NPFL123 Dialogue Systems **4. Voice Assistants & Question Answering** + a little machine learning recap

https://ufal.cz/npfl123

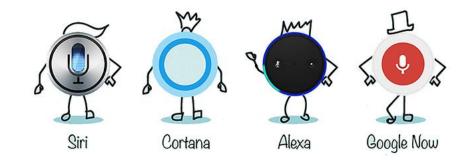
Ondřej Dušek, Vojtěch Hudeček & Jan Cuřín

23.3.2021

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Virtual Assistants (voice/smart/conversational assistants)

- "Definition": voice-operated software (dialogue system) capable of answering questions, performing tasks & basic dialogue in multiple domains
- Apple Siri (2011) question answering & iOS functions
- Now every major IT company has them
 - Microsoft Cortana (2014)
 - Amazon Alexa (2014)
 - Google Assistant (2016)
 - Samsung Bixby (2017)
 - Mycroft, Rhasspy (open-source, 2018/2020)
 - Clova (Naver, 2017) Korean & Japanese
 - Alice (Yandex, 2017) Russian
 - DuerOS (Baidu, 2017), AliGenie (Alibaba, 2017) Chinese



Smart Speakers

- Internet-connected mic & speaker with a virtual assistant running
 - optionally video (display/camera)
 - ~ same functionality as virtual assistants in phones/computers
 - Amazon Echo (Alexa), Google Home (Assistant), Apple HomePod (Siri) [...]
- Main point: multiple microphones far-field ASR

Capabilities

- Out of the box:
 - Question answering
 - Web search
 - News & Weather
 - Scheduling
 - Navigation
 - Local information
 - Shopping
 - Media playback
 - Home automation
- a lot of it through 3rd party APIs
- the domains are well connected

https://www.lifehacker.com.au/2018/02/specs-showdowngoogle-home-vs-amazon-echo-vs-apple-homepod/ Demos

Raven H (powered by DuerOS, Baidu)

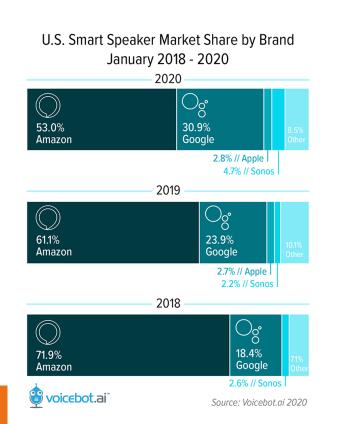
https://www.youtube.com/watch?v=iqMjTNjFIMk

Google Assistant

https://www.youtube.com/watch?v=JONGt32mfRY

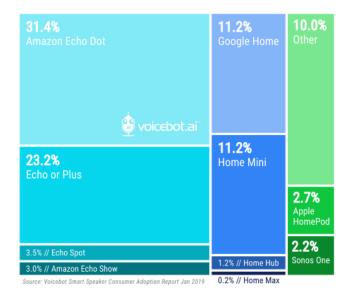
Smart Speaker Adoption

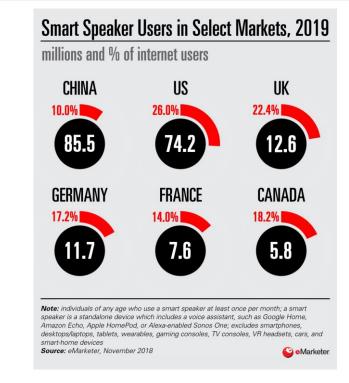
- >26% US adults have a smart speaker
 - 40% yearly growth in 2018
 - this is very different across the globe
- Amazon leads in the US, Google on the rise



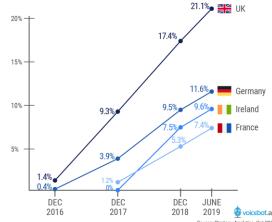
NPFL123 L4 2021

U.S. Smart Speaker Market Share by Device - January 2019





Smart Speaker Household Penetration by EU Country

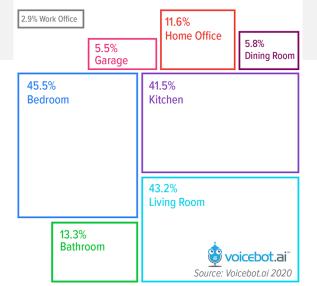


6

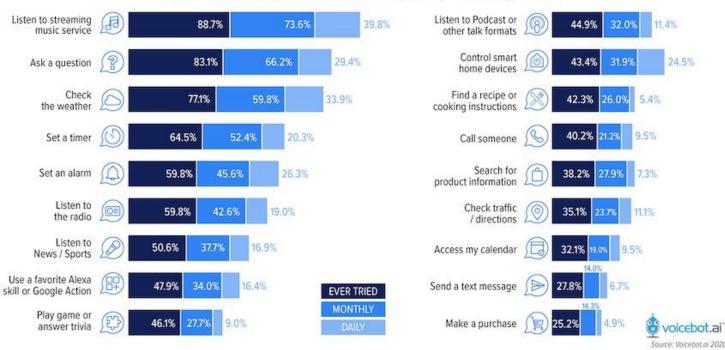
Smart Speaker Adoption

- People really use them
 - early adopters more intensively
 - correlated with phone assistant usage
- Many people have more than one

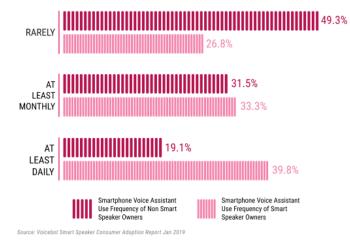
Where Consumers Have Smart Speakers in 2020



Smart Speaker Use Case Frequency January 2020

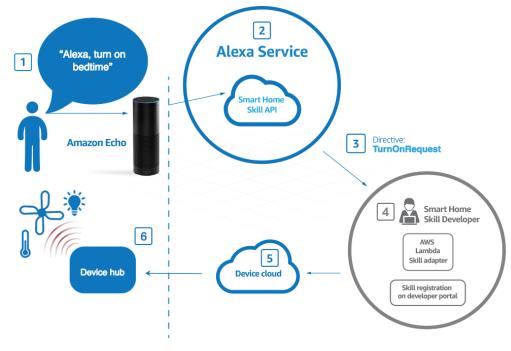


Voice Assistant Use Frequency on Smartphones by Smart Speaker Ownership



How they work

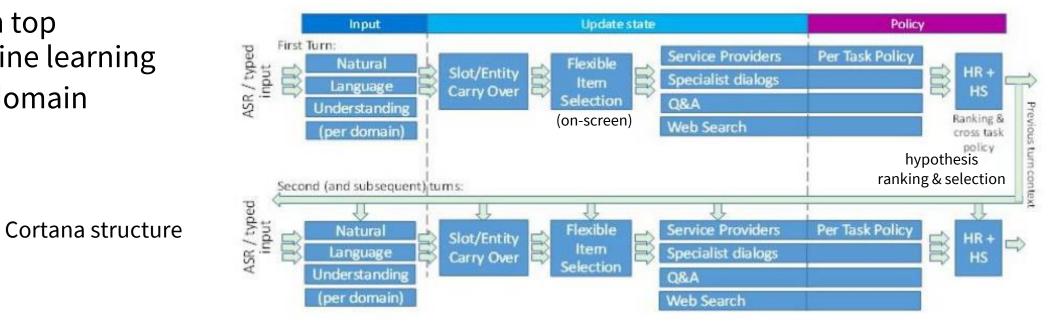
- Device listens for wake word
 - after the wake word, everything is processed in vendor's cloud service
 - raw audio is sent to vendor
 - follow-up mode no wake word needed for follow-up questions (device listens for 5-10sec after replying)
 - privacy concerns
- Intents designed for each domain
 - NLU trained on examples
 - DM + NLG handcrafted
 - extensible by 3rd parties (Skills/Apps)
- No incremental processing



Home / Office Network

How they work

- NLU includes domain detection
 - "web" domain as fallback
- Multiple NLU analyses (ambiguous domain)
 - resolved in context (hypothesis ranking)
- State tracker & coreference
 - Rules on top of machine learning
 - All per-domain



Why they are cool

- ASR actually impressive
 - NLU often compensates for problems
- Range of tasks is wide & useful
- 1st really large-scale dialogue system deployment ever
 - not just a novelty
 - actually boosted voice usage in other areas (phone, car etc.)

Assistants & Accents

https://youtu.be/gNx0huL9qsQ?t=41

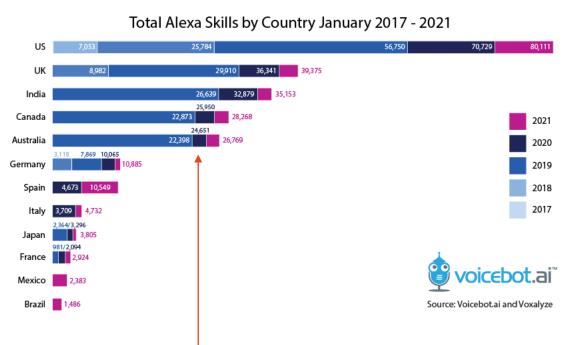
Why they are not so cool

- Still handcrafted to a large part
 - conversational architects are a thing now
- Not very dialogue-y
 - mostly just one turn, rarely more than a few
- Language limitations
 - only available in a few major languages (En, Zh, Jp, De, Es, Fr, Kr [...])
- ASR still struggling sometimes
 - noise + accents + kids
 - not that far-field
 - helped a lot by NLU / domain knowledge

https://youtu.be/CYvFxs32zvQ?t=65

Adding Skills/Apps

- Additional functionality by 3rd party developers
 - API/IDEs provided by vendors see next time!
 - enabled on demand (similar to installing phone apps)
- Not 1st-class citizens
 - need to be invoked specially
 - Alexa, tell Pizza Hut to place an order
 - Alexa, ask Uber to get me a car
- There's thousands of them
 - many companies have a skill
 - many specific inventions
 - finance, fitness, food, games & trivia ...
 - much less used than the default ones
 - new skills aren't growing as fast as they used to

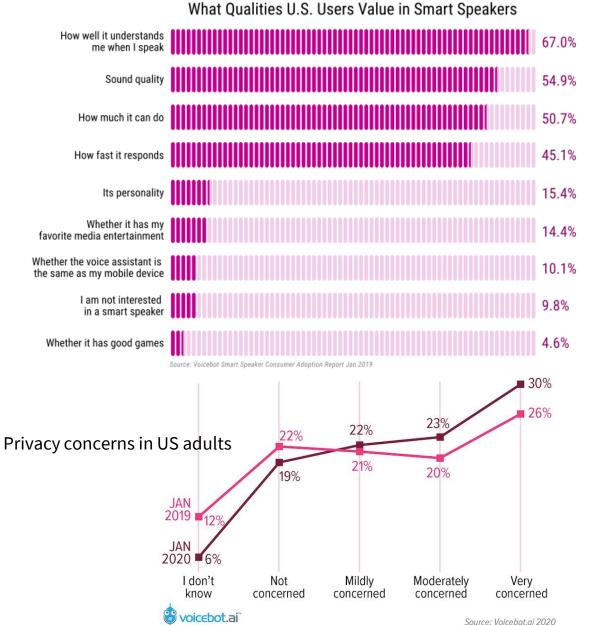


https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/

What people care about in smart speakers

Understanding, features, speed

- personality / dialogue not so much
- 3rd party apps not so popular (should work out-of-the-box)
- commerce not so popular, but growing
- QA: music, news, movies
- Privacy concerns don't stop people from buying/using smart speakers
 - privacy-conscious 16% less likely to own one



Question answering

- integral & important part of assistants
 - broadest domain available, apart from web search
- QA is not the same as web search
 - QA needs a specific, unambiguous answer, typically a (named) entity
 - person, object, location [...]
 - ~ factoid questions
 - Needs to be within inference capabilities of the system

Who is the president of Germany? How high is the Empire State Building?

X

Who is the best rapper? Who will become the next U.S. president? How much faster is a cheetah than an elephant?

Web search

- Given a query, find best-matching **documents**
 - Over unstructured/semi-structured data (e.g. HTML)
- Basic search
 - Candidates: find matching word occurrences in index
 - Reranking: many features
 - Location of words (body, title, links)
 - Frequency of words (TF-IDF \rightarrow)
 - Word proximity
 - PageRank weighing links to documents/webpages (how many, from where)
 - 2nd level: personalized reranking
- Query reformulation & suggestion

QA approaches

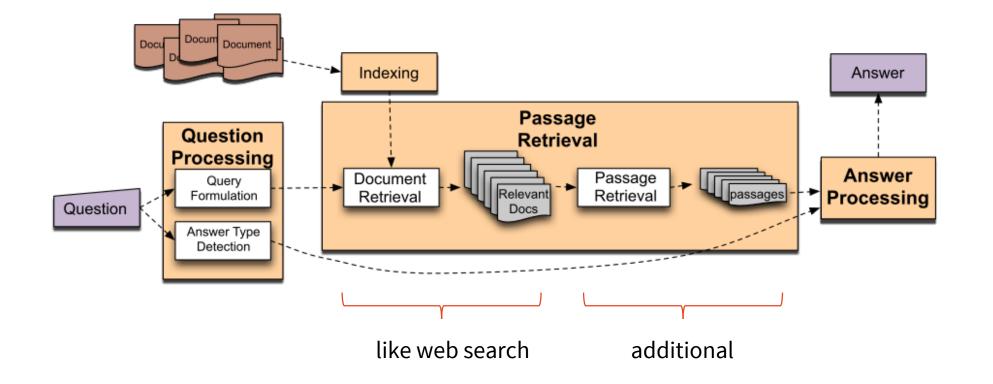
Information Retrieval

- Basically improved web search
- IR + phrase extraction
 - getting not just relevant documents, but specific phrases within them

Knowledge Graphs

- KGs storage of *structured* information
- 1) Semantic parsing of the query
- 2) Mapping to KG(s)
- Hybrid (IBM Watson, probably most other commercial systems)
 - candidates from IR
 - reranking using KGs/semantic information

IR-based QA Pipeline

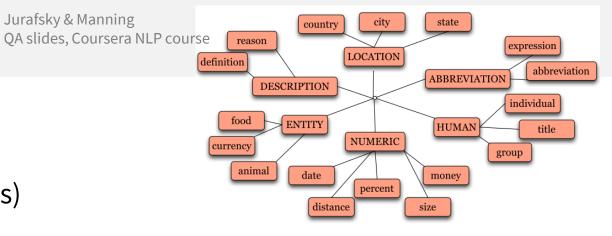


from Jurafsky & Manning QA slides, Coursera NLP course

Question Processing

Answer type detection

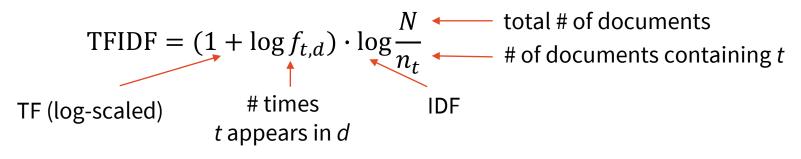
- what kind of entity are we looking for?
- rules / machine learning (with rules as features)
- rules: regexes
 - headword = word right after wh-word
- Named entity recognition
- IR Query formulation keyword selection
 - ignore stop words (*the, a, in*)
 - prioritize important words (named entities)
 - stemming (remove inflection)
- Question type classification definition, math...
- Focus detection question words to replace with answer
- Relation extraction relations between entities in question
 - more for KGs, but can be used for ranking here



Who is the [...] <u>composer/football player</u> [...] Which <u>city</u> is the largest [...]

IR Document Retrieval

- Candidates find matching words in index (same as web search)
- Weighting
 - Frequency: TF-IDF (term frequency-inverse document frequency)
 - TF document more relevant if term is frequent in it
 - IDF document more relevant if term only appears in few other documents



- this is just one of many variants
- Other metrics **BM25** more advanced smoothing, heeds document length
- Proximity: also using n-grams in place of words

IR Passage Retrieval

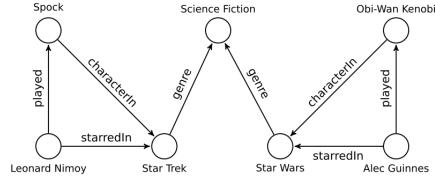
- Passage **segmentation** split document into ~paragraphs
 - anything short enough will do
- Passage **ranking** typically machine learning based on:
 - named entities & their type (matching answer type?)
 - # query words contained
 - query words proximity
 - rank of the document containing passage

IR Answer Extraction

- **NER on passages** looking for the right answer type
- 1 entity found \rightarrow done
- More entities present → needs **another ranking**, based on:
 - answer type match
 - distance from query keywords in passage
 - novelty factor not contained in query
 - position in sentence
 - semantic parse / relation
 - passage source rank/reliability

Knowledge Graphs

- Large repositories of structured, linked information
 - entities (nodes) + relations (edges)
 - typed (for both)
 - entity/relation types form an **ontology** (itself a similar graph)
- Open KGs (millions of entities, billions of relations)
 - Freebase (freely editable, many sources, bought by Google & shut down)
 - DBPedia (based on Wikipedia)
 - Wikidata (part of Wikipedia project, freely editable)
 - Yago (Wikipedia + WordNet + GeoNames)
 - NELL (learning from raw texts)
- Commercial KGs: Google KG, Microsoft Satori, Facebook Entity Graph
 - domain specific: Amazon products, Domino's pizza [...]



from Jens Lehman's QA keynote

RDF Representation

- RDF = Resource Description Framework
 - Most popular KG representation
 - Wikidata different format but accessible as RDF
- **Triples**: <subject, predicate, object>
 - predicate = relation
 - subject, object = entities
 - can also include relation confidence (if extracted automatically)
- Entities & relations typically represented by URI (not always)
 - objects can also be constants (string, number)

subject:Leonard Nimoypredicate:playedobject:Spock[confidence:0.993]

SPARQL

- Query language over RDF databases
 - relatively efficient
 - can query multiple connected triples (via ?variables)
- can be used directly
 - if you know the domain/application
- QA need to map user question to this

Wikidata: largest cities with female mayors

https://query.wikidata.org/

```
SELECT DISTINCT ?city ?cityLabel ?mayor ?mayorLabel
WHERE
 BIND (wd:Q6581072 AS ?sex)
 BIND (wd:Q515 AS ?c)
   ?city wdt:P31/wdt:P279* ?c . # find instances of subclasses of city
   ?citv p:P6 ?statement .
                                       # with a P6 (head of government) statement
   ?statement ps:P6 ?mayor .
                                       # ... that has the value ?mayor
                                # ... where the ?mayor has P21 (sex or gender) female
   ?mayor wdt:P21 ?sex .
   FILTER NOT EXISTS { ?statement pg:P582 ?x } # ... but the statement has no P582 (end date) qualifier
   # Now select the population value of the ?city
   # (wdt: properties use only statements of "preferred" rank if any, usually meaning "current population")
   ?city wdt:P1082 ?population .
   # Optionally, find English labels for city and mayor:
   SERVICE wikibase:label {
       bd:serviceParam wikibase:language "[AUTO LANGUAGE], en" .
```

ORDER BY DESC(?population)

• or use IR-based methods instead

NPFL123 L4 2021

KG Retrieval

- Problem: **synonymy** many ways to ask the same question
 - RDF relations have a specific surface form (not just *wd:1234*)
 - needs normalization/lexical mapping/usage of synonyms
 - WordNet expansion
 - stemming/lemmatization
 - multiple labels for entities/relations
 - string similarity/word embeddings

Problem: ambiguity

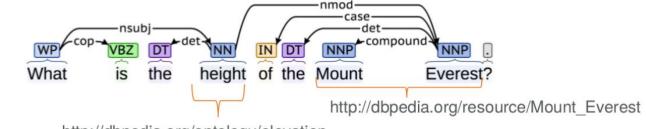
- needs entity/relation disambiguation/grounding/linking (to KG-compatible URIs)
- context used to disambiguate (neighbour words, syntax, parts-of-speech)
- KG itself used closest/semantically related entities

How fast do jaguars run? What is a top speed of a jaguar?

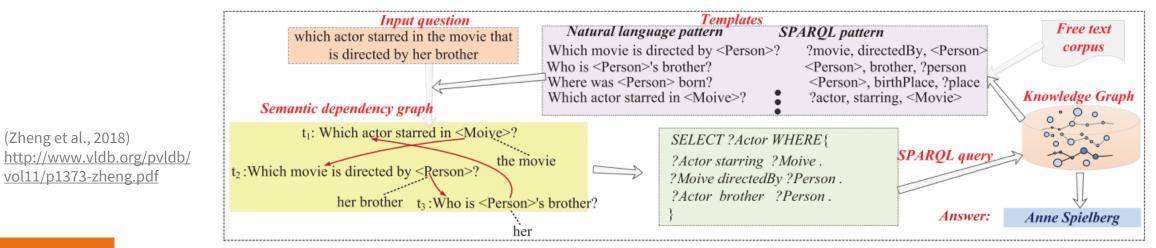
How fast is a Jaquar [I-Pace]?

KG Retrieval

- Semantic parsing can be used for query normalization
- Dependencies help decompose complex questions
 - Doesn't have to be syntactic dependencies
 - Template mapping: map simple question patterns that have SPARQL equivalents



http://dbpedia.org/ontology/elevation



from Jens Lehmann's QA keynote

KG Maintenance

- Information needs to be up-to-date
- Deduplication
- Ontology changes
 - need to version ontologies (and data) (for new/split/merged entity & relation types)
- Integrating multiple KGs
 - larger world knowledge coverage
 - company suppliers, mergers
 - → ontology bridging/mapping needed



"Basically, we're all trying to say the same thing." http://dit.unitn.it/~accord/RelatedWork/Matching/Noy-MappingAlignment-SSSW-05.pdf

from Alex Marin's KG QA slides

Ontology mapping

- Mismatch types
 - different labels (easiest)
 - same term, different thing & vice-versa
 - different modelling approaches (e.g. subclass or property?)
 - different granularity (more/less subclasses)
- Mappings
 - handcrafted (best results, but expensive)
 - rule-based map into a common ontology
 - string distances, WordNet
 - graph-based compare ontology structure
 - machine learning

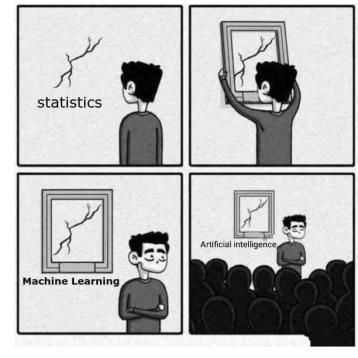
Machine Learning (Grossly Oversimplified)

ML is basically function approximation

- function: data (features) → labels
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)

training/learning = adjusting function parameters to minimize error

- **supervised** learning = based on data + labels given in advance
- reinforcement learning = based on exploration & rewards given online



https://towardsdatascience.com/ no-machine-learning-is-not-just-glorifiedstatistics-26d3952234e3

Machine Learning (Grossly Oversimplified)

- training- gradient descent methods
 - minimizing a cost function

 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast do we go (needs to be tuned)
- gradient typically computed over **mini-batches**
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not so slow as computing over whole data
 - stochastic gradient descent

NPFL123 L4 2021

- improvements: AdaGrad, Adam [...]
 - cleverly adjusting the learning rate

0.5 0.4

0.8 0.7

0.6

 $J(\theta_0, \theta_1)$

Summary

- Virtual assistants/smart speakers are booming
 - large variety of tasks, interconnected
 - most part of the processing happens online
 - impressive ASR, typically handcrafted dialogue policy, NLG
- Question answering **factoids**
 - a large part of assistants' appeal, useful if integrated with tasks
 - IR approaches: word-based document retrieval, passage extraction, ranking
 - **TF-IDF** & co. for retrieval, answer type selection
 - KG approach: semantic parsing & mapping to SPARQL queries
 - **RDF** triple representations
- Machine learning
 - finding the right function parameters by following cost function gradients
 - have a look at http://jalammar.github.io/visual-interactive-guide-basics-neural-networks/

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get the slides here:

http://ufal.cz/npfl123

References/Further:

- Dan Jurafsky & Chris Manning's slides at Stanford/Coursera: <u>https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html</u>
- Alex Marin's slides at Uni Washington: https://hao-fang.github.io/ee596_spr2018/
- Anton Leuski's slides at UCSC: <u>http://projects.ict.usc.edu/nld/cs599s13/</u>
- VoiceBot smart speaker report: <u>https://voicebot.ai/smart-speaker-consumer-adoption-report-2019/</u>
- Jens Lehmann's keynote: <u>http://jens-lehmann.org/files/2017/fqas_keynote.pdf</u>
- Wikipedia pages of the individual KGs, assistants + <u>Smart_speaker</u>, <u>Okapi_BM25</u>, <u>TF-IDF</u>

Next week: Lab questions 9am Lab assignment 9:50 Lecture 10:40