NPFL123 Dialogue Systems 7. Neural NLU & State Tracking

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín

13.4.2021

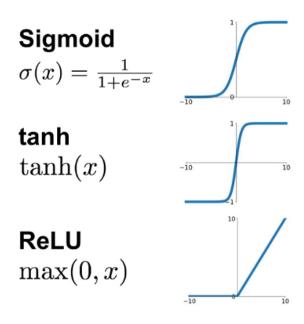
Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Neural networks

- Can be used for both classification & sequence models
- Non-linear functions, composed of basic building blocks
 - stacked into layers
- Layers are built of **activation functions**:
 - linear functions
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

softmax(
$$\mathbf{x}$$
)_i = $\frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$

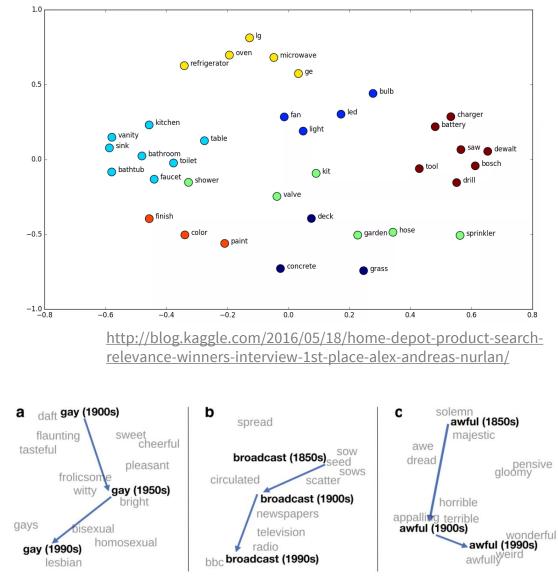
- Fully differentiable training by gradient descent
 - gradients **backpropagated** from outputs to all parameters
 - (composite function differentiation)



https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Neural networks – features

- You can use same ones as for LR/SVM...
 - but it's a lot of work to code them in
- Word embeddings
 - let the network learn features by itself
 - input is just words (vocabulary is numbered)
 - top ~50k words + <*unk*>, or subwords
 - distributed word representation
 - each word = **vector of floats** (~50-2000 dims.)
 - part of network parameters trained
 - a) random initialization
 - b) pretraining
 - the network learns which words are used similarly
 - they end up having close embedding values
 - different embeddings for different tasks

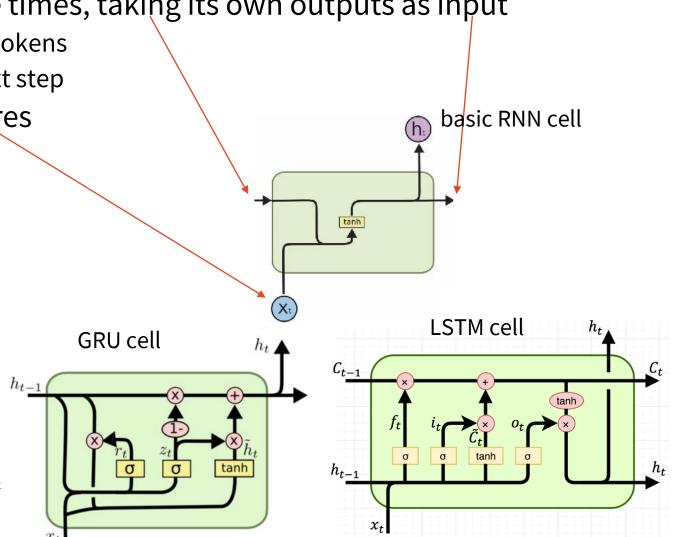


http://ruder.io/word-embeddings-2017/

Recurrent Neural Networks

- Many identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = **hidden state** fed to the next step
 - additional input next token features
- Cell types
 - **basic RNN**: linear + tanh
 - problem: vanishing gradients
 - can't hold long recurrences
 - **GRU, LSTM**: more complex, to make backpropagation work better
 - "gates" to keep old values

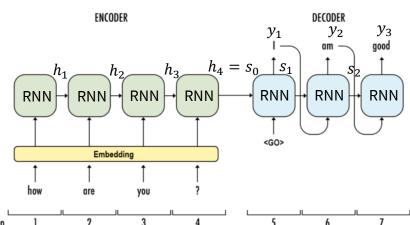
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-stepexplanation-44e9eb85bf21

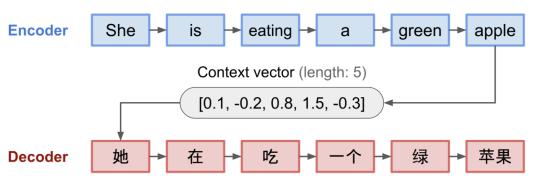


Encoder-Decoder Networks

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

- Default RNN paradigm for sequences/structure prediction
 - encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - MT, dialogue, parsing...
 - more complex structures linearized to sequences





https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

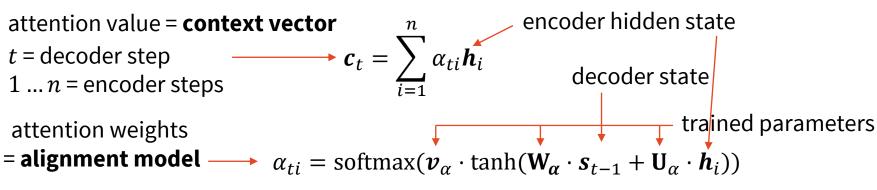
 $h_0 = 0$ $h_t = \operatorname{cell}(x_t, h_{t-1})$

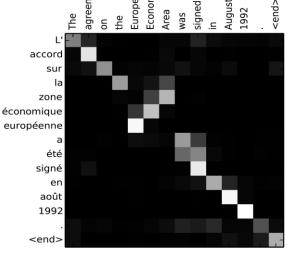
 $s_0 = h_T$ $p(y_t | y_1, \dots y_{t-1}, \mathbf{x}) = \text{softmax}(s_t)$ $s_t = \text{cell}(y_{t-1}, s_{t-1})$

Attention Models

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

- Encoder-decoder too crude for complex sequences
 - the whole input crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination
 - re-weighted every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer





Attention Mechanism

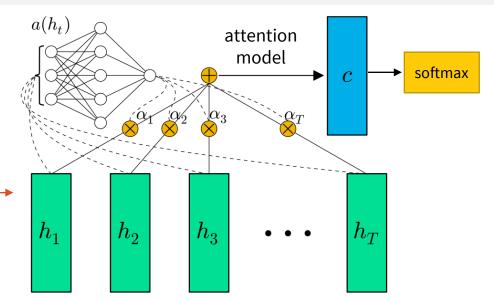
 Decision layer
 Image: Context for each incoming time step)
 Imputs
 Imputs

• Self-attention – over previous decoder steps

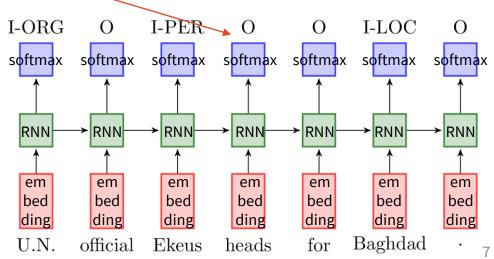
https://skymind.ai/wiki/attention-mechanism-memory-network

Neural NLU

- Various architectures possible
- Classification
 - feed-forward NN
 - RNN + attention weight \rightarrow softmax
 - convolutional networks
- Sequence tagging
 - RNN (LSTM/GRU) → softmax over hidden states-
 - default version: label bias (like MEMM)
 - CRF over the RNN possible
 - Still treats intent + slots independently



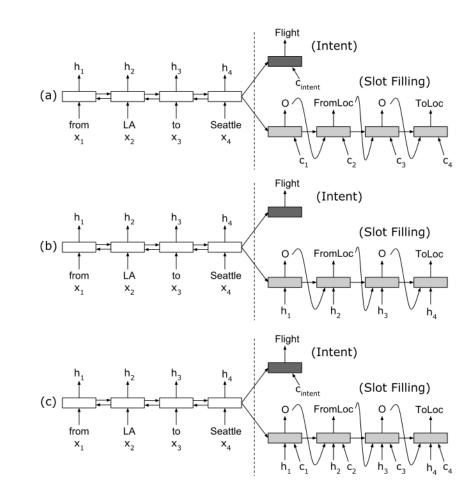
encoder hidden states (Raffel & Ellis, 2016) https://arxiv.org/abs/1512.08756



https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/

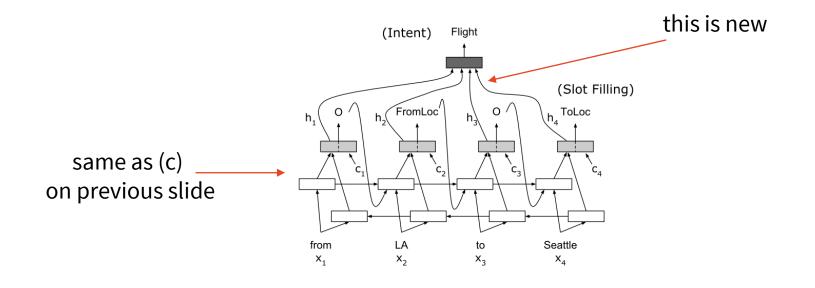
NN NLU – Joint Intent & Slots

- Same network for both tasks
- Bidirectional encoder
 - 2 encoders: left-to-right, right-to-left
 - concatenate hidden states
 - "see the whole sentence before you start tagging"
- Decoder tag word-by-word, inputs:
 - a) attention
 - b) input encoder hidden states ("aligned inputs")
 - c) both
- Intent classification: softmax over last encoder state
 - + specific intent context vector (attention)



NN NLU – Joint Intent & Slots

- Extended version: use slot tagging in intent classification
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder attention over slots decoder states
- Works slightly better



Dialogue State Tracking

- Dialogue management consist of:
 - **State update** ← here we need DST
 - Action selection (later)
- **Dialogue State** needed to remember what was said in the past
 - tracking the dialogue progress
 - summary of the whole dialogue history
 - basis for action selection decisions

U: I'm looking for a restaurant in the <u>city centre</u>.

S: OK, what kind of food do you like?

U: Chinese.

- **X** S: What part of town do you have in mind?
- S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
- S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the <u>city centre</u>.

Dialogue State Contents

- "All that is used when the system decides what to say next"
- User goal/preferences ~ NLU output
 - slots & values provided (search constraints)
 - information requested

Past system actions

- information provided
 - slots and values
 - list of venues offered *

- U: Give me the address of <u>the first one</u> you talked about. U: Is there <u>any other</u> place in this area?
- slots confirmed
 S: OK, Chinese food. [...]
- slots requested

S: What time would you like to leave?

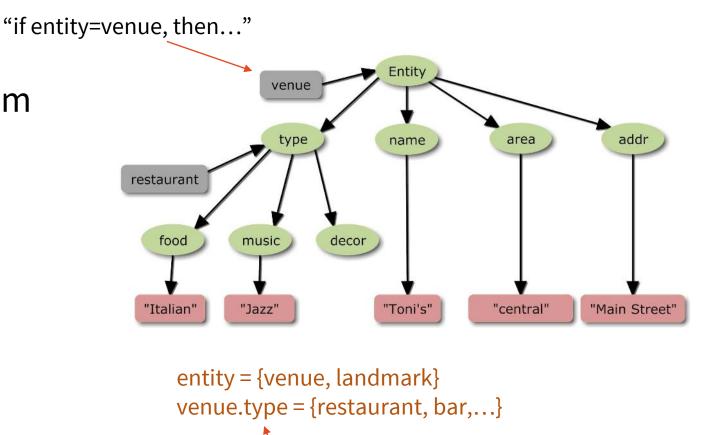
- Other semantic context
 - user/system utterance: bye, thank you, repeat, restart etc.

(Henderson, 2015) <u>https://ai.google/research/pubs/pub44018</u>

Ontology

- To describe possible states
- Defines all concepts in the system
 - List of slots
 - Possible range of values per slot
 - Possible actions per slot
 - requestable, informable etc.
 - Dependencies
 - some concepts only applicable for some values of parent concepts

food_type – only for type=restaurant has_parking – only for type=hotel



some slot names may need disambiguation (venue type vs. landmark type)

Problems with Dialogue State

- NLU is unreliable
 - takes unreliable ASR output
 - makes mistakes by itself some utterances are ambiguous
 - output might conflict with ontology
- Possible solutions:
 - detect contradictions, ask for confirmation
 - ignore low-confidence NLU input
 - what's "low"?
 - what if we ignore 10x the same thing?
- Better solution: make the state probabilistic **belief state**

ASR: 0.5 I'm looking for an expensive hotel
 0.5 I'm looking for inexpensive hotels

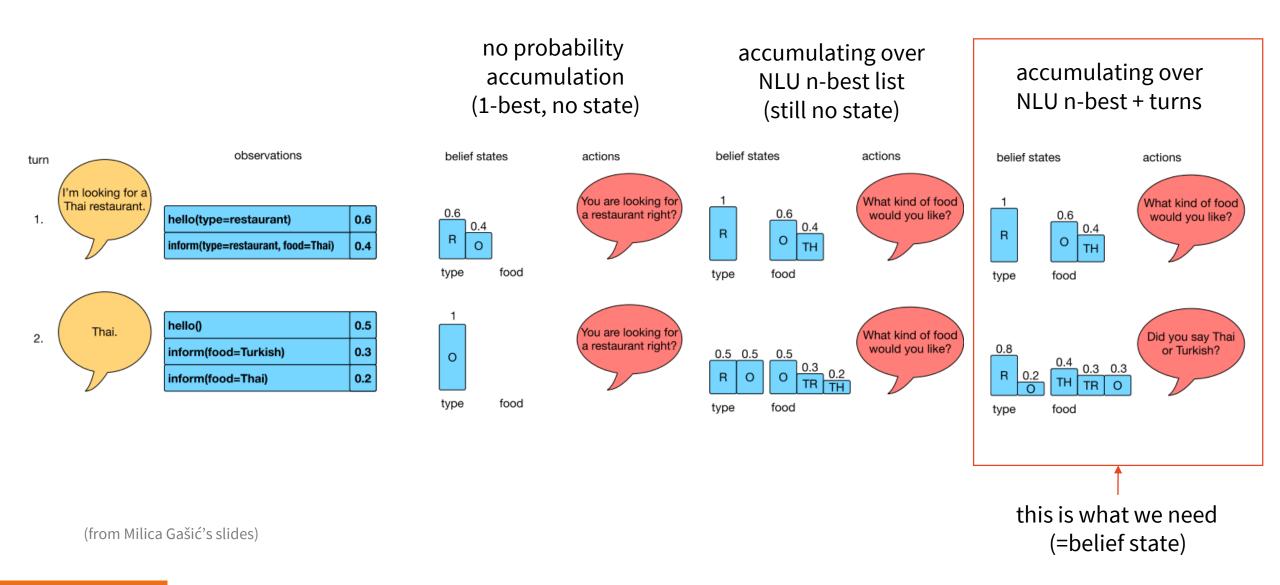
NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

Belief State

- Assume we don't know the true dialogue state
 - but we can estimate a **probability distribution over all possible states**
 - In practice: per-slot distributions
- More robust
 - accumulates probability mass over multiple turns
 - low confidence if the user repeats it, we get it the 2nd time
 - accumulates probability over NLU n-best lists
- Plays well with probabilistic dialogue policies
 - but not only them rule-based, too

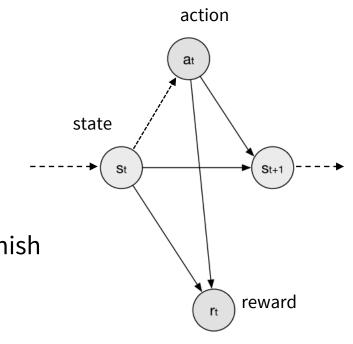
Belief State



NPFL123 L7 2021

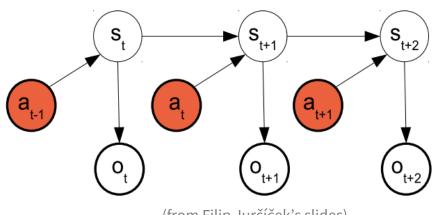
Dialogue as a Markov Decision Process

- MDP = probabilistic control process
 - model Dynamic Bayesian Network
 - random variables & dependencies in a graph/network
 - "dynamic" = structure repeats over each time step t
 - *s*_t dialogue **states** = what the user wants
 - a_t **actions** = what the system says
 - r_t **rewards** = measure of quality
 - typically slightly negative for each turn, high positive for successful finish
 - $p(s_{t+1}|s_t, a_t)$ transition probabilities
- Markov property state defines everything
- Problem: we're not sure about the dialogue state

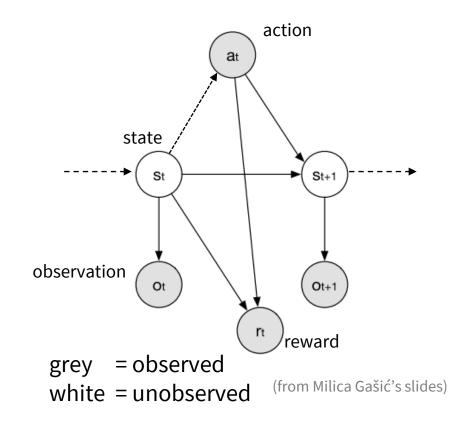


Partially Observable (PO)MDP

- Dialogue states are **not observable**
 - modelled probabilistically belief state b(s) is a prob. distribution over states
 - states (what the user wants) influence **observations** o_t (what the system hears)
- Still Markovian
 - $b'(s') = \frac{1}{z}p(o|s') \sum_{s \in S} p(s'|s, a)b(s)$
 - b(s) can be modelled by an HMM



(from Filip Jurčíček's slides)



Digression: Generative vs. Discriminative Models

What they learn:

- Generative whole distribution p(x, y)
- **Discriminative** just decision boundaries between classes ~ p(y|x)

To predict p(y|x)...

Generative models

- Assume some functional form for p(y), p(x|y)
- Estimate parameters of p(y), p(x|y) directly from training data
- Use Bayes rule to calculate p(y|x) —
- Discriminative models
 - Assume some functional form for p(y|x)
 - Estimate parameters of p(y|x) directly from training data

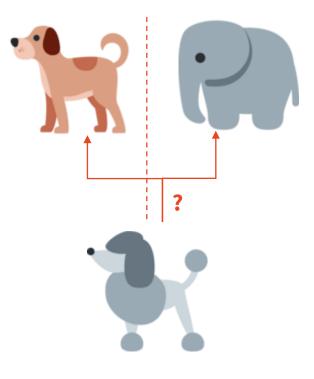
they get the same thing, but in different ways

Generative vs. Discriminative Models

Example: elephants vs. dogs

http://cs229.stanford.edu/notes/cs229-notes2.pdf

- Discriminative:
 - establish decision boundary (~find distinctive features)
 - classification: just check on which side we are
- Generative
 - ~ 2 models what elephants & dogs look like
 - classification: match against the two models
- Discriminative typically better results
- Generative might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely (*x*, *y*)'s



Naïve Generative Belief Tracking (= Belief Monitoring)

- Using the HMM model
 - estimate the transition & observation probabilities from data

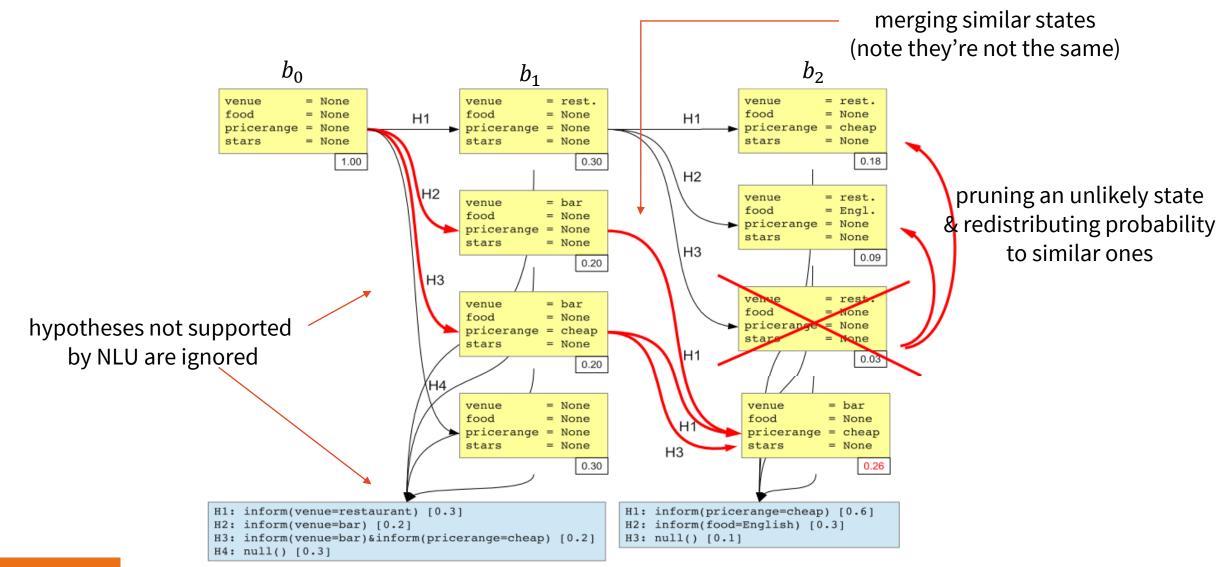
$$b(s) = \frac{1}{Z} p(o_t | s_t) \sum_{s_{t-1} \in S} p(s_t | a_{t-1}, s_{t-1}) b(s_{t-1}) \quad \text{same as previous}$$

- Problem: too many states
 - e.g. 10 slots, 10 values each $\rightarrow 10^{10}$ distinct states intractable
- Solutions: pruning/beams, additional assumptions...
 - or different models altogether

Generative BT: Pruning/Beams

- Tricks to make the naïve model tractable:
 - only track/enumerate states supported by NLU
 - "other" = all equal, don't even keep the rest in memory explicitly
 - just keep *n* most probable states (**beam**)
 - prune others & redistribute probability to similar states
 - merge similar states (e.g. same/similar slots, possibly different history)
 - along with probability mass
- Model parameters estimated from data
 - transition probabilities $p(s_{t+1}|s_t, a_t)$
 - observation probabilities $p(o_t|s_t)$
 - this is hard to do reliably, so they're often set by hand

Generative BT: Pruning/Beams



(from Filip Jurčíček's slides)

Generative BT: Independence Assumptions

- Partition the state by assuming conditional independence
 - track parts of the state independently → reduce # of combinations
 - e.g. "each slot is independent":
 - state $\mathbf{s} = [s^1, \dots s^N]$, belief $b(\mathbf{s}_t) = \prod_i b(s_t^i)$
 - other partitions possible speed/accuracy trade-off



Generative BT: Parameter Tying

- Further simplification: keep the partition + tie some parameters
 - you basically end up with 2 parameters only S

transition probabilities:

observation probabilities:

$$p(s_t^i | a_{t-1}^i, s_{t-1}^i) = \begin{cases} \theta_T \text{ if } s_t^i = s_{t-1}^i \\ \frac{1 - \theta_T}{\# \text{values}^{i-1}} \text{ otherwise} \end{cases}$$

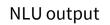
 θ_T = "rigidity" (bias for keeping previous values), otherwise all value changes have the same probability

$$p(o_t^i | s_t^i) = \begin{cases} \theta_0 p(o_t^i) \text{ if } o_t^i = s_t^i \\ \frac{1 - \theta_0}{\# \text{values}^{i-1}} p(o_t^i) \text{ otherwise} \\ \theta_0 \sim \text{confidence in NLU} \\ p(o_t^i) = \text{NLU output} \\ \text{ i.e. believe in value given by NLU with } \theta_0, \\ \text{distribute rest of probability equally} \end{cases}$$

Basic Discriminative Belief Tracker

- Based on the previous model
 - same slot independence assumption
- Even simpler "always trust the NLU"____
 - this makes it parameter-free

- ...and kinda rule-based
- but very fast, with reasonable performance



"user mentioned this value"

$$p(s_t^i | a_{t-1}^i, s_{t-1}^i, o_t^i) = \begin{cases} p(o_t^i) \text{ if } s_t^i = o_t^i \wedge o_t^i \neq \textcircled{r} \\ p(o_t^i) \text{ if } s_t^i = s_{t-1}^i \wedge o_t^i = \textcircled{r} \\ 0 \text{ otherwise} \\ & \text{``no change''} \end{cases}$$

$$b(s_{t}^{i}) = \sum_{\substack{s_{t-1}^{i}, o_{t}^{i} \\ \text{discriminative} \\ \text{model}}} p(s_{t}^{i} | a_{t-1}^{i}, s_{t-1}^{i}, o_{t}^{i}) b(s_{t-1}^{i}) \qquad \text{user silent about slot } i$$

$$b(s_{t}^{i}) = \begin{cases} s_{t}^{i} = \textcircled{k}: & p(s_{t-1}^{i} = \textcircled{k}) p(o_{t}^{i} = \textcircled{k}) \\ s_{t}^{i} \neq \textcircled{k}: & p(o_{t}^{i} = s_{t}^{i}) + p(o_{t}^{i} = \textcircled{k}) p(s_{t}^{i} = s_{t-1}^{i}) \end{cases}$$

the rule is now deterministic

.

25

Discriminative Trackers

- Generative trackers need many assumptions to be tractable
 - cannot exploit arbitrary features
 - ... or they can, but not if we want to keep them tractable
 - often use handcrafted parameters
 - ... may produce unreliable estimates (Williams, 2012) <u>https://ieeexplore.ieee.org/document/6424197</u>
- Discriminative trackers can use any features from dialogue history
 - parameters estimated from data more easily
- General distinction
 - **static models** encode whole history into features
 - **dynamic/sequence models** explicitly model dialogue as sequential

Static Discriminative Trackers

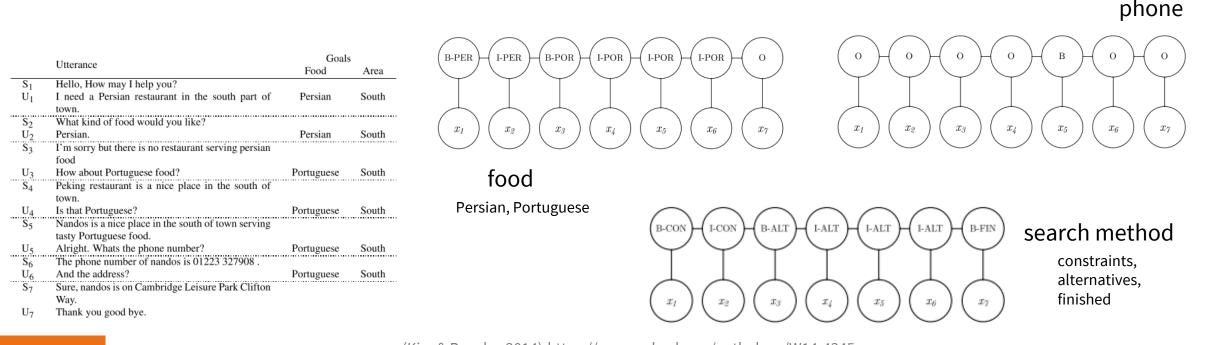
- Generally predict $p(s_t|o_1, a_1, ..., a_{t-1}, o_t)$
 - any kind of classifier (SVM, LR...)
 - need fixed feature vector from $o_1, a_1, \dots, a_{t-1}, o_t$ (where t is arbitrary)
 - current turn, cumulative, sliding window
 - per-value features & tying weights some values are too rare
- Global feature examples:

(Metallinou et al., 2013) <u>https://www.aclweb.org/anthology/P13-1046</u>

- NLU n-best size, entropy, lengths (current turn, cumulative)
- ASR scores
- Per-value *v* examples:
 - rank & score of hypo with v on current NLU n-best + diff vs. top-scoring hypo
 - # times v appeared so far, sum/average confidence of that
 - # negations/confirmations of v so far
 - reliability of NLU predicting *v* on held-out data

Dynamic Discriminative Trackers

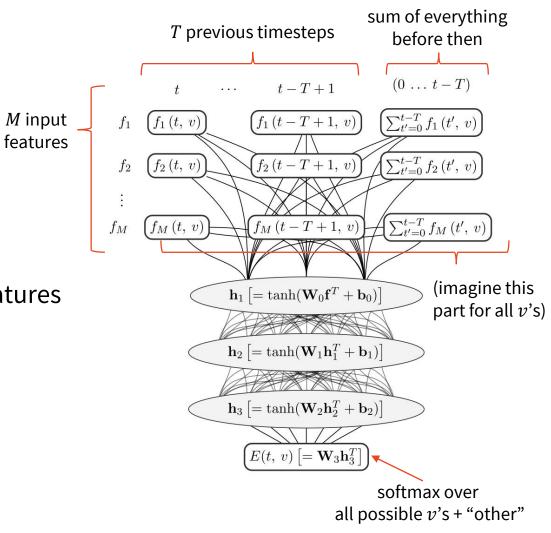
- Dialogue as a sequence $p(s_1, \dots s_t | o_1, \dots o_t)$
- CRF models
 - similar features as static
 - feature value: NLU score for the given thing (e.g. DA type + slot + value)
 - target: per-slot BIO coding



(Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345

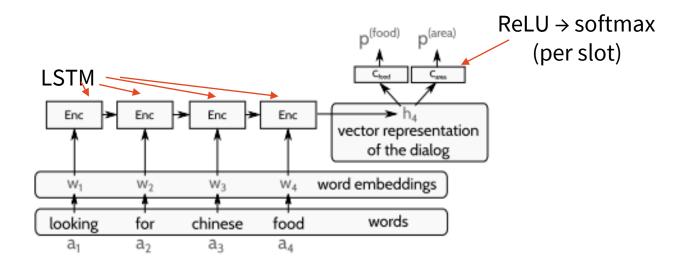
Neural State Trackers

- discriminative, many architectures
- basic static example: use a feed-forward as your classifier
 - input features (w.r.t. slot-value v & time t)
 - NLU score of *v*
 - n-best rank of v
 - user & system intent (*inform/request*)
 - ... other domain-independent, low-level NLU features
 - 3 tanh layers
 - output softmax (= probability distribution over values)
 - static uses a sliding window:
 current time t + few steps back + ∑previous



Dynamic Neural State Trackers

- Based on RNNs (turn-level or word-level)
- Typically **not** using NLU directly ASR/words → belief
- Simple example: RNN over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)



(Žilka & Jurčíček, 2015) http://arxiv.org/abs/1507.03471

Summary

- Neural networks primer
 - embeddings
 - layers (sigmoid, tanh, ReLU)
 - recurrent networks (LSTM, GRU), attention
- NN NLU examples: classifier/sequence
- Dialogue state vs. belief state
- Dialogue as (Partially observable) Markov Decision Process
- Tracker examples:
 - Generative (partitioning, parameter tying)
 - **Discriminative** (basic "rule-based", classifier, neural)
 - static vs. dynamic
- Next time: dialogue policies

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Henderson (2015): Machine Learning for Dialog State Tracking: A Review <u>https://ai.google/research/pubs/pub44018</u>
- Žilka et al. (2013): Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking <u>https://aclweb.org/anthology/W13-4070</u> (+David Marek's MSc. thesis <u>https://is.cuni.cz/webapps/zzp/detail/122733/</u>)
- Liu & Lane (2016): Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling <u>http://arxiv.org/abs/1609.01454</u>
- Kim & Banchs (2014): Sequential Labeling for Tracking Dynamic Dialog States <u>https://www.aclweb.org/anthology/W14-4345</u>

Next week: Lab questions 9am Lab assignment 9:50 Lecture 10:40