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End-to-end dialogue systems

• End-to-end = represent the whole system as one neural net
• sometimes, just some of the components can be joined

• e.g. just NLU + tracker + policy, NLG excluded

• Pros & cons:
• Traditional architecture – separate components:

• more flexible (replace one, keep the rest)

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• explainability

• End-to-end:
• joint optimization by backprop

• if fully differentiable

• still can work via RL (with supervised initialization)

• architectures still decompose into (some of) original DS components
• and often still need DA-level annotation 2NPFL099 L9 2024



Training end-to-end systems

• Supervised
• sometimes components still trained separately

• e.g. hard knowledge base lookup

• sometimes all in one

• can’t learn from users

• problems with train-test mismatch

• RL
• can learn from users, can learn all-in-one

• doesn’t work great if done on word-level
• RL won’t care about fluency/naturalness 

if you only reward task accuracy

• → avoid word level RL / use fluency rewards / mix in supervised
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https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-
artificial-intelligence-ai-chatbot-new-language-research-openai-google-
a7869706.html 

https://towardsdatascience.com/the-truth-behind-
facebook-ai-inventing-a-new-language-37c5d680e5a7
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Supervised with component nets

• “seq2seq augmented with history (tracker) & DB”

• end-to-end, but has components
• LSTM “intent network”/encoder (latent intents)

• CNN+RNN belief tracker (prob. dist. over slot values)
• lexicalized + delexicalized CNN features

• turn-level RNN (output is used in next turn hidden state)

• trained separately from the rest of the system

• DB: rule-based, takes most probable belief values
• boolean vector of selected items

• compressed to 6-bin 1-hot (no match, 1 match… >5 matches)

• 1 matching item chosen at random & kept for lexicalization

• Feed-forward policy (latent action)

• LSTM generator
• conditioned on policy, outputs delexicalized (lexicalization as post-processing)

4

1-layer with tanh

LSTM encoder
(latent intent representation)

slot value prob. dist. CNN

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042 

RNN
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RNN + CNN + FC | seq gen + classif

https://www.aclweb.org/anthology/E17-1042


Sequicity: Two-stage Copy Net – fully seq2seq-based

• less hierarchy, simpler architecture
• no explicit system action – direct to words

• still explicit dialogue state

• KB is external (as in most systems)

• seq2seq (LSTM) + copy (pointer-generator):
• encode: previous dialogue state

+ prev. system response 
+ current user input

• decode new state first
• attend over whole encoder

• decode system output (delexicalized)
• attend over state only 

+ use KB (one-hot vector added to each generator input)
• KB: 0/1/more results – vector of length 3
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attend over state only,
add KB vector to inputs,
delexicalized

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133 
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state

previous 
system

response
current

user input

RNN + copy | seq gen

https://www.aclweb.org/anthology/P18-1133


“Hello, it’s GPT-2 – How can I help?”

• Simple adaptation of the GPT-2 pretrained LM
• only model change: system/user embeddings

• added to Transformer positional embs. & word embs.

• GPT-2 is decoder-only: encoding = “force-decoding”
• pass input through all layers but ignore the softmax next-token prediction, feed our own tokens

• training to generate + classify utterances (good vs. random), all supervised

• no DB & belief tracking – gold-standard belief & DB used, no updates (see → →)
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(Budzianowski & Vulić, 2019)
https://www.aclweb.org/anthology/D19-5602 

this is the actually decoded part

simple encoding: 
domain-slot-value[-slot-value…] DB result entry tokens

delexicalized generation 
(autoregressive)

pre-LM | seq gen

“encoding”
(force-decoding)
- our inputs fed in
- outputs ignored

system/user 
embeddings

https://www.aclweb.org/anthology/D19-5602


Real stuff with GPT-2:

• Sequicity + GPT-2:
1. encode context & decode belief state

2. query DB

3. encode DB results & decode response

• history, state, DB results, system action 
– all recast as sequence

• finetuning on dialogue datasets

• extensions:
• specific user/system embeddings (NeuralPipeline)

• multi-task training: detect fake vs. real belief/response (SOLOIST, AuGPT)

• decode explicit system actions (SimpleTOD, UBAR)

• context includes dialogue states (UBAR)

• data augmentation via backtranslation (AuGPT)

7NPFL099 L9 2024 (Yang et al., 2021)  http://arxiv.org/abs/2012.03539

SimpleTOD, NeuralPipeline, UBAR
SOLOIST,  AuGPT

pre-LM | seq gen (+classif)

(Peng et al., 2021) https://aclanthology.org/2021.tacl-1.49/ (Hosseini-Asl et al., 2020)  http://arxiv.org/abs/2005.00796 

(Ham et al., 2020) https://aclanthology.org/2020.acl-main.54/ 

(Kulhánek et al., 2021) http://arxiv.org/abs/2102.05126 

=force-decode (ignore softmax, feed own tokens)

http://arxiv.org/abs/2012.03539
https://aclanthology.org/2021.tacl-1.49/
http://arxiv.org/abs/2005.00796
https://aclanthology.org/2020.acl-main.54/
http://arxiv.org/abs/2102.05126


GPT-2 two-stage decoding example
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Transformer 
layers

input tokens

output tokens

(output ignored) (out. ign.)

embeddings

user input prev. state toks. DB output previous output tokens

generate state

DB queried here

generate system output

pre-LM | seq gen
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SOLOIST/AuGPT: Consistency task

• Additional training task – generating & classifying at the same time
• additional classification layer on top of last decoder step logits

• incurs additional loss, added to generation loss

• Aim: robustness – detecting problems
• ½ data artificially corrupted – state or target response don’t fit context

• SOLOIST: corrupted state sampled randomly

• AuGPT: corrupted state sampled from the same domain – harder!
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consistent?
i want a cheap italian restaurant { price range = cheap , food = Italian } ok which area ?

context state response

new in AuGPT

SOLOIST
bad responsei want a cheap Italian restaurant { price range = cheap , food = Italian } thanks, goodbye !
bad statei want a cheap italian restaurant { destination = Cambridge , leave at = 19:00 } ok which area ?
bad state (same domain)i want a cheap italian restaurant { area = north , food = Chinese } ok which area ?

pre-LM | seq gen +classif



MinTL: Diff dialogue states

• 2-step decoding, same as ↑
• based on T5 or BART here

• explicit 2 decoders 
(for state, for response)

• “Levenshtein states”
• don’t decode full state each time

• just decode a diff 
(“Levenshtein distance from previous”)

• better consistency over dialogue
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encode previous state & context

decode diffs

obtain diffs from state annotation

update state based on
decoded diff

DB queried based on updated state
response decoder starting token = # of DB results

(Lin et al., 2020)
https://aclanthology.org/2020.emnlp-main.273/ 

pre-LM | seq gen

https://aclanthology.org/2020.emnlp-main.273/


Retrieval-augmented generation

• Same idea as previous, but use examples for inspiration
• retrieve similar example from training data & pass it to response decoder as a “hint”

• 𝛼-blending: with prob. 𝛼, replace hint with true response to promote copying

• Example retrieval based on system action annotation
• positive examples: same action, negative: different actions

• Joint model for example retrieval & state + response decoding
• T5 with 2 decoders (state vs. response) + duplicate last 2 encoder layers for retrieval
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(Nekvinda & Dušek, 2022)
https://aclanthology.org/2022.sigdial-1.29 

pre-LM | select + seq gen

https://aclanthology.org/2022.sigdial-1.29


LLM-based dialogue

• “Sequicity but with LLM prompting”
• same idea: context → state → DB → response

• state tracking & response generation done with LLMs

• additional LLM step needed: domain detection
• tracking & response prompts use domain descriptions

• “end-to-end” dubious – same LLM, multiple runs

• Zero-shot/few-shot (opt. ~10 ex./domain + retrieval)

• Works, but worse than finetuning (esp. on state tracking)
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(Hudeček & Dušek, 2023)
https://aclanthology.org/2023.sigdial-1.21 

context 
encoder

FAISS
context store 

(examples)

prompt 
creation

I’m looking for a 
five-star hotel in 

the north

LLM domain 
detection

hotels

DB
4 results

LLM state 
tracker

stars: 5
area:north

LLM response 
generation

We’ve got 4 hotels 
available

Definition: Capture values from a 
conversation about hotels. Capture 
pairs “entity:value” separated by colon 
and no spaces in between. Separate 
the “entity:value” pairs by hyphens.
Values that should be captured are: 
- “pricerange”: the price of the hotel
- “area”: the location of the hotel
…
--- Example 1 ---
… 
---
Assistant: “Hello, how can I help you?”
…
Customer: “I am looking for a five-star 
hotel in the north”

instruction

domain
description

examples

dial. history

user input

https://aclanthology.org/2023.sigdial-1.21


LLM-based dialogue, better

• You can extend ↑ to make it work better:
• Adding “policy skeletons” (=dialogue snippet examples to show behavior)

• Changing the state representation & using code generation
+ supporting chitchat
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(Zhang et al., 2023)
https://aclanthology.org/2023.findings-emnlp.891 

(Stricker & Paroubek, 2024)
https://aclanthology.org/2024.sigdial-1.50 

https://aclanthology.org/2023.findings-emnlp.891
https://aclanthology.org/2024.sigdial-1.50


LLM based dialogue, with more data

• You can use existing dialogues & additional data to improve 
• generate annotation via code LLM + finetune

• use LLMs for unstructured queries (if e.g. FAQ page exists)
• SQL + “answer” operator for any question answering, standard retrieval + LLM processing
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prompt LLM to predict 
dialogue state as API call prompt LLM to extract 

system dialogue acts
(King & Flanigan, 2024)
http://arxiv.org/abs/2404.15219 

(Liu et al., 2024)
https://aclanthology.org/2024.findings-naacl.283 

http://arxiv.org/abs/2404.15219
https://aclanthology.org/2024.findings-naacl.283


Few-shot dialogue generation

• Domain transfer:
• source domain training dialogues

• target domain “seed responses”
with annotation

• encoding all into latent space
• keeping response & annotation encoding close

• keeping context & response encoding close

• decoder loss + matching loss

• encoder: HRE (hierarchical RNN)

• decoder: copy RNN (with sentinel)
• “copy unless attention points to sentinel” (see Mem2Seq)

• DB queries & results treated as responses/inputs
• DB & user part of environment

responses annotations

dialogue contexts
(source domain only)

(target domain only)(source & target domains)

resp. encoder
resp.

decoder
latent space

context
encoder

training on source domain

dialogue context responsematching loss

matching loss

training on target domain

turn-level encoder

annotation response

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001 

RNN + copy | seq gen

http://aclweb.org/anthology/W18-5001


Latent Action RL

• Making system actions latent, learning them implicitly

• Like a VAE, but discrete latent space here (𝑀 𝑘-way variables)
• using Gumbel-Softmax trick for backpropagation

• using Full ELBO (KL vs. prior network)
or “Lite ELBO” (KL vs. uniform 1/𝑘)

• RL over latent actions, not words
• avoids producing disfluent language

• corpus-based RL – “faking it ” on supervised data
• generate outputs, but use original contexts

from a dialogue from training data

• success & RL updates based on generated responses

• ignores DB & belief tracking
• takes gold annotation from data (assumes external model for this)
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discrete latent 
action set

(Zhao et al., 2019)
https://www.aclweb.org/anthology/N19-1123 

RNN | seq gen

https://www.aclweb.org/anthology/N19-1123


LAVA: Latent Actions with VAE pretraining

• kinda combination of two previous

• discrete latent space for actions

• multi-step training scenario:
1) autoencode responses into latent space

2) supervised training for response generation 
via the latent space

3) RL over the latent actions
• same “fake RL” as previous

• options to join autoencoding & response generation

a) KL loss – don’t go too far from autoencoding in latent space

b) multi-task training (go back to autoencoding once in a while)

• again, assumes gold state & DB
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(Lubis et al., 2020)
https://aclanthology.org/2020.coling-main.41/ 

RNN | seq gen
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https://aclanthology.org/2020.coling-main.41/


Better RL: HDNO & JOUST

• HDNO: 2-level hierarchical RL
• top level: (latent) actions

bottom level: words

• LM rewards on word level (for fluency)

• separate updates on both levels 
(avoid aiming at a moving target)

• “fake” corpus-based RL (as previous)

• JOUST: real RL with a user simulator
• system & sim. share architecture

• joint context encoder

• system: additional state tracker

• interaction on utterance level

• supervised pretraining
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1 linear layer

Gaussian (latent)

oracle
(from gold 
annotation)

all LSTMs

(Tseng et al., 2020) https://aclanthology.org/2021.acl-long.13 

(Wang et al., 2021) http://arxiv.org/abs/2006.06814 

RNN | seq gen

https://aclanthology.org/2021.acl-long.13
http://arxiv.org/abs/2006.06814


Hybrid Code Networks

• partially handcrafted, designed for little training data
• with Alexa-type assistants in mind

• Utterance representations:
• bag-of-words binary vector

• average of word embeddings

• Entity extraction & tracking
• domain-specific NER

• handcrafted tracking

• returns action mask
• permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)

• return (optional) handcrafted context features (various flags)

• LSTM state tracker (output retained for next turn)

• i.e. no explicit state tracking, doesn’t need state tracking annotation

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274 

handcrafteddomain-specific NER

permitted actions in this timestep
(masks out any illogical steps)

various handcrafted flags

turn-level LSTM tracker
(LSTM hidden = “dialogue state”)

RNN + FC + rule | classif

http://arxiv.org/abs/1702.03274


Hybrid Code Networks

• feed-forward policy – produces probability distribution over actions
• mask applied to outputs & renormalized → choosing action = output template

• handcrafted fill-in for entities
• takes features from ent. extraction

• ~learned part is fully delexicalized

• actions may trigger API calls
• APIs can return feats for next step

• training – supervised & RL:
• SL: beats a rule-based system 

with just 30 training dialogues

• RL: REINFORCE with baseline

• RL & SL can be interleaved

• extensions: better input than binary & averaged embeddings
20

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162 

feed-forward
policy

handcrafted 
entity fill-inactions passed 

to next timestep

RNN + FC + rule | classif

https://arxiv.org/abs/1811.12148
http://arxiv.org/abs/1907.12162


whole dialogue history
(except last user input)

sum of BoW 
embeddings

A

last user input

R

linear transform

matrix product
(a.k.a. attention)

R1

R2

R3

response candidates

Memory networks

• not a full dialogue model,
just ranker of candidate replies

• no explicit modules

• based on attention over history
• sum of bag-of-words embeddings

• added features (user/system, turn no.)

• weighted match against
last user input (dot + softmax)

• linear transformation to produce
next-level input

• last input matched (dot + softmax)
against a pool of possible responses
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single step of the loop

multiple steps

(Sukhbaatar et al., 2015) http://arxiv.org/abs/1503.08895 
(Bordes et al., 2017) http://arxiv.org/abs/1605.07683 

𝑜 = 𝑅

𝑖

𝑝𝑖𝑚𝑖

𝑝𝑖 = softmax 𝑞T𝑚𝑖

FC + att | classif

http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1605.07683


last user input

dialogue 
history 

+ 
KB

Mem2Seq: Memory nets + pointer-generator 
  = soft DB lookups directly in the model

• “standard” MemNN encoder:
• special memory:

• token-level dialogue history
(whole history concatenated, no hierarchy)
• with added turn numbers & user/system flags

• DB tuples (sums of subject-relation-object)

• “sentinel” (special token)

• decoder: MemNN over GRU
• GRU state is MemNN initial query

• last level attention is copy pointer

• if copy pointer points at sentinel,
generate from vocabulary
• copies whenever it can

• vocabulary distribution comes from
1st level of memory + GRU state
• linear transform + softmax 22

(Madotto et al., 2018)   https://www.aclweb.org/anthology/P18-1136 
encoder

decoder (word level)

GRU GRU

GRU hidden state is the 
initial MemNN query

standard MemNN
(see previous slide)

state embedding 
(1st decoder GRU input)

previous 
generated 

word

𝑜𝐾 = ℎ0

vocab softmax generated 
from 1st memory hop

𝑃vocab ෝ𝑦𝑡 = softmax(𝑊1[ℎ𝑡, 𝑜
1])

pointer softmax is 
last memory level attention 

𝑃𝑝𝑡𝑟 = 𝑝𝑡
𝐾

only if 𝑃𝑝𝑡𝑟  points

at sentinel, 
𝑃vocab is used

token-level 
dialogue history

FC + att + RNN + copy | seq gen

https://www.aclweb.org/anthology/P18-1136


attention weights
at individual 
word generation steps

Mem2Seq visualization
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dialogue 
history

DB

sentinel
“don’t copy, generate”

values
(these get output)

subject-relation-object
(this gets embedded)

steps correspond 
to generated words 

from the sentence on top

away and through 
are newly generated

270_altaire_walk
and 4_miles
are copied from DB

the and closest
are copied from history

FC + att + RNN + copy | seq gen

Note: some DB entries were omitted for readability

(Madotto et al., 2018)   
https://www.aclweb.org/anthology/P18-1136 

https://www.aclweb.org/anthology/P18-1136


Summary

• End-to-end = single network for NLU/tracker + DM + NLG
• joint training, may have distinct components & need dialogue state annotation

• Hybrid Code Nets – partially handcrafted, but end-to-end

• Two-stage copy net –2-step decoding: dialogue state, then response

• Sequicity – LSTM seq2seq

• GPT-2-based systems – same idea, just with pretrained LMs

• extensions: retrieval-augmented, LLM prompting

• Discrete latent action space – learning w/o action annotation

• RL optimization
• corpus-based “fake RL” on training data (no simulator needed)

• without NLG (over actions) or hierarchical

• Mem2Seq: Soft DB lookups – making the whole system differentiable

24NPFL099 L9 2024



Thanks

Contact us: 
 https://ufaldsg.slack.com/ 
 odusek@ufal.mff.cuni.cz
 Skype/Zoom/Troja (by agreement) 

Get these slides here:

 http://ufal.cz/npfl099  

References/Inspiration/Further:

• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267 

• Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems: 
http://dad.uni-bielefeld.de/index.php/dad/article/view/3690 
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Labs in 10 mins

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
https://arxiv.org/abs/1809.08267
http://dad.uni-bielefeld.de/index.php/dad/article/view/3690
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