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NLG in a 
narrow 
sense

Natural Language Generation

= task of automatically producing text in e.g. English (or any other language)

• covers many subtasks:
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task input output
machine translation text in language A text in language B

summarization long text text summary

question answering question answer

image captioning image image caption

story generation topic story

paraphrasing text paraphrased text

data-to-text generation structured data description of the data

dialogue response generation dialogue act system response
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NLG Objectives

•general NLG objective: 

•additional NLG desired properties:
• variation (avoiding repetitiveness)
• simplicity (saying only what is intended)
•adaptability (conditioning on e.g. user model)
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given input & communication goal
create accurate + natural, well-formed, human-like text
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NLG in Dialogue Systems

• in the context of dialogue systems:
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“what the system wants to say” “actually saying it”

NLG:   system action → system response

• system action  
• selected by the dialogue manager 
• may be conditioned on:

• dialogue state
• dialogue history (→ referring expressions, avoiding repetition)
• user model (→ “user wants short answers”)



NLG Subtasks (Textbook Pipeline)

5

inputs

content plan

sentence plan

text

surface realization

sentence planning / microplanning

content planning

deciding 
what to say

deciding 
how to say it

selecting content according 
to a communication goal
(typically handled by dialogue 
manager in dialogue systems)

organizing content into sentences, 
merging sentences, 
choosing referring expressions

linearization according to 
grammar, word order, 
morphology

= how proper NLG had to be done before neural approaches
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NLG Subtasks (Textbook Pipeline)
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(Zdeněk K.̓s PhD Thesis, Figure 2.4)
https://dspace.cuni.cz/handle/20.500.11956/193018

Example: classical NLG pipeline

https://dspace.cuni.cz/handle/20.500.11956/193018


NLG Basic Approaches

• hand-written prompts (“canned text”)
• most trivial – hard-coded, no variation
• doesnʼt scale (good for DTMF phone systems)

• templates (“fill in blanks”)
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• NNs made it work much better

7NPFL099 L8 2024



Template-based NLG

•most common in commercial dialogue systems
• simple, straightforward, reliable

• custom-tailored for the domain
• complete control of the generated content

• lacks generality and variation
• difficult to maintain, expensive to scale up

• can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases
• template coverage/selection rules (heuristics, random variation)

• can be a good starting point for ML algorithms
• post-editing / reranking the templates with neural language models
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Template-based NLG – Examples
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(Facebook, 2015)

(Facebook, 2019)

inflection rules

Example: Facebook



Grammar / Rule-based NLG

•based on top of linguistic theories
• state-of-the-art research systems until NLG the arrival of NNs
• rules for building tree-like structures

→ rules for tree linearization
• reliable, more natural than templates
• takes a lot of effort, naturalness still 

not human-level 
• see NPFL123 for more details
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(Mille et al., 2019)
https://aclanthology.org/W19-8659.pdf

https://aclanthology.org/W19-8659.pdf


Neural NLG

• learning the task from the data
• sequence-to-sequence generation
• fluency can match human-level, minimal hand-crafting
•not controllable (“black-box”),

semantic inaccuracies (omissions / hallucinations),
low diversity,
expensive data gathering,
expensive training,
expensive deployment
→ promising research area 😉
• getting better with larger models
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Seq2seq Generation

12

https://slds-lmu.github.io/seminar_nlp_ss20/natural-language-generation.html

decoder-only
• input sequence is prepended as a context, the decoder generates continuation
• pretrained Transformers (PLMs): GPT-2, all LLMs

encoder-decoder
• RNN: encoder updates the hidden state → decoder is initialized with the hidden state
• Transformer: encoder generates a sequence of hidden states → decoder attends to this sequence
• PLMs: BART, T5

• training vs. inference:
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https://slds-lmu.github.io/seminar_nlp_ss20/natural-language-generation.html


Decoding Algorithms

• for each time step t, the decoder outputs a probability distribution: P(yt| y1:t-1, X)
• how to use it?
• exact inference: find a sequence maximizing P(y1:T| X)

• not possible in practice (why? and is it our goal?)
• approximation algorithms

• greedy search
• beam search

• stochastic algorithms
• random sampling
• top-k sampling
• nucleus sampling (=top-p sampling)

(+ repetition penalty → decreasing probabilities of generated tokens)
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Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc 

Greedy search: always take the argmax
● does not necessarily produce the most probable sequence (why?)
● often produces dull responses

Example:

Context:            Try this cake. I baked it myself.
Optimal Response : This cake tastes great.
Greedy search:  This is okay.

many examples start with “This is”, 
no possibility to backtrack
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https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

Beam search: try k continuations of k hypotheses, keep k best 
● better approximation of the most probable sequence, bounded memory & time
● allows re-ranking generated outputs
● k=1 → greedy search

Reranking:

(Ondřejʼs PhD thesis, Fig. 7.7)
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
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https://huggingface.co/blog/how-to-generate


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 

Top-k sampling: choose top k options (~5-500), sample from them
● avoids the long tail of the distribution
● more diverse outputs
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https://huggingface.co/blog/how-to-generate


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

Top-p (nucleus) sampling: choose top options that cover  >= p probability mass (~0.9)
● can be viewed as “k” from top-k adapted according to the distribution shape
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https://huggingface.co/blog/how-to-generate


Decoding Algorithms
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https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html
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MAP 🫤 MBR 😊

Minimum Bayes Risk (MBR): Selecting the sequence most similar to other sequences 
= “consensus decoding”
● useful for minimizing pathological behavior, e.g. decoding an empty sequence.
● intractable → we need a sampling algorithm

○ epsilon sampling: sampling only tokens with a probability larger than epsilon
(Freitag et al., 2023)
https://aclanthology.org/2023.findings-emnlp.617

https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html
https://aclanthology.org/2023.findings-emnlp.617


RNN-based Approaches

• first neural approaches: ~2015
•TGen: standard LSTM with attention

• input: triples <intent, slot, value>, output: delexicalized text
• beam search & reranking

• RNNLM: special LSTM gate cells to control slot mentions

• mitigating the lack of training data for specific entities: 
delexicalization / copy mechanism
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(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008 

RNN |  seq gen + classif

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199 
http://arxiv.org/abs/1603.01232 
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(See et al., 2017) 
http://arxiv.org/abs/1704
.04368

https://aclweb.org/anthology/P16-2008
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368


• finetuning Transformer-based PLMs (decoder-only / enc-dec) 
• input: structured meaning representation, output: text

• similar to training RNNs, just starting from pretrained checkpoints
• more fluent than RNNs, implicit copying, can use multilingual models

Finetuning PLMs
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(Kale & Rastogi, 2020) 
https://www.aclweb.org/anthology/
2020.inlg-1.14 

(Liu et al., 2020)
http://arxiv.org/abs/2001.08210 

PLM |  seq gen

(Kasner & Dušek, 2020)   
https://aclanthology.org/2020.
webnlg-1.20/ 

(Harkous et al., 2020)
http://arxiv.org/abs/2004.06577 

https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.inlg-1.14
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2020.webnlg-1.20/
https://aclanthology.org/2020.webnlg-1.20/
http://arxiv.org/abs/2004.06577


Finetuning PLMs + Reranking

• goal: improving semantic accuracy
• classifying errors in model outputs with a 

classifier
• e.g., accurate / omission / repetition / 

hallucination / value error

• reranking: selecting the output with the 
fewest errors

• or regenerating the output (with error 
labels provided as an extra input)
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(Harkous et al., 2020)
http://arxiv.org/abs/2004.06577 

PLM |  seq gen + classif

(Ren and Liu, 2023)
http://arxiv.org/abs/2306.15933 

http://arxiv.org/abs/2004.06577
http://arxiv.org/abs/2306.15933


Finetuning PLMs + Templates

• goal: improving semantic accuracy + controllability

• concatenate simple templates and then use PLMs to make the text more fluent
• combines advantages of templates (controllability) and neural LMs (fluency)
•needs less data & generalizes to new domains
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(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.emnlp-main.527 

rule + PLM | seq gen

(Kasner & Dušek, 2022)
https://aclanthology.org/2022.acl-long.271/

(Xiang et al., 2022)
http://arxiv.org/abs/2210.04325

(PLMs can be also replaced with prompted GPT-3)

https://www.aclweb.org/anthology/2020.emnlp-main.527
https://aclanthology.org/2022.acl-long.271/
http://arxiv.org/abs/2210.04325


NLG with LLMs
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LLM | seq gen

https://www.boredpanda.com/chatgpt-memes/

• prompting instead of task-specific finetuning 
(see Lecture 4)

• for NLG, prompting competitive to finetuning, 
but different kinds of problems:
• variability in responses (“Here is the answer: 

(...)”, “As an AI language model (...)”
• prompt sensitivity
• semantic errors

• many issues with closed models: replicability, 
cost, data contamination

• more details in our new course NPFL140 (Large 
Language Models) in the summer term

(Yuan and Färber, 2023)
http://arxiv.org/abs/2307.14712

(Axelsson and Skantze, 2023)
http://arxiv.org/abs/2307.07312

https://ufal.mff.cuni.cz/courses/npfl140
http://arxiv.org/abs/2307.14712
http://arxiv.org/abs/2307.07312


NLG with LLMs LLM | seq gen
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• fluency much better than PLMs → evaluation 
needs to focus on semantic errors

• data contamination is a serious issue: need to 
evaluate on novel / non-public data

• can work with standard representations 
(JSON, CSV, ...) without finetuning

• open LLMs → better replicability (although not 
perfect transparency

• for NLG in dialog, overgenerate-and-rerank still 
helps

(Kasner and Dušek, 2024)
https://aclanthology.org/2024.inlg-main.48

(Ramirez et al., 2023)
https://aclanthology.org/2023.sigdial-1.32

https://aclanthology.org/2024.acl-long.651/
https://aclanthology.org/2023.sigdial-1.32


Rule-based NLG system with LLMs
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LLM + rule | seq gen(Warczynski et al., 2024)
https://aclanthology.org/2024.inlg-main.48

• instead of generating the output directly, we can use 
LLMs to generate the rules
• e.g. Python string templates

• fewer hallucinations, CPU-only inference
•only limited generalization to unseen data
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https://aclanthology.org/2024.inlg-main.48


Content Planning: Content Selection

• explicit content selection
•usually done by DM in dialogue systems
•needed for complex inputs, e.g. sports report generation

• records (team / entity / type / value) → summary
• content selection: pointer network

• still largely unsolved problem w.r.t. semantic accuracy

(Puduppully et al., 2019)
http://arxiv.org/abs/1809.00582 
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seq2seq + copy | seq gen

(Thomson & Reiter, 2022)
http://arxiv.org/abs/2108.05644
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http://arxiv.org/abs/1809.00582
http://arxiv.org/abs/2108.05644


Content Planning: Content Selection
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(Puduppully et al., 2019)
http://arxiv.org/abs/1809.00582 

source statistics 
(excerpt)

target textcontent plan 
(for the 1st sentence)

seq2seq + copy | seq gen

Example of NLG with content planning
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http://arxiv.org/abs/1809.00582


Content Planning: Ordering & Aggregation

• ordering the facts + aggregating them into 
sentences
• content already selected at this point
• can help the generator not to miss any facts
• for graphs with oriented edges:

• generating all possible content plans using DFS 
(possibly pruning unpromising branches) → 
re-ranking the plans using a feature-based classifier

• for a set of key-value pairs:
• using Conditional Random Field (CRF) for finding 

the optimal plan
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(Moryossef et al., 2019a,b) 
http://arxiv.org/abs/1904.03396
https://arxiv.org/pdf/1909.09986.pdf 

seq2seq + copy | seq gen

(Su et al., 2020) 
http://arxiv.org/abs/2108.13740
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http://arxiv.org/abs/1904.03396
https://arxiv.org/pdf/1909.09986.pdf
http://arxiv.org/abs/2108.13740


Realizing from Trees

• NLG with tree-shaped inputs
• simple case: discourse relations (discourse connectives, sentence splits) between 

individual fields
• much flatter than usual syntactic trees

• improvements to account for the input structure:
• constrained beam search decoding, tree-LSTM, self-training on synthetic data
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seq2seq + copy | seq gen(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220 
(Rao et al., 2019) https://www.aclweb.org/anthology/W19-8611/ 
(Li et al., 2021) https://aclanthology.org/2021.inlg-1.10 
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http://arxiv.org/abs/1906.07220
https://www.aclweb.org/anthology/W19-8611/
https://aclanthology.org/2021.inlg-1.10


Data Noise & Cleaning

•NLG errors are often caused by data errors
• ungrounded facts (← hallucinating)
• missing facts (← forgetting)
• domain mismatch
• noise (e.g. source instead of target)

• just 5% untranslated stuff kills an NMT system

• easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose
• crowdsourcing – workers forget/donʼt care

• cleaning improves situation a lot
• can be done semi-automatically up to a point

(Dušek et al., 2019)
https://arxiv.org/abs/1911.03905 

(Khayrallah & Koehn, 2018) 
https://www.aclweb.org/anthology/W18-2709 

(Wang, 2019) 
https://www.aclweb.org/anthology/W19-8639/ 
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https://arxiv.org/abs/1911.03905
https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W19-8639/


Summary

• NLG: system action → system response

• templates work pretty well

• seq2seq generation with finetuned PLMs 
• best among data-driven
• problems – hallucination, not enough diversity, needs lots of data

• prompting-based approaches with LLMs
• less effort than finetuning

• problems – hallucination, controllability, prompt sensitivity, model access

• mitigating problems: re-ranking, modularization, data cleaning
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Thanks

Contact us: 
https://ufaldsg.slack.com/ 
{kasner,odusek}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099  

References/Inspiration/Further:
• Reiter (2024). Natural Language Generation. https://link.springer.com/book/10.1007/978-3-031-68582-8 (paid-only access for now)
• Zdeněk's PhD thesis (2024): https://dspace.cuni.cz/handle/20.500.11956/193018 
• Sharma et al. (2022). Innovations in Neural Data-to-text Generation. https://arxiv.org/pdf/2207.12571.pdf
• Ondřej's PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf 
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation 

http://arxiv.org/abs/1703.09902 

Icons from https://www.flaticon.com/
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Next week: Dialogue 
Management (part 2)

Labs in 10 minutes
Assignment 4
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https://ufaldsg.slack.com/
http://ufal.cz/npfl099
https://link.springer.com/book/10.1007/978-3-031-68582-8
https://dspace.cuni.cz/handle/20.500.11956/193018
https://arxiv.org/pdf/2207.12571.pdf
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
http://arxiv.org/abs/1703.09902
https://www.flaticon.com/


RNN-based Approaches: RNNLM

•using enhanced LSTM cells (SC-LSTM)
• special gate to control slot mentions

• autoregressive generation 
• conditioned on DA represented as binary 

vector
• generating delexicalized texts

•domain adaptation
• replacing delexicalized slots
• very related domains only
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(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199 
http://arxiv.org/abs/1603.01232 

RNN |  seq gen

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232


Few-shot NLG with Pretrained LMs

• learning from very few (less than ~200) training examples
• GPT-2 with a copy mechanism

• LM fine-tuned, forced to copy inputs
• additional loss term for copying

• retrieving “prototypes” guiding the generator
• prototype: most similar exemplar according to BERT 

cosine similarity
• prototype concatenated with the input

• few-shot prompting
• prepending a few (~3) input-output examples as a context
• generating the output with GPT-2 XL
• no finetuning

(Chen et al., 2020)
https://www.aclweb.org/anthology/2
020.acl-main.18/ 
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RNN + PLM + copy | seq gen

(Keymanesh et al., 2022)
http://arxiv.org/abs/2205.11505

(Su et al., 2021)
http://arxiv.org/abs/2108.12516

https://www.aclweb.org/anthology/2020.acl-main.18/
https://www.aclweb.org/anthology/2020.acl-main.18/
http://arxiv.org/abs/2205.11505
http://arxiv.org/abs/2108.12516


Data Augmentation
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(Elder et al., 2020)
https://www.aclweb.org/anthology/2020.a
cl-main.665 
(Montella et al., 2020)
https://arxiv.org/pdf/2012.00571.pdf
(Chang et al., 2021)
http://arxiv.org/abs/2102.03556
(Lee et al. 2021)
http://arxiv.org/abs/2110.06800

• using synthetic data for improving model performance 
and robustness 

• quite hard for NLG
• where to get the data:

• extracting (noisy) structured input from unlabeled text
• keywords, information extraction

• recombination of existing data inputs
• model-generated outputs → filtering 

based on cycle consistency

• paraphrasing existing data outputs

• how to apply it:
• task-specific pretraining on synthetic data
• mixing synthetic data with the training data

https://www.aclweb.org/anthology/2020.acl-main.665
https://www.aclweb.org/anthology/2020.acl-main.665
https://arxiv.org/pdf/2012.00571.pdf
http://arxiv.org/abs/2102.03556
http://arxiv.org/abs/2110.06800


Template-based NLG – Examples
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Example: Dialogue assistants

(https://developer.amazon.com/en-US/docs/alexa/custom-skills/
create-intents-utterances-and-slots.html)

Alexa Mycroft

(https://mycroft-ai.gitbook.io/docs/mycroft-technologies/padatious)



Template-based NLG – Examples
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Example: Research systems

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex 

(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.emnlp-main.527

https://github.com/UFAL-DSG/alex
https://www.aclweb.org/anthology/2020.emnlp-main.527


Delexicalization Alternatives

• copy mechanism (see NLU & the next slide)
• select (or interpolate) between:

• generating a new token
• copying a token from input

• removes the need for pre/postprocessing
• inflection model

• useful for languages with rich morphology 
(e.g., Czech)

• a simple LM such as RNN LM
• pretrained models

• the model learns to copy and inflect words 
implicitly during pretraining

• works well for high-resource languages
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Baráčnická rychta je    na     <area>

Baráčnická rychta is in Malá Strana

inform(name=Baráčnická rychta, area=Malá Strana)

Malá Strana nominative
Malé Strany genitive
Malé Straně dative, locative
Malou Stranu accusative
Malou Stranou instrumental

0.10
0.07
0.60
0.10
0.03

lstm lstm lstm lstm

(Dušek & Jurčíček, 2019) 
https://arxiv.org/abs/1910.05298 
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(See et al., 2017) 
http://arxiv.org/abs/1704
.04368

Delexicalization Alternatives – Copy Mechanism
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probability of copying a 
token from the input

probability of generating a new 
token from the vocabulary
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http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368

