = classification

• continuous labels = regression

• function shape
• this is where different algorithms differ

• neural nets: complex functions, composed of simple
building blocks (linear, sigmoid, tanh…)

• training/learning = adjusting
function parameters to minimize error
• supervised learning = based on data + labels given in advance

• reinforcement learning = based on exploration & rewards given online

13NPFL123 L4 2023

https://towardsdatascience.com/
no-machine-learning-is-not-just-glorified-
statistics-26d3952234e3

Machine Learning (Grossly Oversimplified)

• training– gradient descent methods
• minimizing a cost function

(notion of error – given system output, how far off are we?)

• calculus: derivative = steepness/slope

• follow the slope to find the minimum – derivative gives the direction

• learning rate = how fast do we go (needs to be tuned)

• gradient typically computed over mini-batches
• random bunches of a few training instances

• not as erratic as using just 1 instance,
not so slow as computing over whole data

• stochastic gradient descent

• improvements: AdaGrad, Adam […]
• cleverly adjusting the learning rate

NPFL123 L4 2023 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Logistic Regression (LR, also called Maximum Entropy Classifier)

• modeling using the sigmoid (logistic) function with parameters 𝛉

• despite the name, it’s a classifier

• very basic, but powerful with the right features

• trained by gradient descent (logistic/cross entropy loss)

• maximum entropy estimate (“most uniform model given data”)

15NPFL123 L4 2023

𝑝 y 𝐱 = sigmoid −𝑦(𝛉 ⋅ 𝐱) =
1

1 + exp −𝑦(𝛉 ⋅ 𝐱)

𝑝 𝑦|𝐱 =
1

𝑍(𝐱)
exp(𝛉 ⋅ 𝐟 𝐱, 𝑦)

normalization

generalization: feature functions vector
(some fire for each value of 𝑦)

equivalent form
– maximum entropy style

(works for multiclass, too!)

target class is binary, i.e. 𝑦 ∈ {−1,+1}

𝑦 ∈ {0,1} vs. {−1,+1}: https://stats.stackexchange.com/questions/229645/
formula equivalence: http://ufal.mff.cuni.cz/~odusek/var/upload/docs/msc_thesis.pdf, page 30

sigmoid

input data/features

https://stats.stackexchange.com/questions/229645/
http://ufal.mff.cuni.cz/~odusek/var/upload/docs/msc_thesis.pdf

• geometric intuition: features ~ coordinates in multidimensional space

• trying to separate classes with a hyperplane (decision boundary)

• idea: let’s find a boundary with maximum margin
• i.e. maximize distance between classes → best generalization

• most likely to classify new example correctly

• this boundary is given by support vectors
(instances that are closest to it)

• margin width is
2

𝛉
→ we minimize 𝛉

2

• SVM score: 𝑔 𝐱 = 𝛉 ⋅ 𝐱
• 0 at the boundary, +1/-1 for support vectors

• sign of the score gives the class (positive/negative)

Support-Vector Machines (SVMs)

NPFL123 L4 2023

(from Aikaterini Tzompanaki’s slides)

o = positive class

• = negative class

𝑥1, 𝑥2 = features

support
vectors

why margin is
2

𝛉
: https://math.stackexchange.com/questions/1305925/

https://math.stackexchange.com/questions/1305925/

• soft-margin SVM – for non-separable cases
• non-separable = messy data, can’t separate with a hyperplane

• “soft” = weighing correct classification
(hinge loss) & margin size

• model: min
𝛉

𝜆 𝛉
2
+σ𝑖max{0, 1 − 𝑦𝑖𝛉 ⋅ 𝐱𝑖}

• regularized logistic regression – for better generalization
• preventing overfitting to training data – trying to keep parameter values low

• logistic loss

• model: min
𝛉
 𝜆 𝛉

2
+σ𝑖 log(1 + exp 1 − 𝑦𝑖𝛉 ⋅ 𝐱𝑖)

• the main difference is the loss
• hinge loss should be marginally better for classification, but it depends

SVM vs. Logistic Regression

17NPFL123 L4 2023 https://gdcoder.com/support-vector-machine-vs-logistic-regression/

regularization
weight

https://gdcoder.com/support-vector-machine-vs-logistic-regression/

Classification example

18NPFL123 L4 2023

ASR: I want to go from from Newark to London City next Friday
Delex: I want to go from from <airport-1> to <airport-2> next <day-1>

features (𝐱)
I 1
want 1
to 3
go 1
from 2
<airport-1> 1
…
him 0
price 0
tell 0
…
I want 1
want to 1
to go 1
….
from <airport-1> 1

weights:
intent=search_flights 𝛉SF
intent=request_price 𝛉RP
…
from_airport=<airport-1> 𝛉FA1
….

SVM: 𝛉FA1 ⋅ 𝐱 = +3.4347 → found from_airport=Newark
LR: sigmoid 𝛉FA1 ⋅ 𝐱 = 0.883 → found from_airport=Newark (conf. = 0.883)

weights define
different classifiers

Slot filling as sequence tagging

• get slot values directly – “automatic” delexicalization
• each word classified

• classes = slots & IOB format (inside-outside-beginning)

• slot values taken from the text
(where a slot is tagged)

• NER-like approach

• rules + classifiers kinda still work
a) keywords/regexes found at specific position

b) apply classifier to each word in the sentence left-to-right

• problem: overall consistency
• slots found elsewhere in the sentence might influence what’s classified now

• solution: structured/sequence prediction

19NPFL123 L4 2023

I need a flight from Boston to New York tomorrow
O O O O O B-departure O B-arrival I-arrival B-date

outside beginning (+slot)

inside (+slot)
continuation of the same slot value

Maximum Entropy Markov Model (MEMM)

• Looking at past classifications when making next ones
• LR + a simple addition to the feature set

• Whole history would be too sparse/complex
→ Markov assumption: only the most recent matters
• 1st order MM: just the last one (←this is what we show here)

• nth order MM: n most recent ones

• still not modelling the sequence globally

20NPFL123 L4 2023

𝑝 𝐲 𝐱 =ෑ

𝑡=1

𝑇
1

𝑍 𝑦𝑡−1, 𝐱
exp(𝛉 ⋅ 𝐟(𝑦𝑡, 𝑦𝑡−1, 𝐱))

for the whole
sequence

time steps are independent
except for 𝑦𝑡−1

𝑦𝑡−1 is the main addition
compared to LR

looking at
the whole

input

Hidden Markov Model (HMM)

• Modelling the sequence as a whole

• Very basic model:
• “tag depends on word + previous tag”

• Markov assumption, again

• “Hidden” – reverse viewpoint:
• “tags are hidden,

but they influence the words
on the surface”

• Inference – Viterbi algorithm
• we can get the globally best tagging

21NPFL123 L4 2023

𝑝 𝐲, 𝐱 =ෑ

𝑡=1

𝑇

𝑝 𝑦𝑡 𝑦𝑡−1 𝑝(𝑥𝑡| 𝑦𝑡)

transition
probability

prev. tag → tag

observation
probability
tag → word

for the whole
sequence

HMM is a generative model –
models joint distribution 𝑝(𝐲, 𝐱),

not just conditional 𝑝(𝐲|𝐱)

HMM vs. MEMM

• MEMM:
• any feature functions, as in LR

• local normalization – does not model whole sequences, just locally

• label bias problem
• training: you know the correct labels

• inference: one error can lead to a series of errors

• HMM:
• global normalization for 𝑝(𝐲|𝐱) over all 𝐲′s

• modelling sequences as a whole

• very boring & limited feature functions

• how about best of both?

22NPFL123 L4 2023

Linear-Chain Conditional Random Field (CRF)

• HMM + more complex feature functions

• MEMM + global sequence modelling

• state-of-the art for many sequence tagging tasks (incl. NLU)
• until NNs took over

• used also in conjunction with NNs

• global normalization makes it slow to train

23NPFL123 L4 2023

𝑝 𝐲 𝐱 =
1

𝑍 𝐱
ෑ

𝑡=1

𝑇

exp(𝛉 ⋅ 𝐟(𝑦𝑡 , 𝑦𝑡−1, 𝐱))

global normalization
(otherwise like MEMM)

feature functions
looking at whole input

(otherwise looks like HMM)

Sequence tagging example

24NPFL123 L4 2023

ASR: I want to go from from Newark to London City next Friday
Previous tags: O O O O O O B-from_airport O

current position:
what’s the class
for London?

in_sent=I 1
in_sent=want 1
in_sent=to 3
in_sent=go 1
…
in_sent=him 0
in_sent=price 0
…
in_sent=I want 1
in_sent=want to 1
in_sent=to go 1

features (𝐱):

cur=London 1
cur=him 0
…
prev=to 1
prev=want 0
prev=price 0
…
cur=to London 1
prev=Newark to 1
...

prev_tag=O 1
prev_tag=B-price 0
...

using 𝒚𝒕−𝟏

HMM considers only these

MEMM: looks at London, ignores
that it also needs to tag City later
→ likely to tag as B-to_city

CRF: also considers future tags,
more likely to tag London City
as B-to_airport I-to_airport

Handling ASR noise

• ASR produces multiple hypotheses

• Combine & get resulting
NLU hypotheses
• NLU: 𝑝(DA|text)

• ASR: 𝑝 text audio

• we want 𝑝(DA|audio)

• Easiest: sum it up

25NPFL123 L4 2023

𝑝 DA audio = ෍

texts

𝑃 DA text 𝑃(text|audio)
(from Filip Jurčíček’s slides)

• Alternative: use confusion networks
• per-word ASR confidence

• Word features weighed by word confidence

Handling ASR noise

26NPFL123 L4 2023

~equivalent confusion network

features:
I 0.9
hi 0.02
am 0.9
looking 1
for 1
…
I am 0.81
my am 0.063
am looking 0.9
a bar 0.3
a car 0.24
…

should be normalized
by n-gram length

(from Filip Jurčíček’s slides)

n-best list

Context

• user response can depend on last system action
• fragments/short replies

are ambiguous without context

• → add last system DA/text into input features
• helps disambiguate

• careful – user may not play nice!
• system needs to be trained with both

alternatives in mind

27NPFL123 L4 2023

U: I’m looking for flights from JFK.
S: Where would you like to go?
U: Atlanta.

U: Actually I’d rather fly from Newark.x

inform(??=Atlanta)
inform(to_city=Atlanta)

Summary

• NLU can be tricky
• bad grammar, fragments, synonymy, ASR errors …

• Grammars, frames, graph representation
• rule-based or statistical structure induction

• more expressive, but harder – not so much in limited-domain systems

• Shallow parsing
• dialogue acts: intent + slots & labels

• rules – keyword spotting, regex

• classification (LR, SVM)

• sequence tagging (MEMM, HMM, CRF)

• Next time: neural NLU & dialogue state tracking

NPFL123 L4 2023

(Sutton & McCallum, 2010)
https://arxiv.org/abs/1011.4088

()

https://arxiv.org/abs/1011.4088

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,schmidtova,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
• Aikaterini Tzompanaki’s slides (University of Cergy-Pontoise): https://perso-etis.ensea.fr/tzompanaki/teaching.html
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
• Sutton & McCallum – Introduction to Conditional Random Fields: https://arxiv.org/abs/1011.4088
• Andrew McCallum’s slides (U. of Massatchusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/

29NPFL123 L4 2023

Labs in 10 mins

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://www.cs.utexas.edu/~mooney/ir-course/
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
https://hao-fang.github.io/ee596_spr2018/syllabus.html
https://perso-etis.ensea.fr/tzompanaki/teaching.html
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
https://arxiv.org/abs/1011.4088
https://people.cs.umass.edu/~mccallum/courses/inlp2007/

Hidden Markov Model vs. MEMM (additional explanation, just FYI, not required)

• Rewrite HMM so it looks more like MEMM + get conditional probability

30NPFL123 L4 2023

𝑝 𝐲, 𝐱 =ෑ

𝑡=1

𝑇

exp(෍

𝑖,𝑗∈𝑆

𝜃𝑖𝑗1𝑦𝑡=𝑖1𝑦𝑡−1=𝑗 +෍

𝑖∈𝑆

෍

𝑜∈𝑂

𝜇𝑜𝑖1𝑦𝑡=𝑖1𝑥𝑡=𝑜)

𝑝 𝐲, 𝐱 =ෑ

𝑡=1

𝑇

exp(෍

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 (𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡))

𝑝 𝐲 𝐱 =
𝑝 𝐲, 𝐱

σ𝑦′ 𝑝 𝐲′, 𝐱
=

1

𝑍(𝐱)
ෑ

𝑡=1

𝑇

exp ෍

𝑘=1

𝐾

𝜃𝑘𝑓𝑘 𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡 =
1

𝑍(𝐱)
ෑ

𝑡=1

𝑇

exp(𝛉 ⋅ 𝐟(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡))

subsume transition & observation
under feature functions,

𝜃𝑘 is 𝜃𝑖𝑗 & 𝜇𝑜𝑖

vector notation

conditional
probability:

hide the actual
probabilities as
weights (in logarithm)

just indicators
(binary features)

normalization is global

just the current word

transition observation

