
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

7. Dialogue Management (2)
Action Selection/Policy

Ondřej Dušek, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek

http://ufal.cz/npfl099

28. 11. 2024

http://ufal.cz/npfl099


Action selection: Recap

• Action selection: deciding what to do (or say) next
• based on dialogue state (i.e. uses tracking output)

• follows a policy towards an end goal

• FSM, frames, rule-based

• trained policies: typically with RL
• explore more different paths than supervised

• plan ahead – optimize for the whole dialogue, not just 1 turn

• RL: MDP formalism – agent in an environment, state-action-reward
• POMDP = MDP with continuous states

• trained with user simulator

2NPFL099 L7 2024

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)

+1

𝑠𝑡 𝑟𝑡

𝑠𝑡+1

𝑟𝑡+1

𝑎𝑡



Reinforcement learning: Definition

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return 

3NPFL099 L7 2024

𝑅𝑡 = 

𝑖=0

∞

𝛾𝑖𝑟𝑡+𝑖+1

accumulated 
long-term

reward
(from turn 𝑡 onwards)

𝛾 ∈ [0,1] = discount factor 
(immediate vs. future reward trade-off)

𝑦 = 1: no discount, only usable if 𝑖 ≤ 𝑇
𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)



State-value Function

• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠) 
• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1

• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:

4NPFL099 L7 2024

𝑉𝜋 𝑠 = 𝔼 

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 = 

𝑎∈𝒜

𝜋 𝑠, 𝑎 

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing 
𝑎 from 𝑠 under 𝜋

transition
probs.

expected 
immediate 

reward

𝜋 𝑠, 𝑎 ≔ 

1

# of 𝑎′s
 for 𝑎 = arg max

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step



Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) – return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎  also defines a greedy policy:

NPFL099 L7 2024

𝑄𝜋 𝑠, 𝑎 = 𝔼 

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 = 

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾 

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔ 

1

# of 𝑎′s
 for 𝑎 = arg max

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 function itself tends to be more complex than 𝑉



Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return  𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗
𝑠 ≥ 𝑉𝜋′

(𝑠)  ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max
𝜋

𝑉𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max
𝜋

𝑄𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠  and 𝑄∗ 𝑠, 𝑎  are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages

6NPFL099 L7 2024



RL Agents Taxonomy

• Quantity to optimize:
• value function – critic

• either 𝑄 or 𝑉, typically 𝑄 in practice

• policy – actor

• both – actor-critic

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠))

• nice but typically not satisfied in practice

• model-free (don’t assume anything, sample)
• this is the usual real-world case

• this is where using 𝑄 instead of 𝑉 comes handy

7NPFL099 L7 2024

(from David Silver’s slides)



Reinforcement Learning Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment → not practical for real-world use

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates: 
• on-policy – improve the policy while you’re using it for decisions

• can’t use that with batch learning 
(decision policy is changing constantly)

• off-policy – decide acc. to a different policy

NPFL099 L7 2024

both used 
in practice

https://twitter.com/srush_nlp/status/1729981547644698816 

https://twitter.com/srush_nlp/status/1729981547644698816


Deep Reinforcement Learning

• Exactly the same as “plain” RL
• agent & environment, actions & rewards

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• function approximation approach
• 𝑄 values / policy are represented as a parameterized function 𝑄(𝑠, 𝑎; 𝜽) / 𝜋 𝑠; 𝜽

• enumerating in a table would take up too much space, be too sparse

• the parameters 𝜃 are optimized

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states

• needs tricks to make it stable
9

(Sutton & Barto, 2018)

𝑠𝑡 𝑟𝑡

𝑠𝑡+1

𝑟𝑡+1

𝑎𝑡



Q-Learning

• temporal difference – update 𝑄 as you go

• off-policy – directly estimates best 𝑄∗

• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝛜-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

•  𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′

NPFL099 L7 2024

update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce 

any policy that chooses all 
actions & states enough times 

will converge to 𝑄∗ 𝑠, 𝑎 :
we need to explore to converge

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html  

TD: moving estimates

𝑎 =
arg max

𝑎
𝑄(𝑠, 𝑎)  with probability 1 − ϵ

random action with probability ϵ

Q  | TD  | model-free | off-policy

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


Deep Q-Networks

• Q-learning, where 𝑄 function is represented by a neural net

• “Usual” Q-learning doesn’t converge well with NNs:
a) SGD is unstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)

d) scale of rewards & 𝑄 values unknown → numeric instability

• → DQN adds fixes:
a) minibatches (updates by averaged 𝑛 samples, not just one)

b) experience replay

c) freezing target Q function

d) clipping rewards

11NPFL099 L7 2024

cool!

common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236 

Q  | TD  | model-free | off-policy

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236


DQN tricks

• Experience replay – break correlated samples
• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over 

NPFL099 L7 2024

loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own 
‘supervised’ training data”

“have a fixed target, 
like in supervised learning”

12

Q  | TD  | model-free | off-policy



DQN algorithm

• initialize 𝜽 randomly 
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• set initial state 𝑠
• for all timesteps 𝑡 = 1 … 𝑇 in the episode:

• select action 𝑎𝑡  from 𝜖-greedy policy based on 𝑄(𝜽) 
• take 𝑎𝑡, observe reward 𝑟𝑡+1 and new state 𝑠𝑡+1

• store 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1  in 𝐷

• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps (rarely):
• ഥ𝜽 ← 𝜽

13NPFL099 L7 2024

storing experience
(1 step of Q-learning exploration)

“replay”
a. k. a. training

(1 update)

update the frozen target function

Q  | TD  | model-free | off-policy



DQN for Dialogue Systems

• DQN can drive dialogue action selection/policy

• warm start needed to make the training actually work:
• pretrain the network using supervised learning

• replay buffer spiking – initialize using simple rule-based policy
• so there are at least a few successful dialogues

• the RL agent has something to catch on

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383 

(Li et al., 2017)
https://arxiv.org/abs/1703.01008 
https://github.com/MiuLab/TC-Bot 

rule-based simulator 
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer

replay memory 
initialized using a 

simple handcrafted policy

movie ticket booking:
better than rule-based

(Lipton et al., 2018)
https://arxiv.org/abs/1608.05081 

Q  | TD  | model-free | off-policy

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot
https://arxiv.org/abs/1608.05081


Policy Gradients

• Instead of value functions, train a network to represent the policy
• allows better action sampling – according to actual stochastic policy

• no need for 𝜖-greedy (which is partially random, suboptimal)

• To optimize, we need a performance metric: 𝐽 𝜃 = 𝑉𝜋𝜃(𝑠0)
• expected return in starting state when following 𝜋𝜃

• we want to directly optimize this using gradient ascent

• Policy Gradient Theorem:
• expresses ∇𝐽 𝜃  in terms of ∇𝜋 𝑎 𝑠, 𝜃

∇𝐽 𝜃 ∝ 

𝑠

𝜇 𝑠 

𝑎

𝑄𝜋 𝑠, 𝑎 ∇𝜋 𝑎 𝑠, 𝜃 = 𝔼𝜋 

𝑎

𝑄𝜋 𝑠, 𝑎 ∇𝜋 𝑎 𝑠, 𝜃

15NPFL099 L7 2024

𝜇(𝑠) is state probability under 𝜋 – this is the same as expected value 𝔼𝜋

(Sutton & Barto, 2018; p. 324ff)



REINFORCE: Monte Carlo Policy Gradients

• direct search for policy parameters by stochastic gradient ascent
• looking to maximize performance 𝐽 𝜽 = 𝑉𝜋𝜃 𝑠0

• choose learning rate 𝛼, initialize 𝜽 arbitrarily

• loop forever:
• generate an episode 𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇, following 𝜋(⋅ | ⋅, 𝜽)

• for each 𝑡 = 0,1 … 𝑇: 𝜽 ← 𝜽 + 𝛼𝛾𝑡𝑅𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡 , 𝜽)

16

returns 𝑅𝑡 = σ𝑖=𝑡
𝑇−1 𝛾𝑖−𝑡𝑟𝑖+1

variant – advantage instead of returns:
discounting a baseline 

𝑏 𝑠  (predicted by any model)
𝐴𝑡 = 𝑅𝑡 − 𝑏(𝑠𝑡) instead of 𝑅𝑡

gives better performance

this is stochastic ∇𝐽 𝜽 :
• from policy gradient theorem
• using single action sample 𝑎𝑡

• expressing 𝑄𝜋 as 𝑅𝑡 (under 𝔼𝜋)

• using ∇ ln 𝑥 =
∇𝑥

𝑥

𝑉(𝑠) is actually a good 𝑏(𝑠)

this will guarantee
the right state 
distribution/frequency 𝜇(𝑠)

(Sutton & Barto, 2018; p. 327f)NPFL099 L7 2024

π | MC  | model-free | on-policy



Policy Gradients (Advantage) Actor-Critic

• REINFORCE + 𝑉 approximation + TD estimates – better convergence
• differentiable policy 𝜋 𝑎 𝑠, 𝜽

• differentiable state-value function parameterization 𝑉 𝑠, 𝒘

• two learning rates 𝛼𝜽, 𝛼𝒘

• loop forever:
• set initial state 𝑠 for the episode

• for each step 𝑡 of the episode:
• sample action 𝑎 from 𝜋 ⋅ 𝑠, 𝜽 , take 𝑎 and observe reward 𝑟 and new state 𝑠′

• compute advantage 𝐴 ← 𝑟 + 𝛾 𝑉 𝑠′, 𝒘 − 𝑉(𝑠, 𝒘)

• update 𝜽 ← 𝜽 + 𝛼𝜽𝛾𝑡𝐴∇ ln 𝜋(𝑎|𝑠, 𝜽), 𝒘 ← 𝒘 + 𝛼𝒘 ⋅ 𝐴∇ 𝑉(𝑠, 𝒘)

• 𝑠 ← 𝑠′

17NPFL099 L7 2024

actor (policy update)

same as REINFORCE, except:
• we use 𝑉 𝑠, 𝒘  as baseline 
• 𝑟 is used instead of 𝑅𝑡 (TD instead of MC)

TD: update
after each step,

moving estimates

critic (value function update)

𝒔 𝒔

𝒔

(Su et al., 2017)
http://arxiv.org/abs/1707.00130 

π&V | TD  | model-free | on-policy

http://arxiv.org/abs/1707.00130


ACER: Actor-Critic with Experience Replay

• off-policy actor-critic – using experience replay buffer
• same approach as Q-learning

• since ER buffer has past experience with out-of-date policies (using “old” ෨𝜃),
it’s considered off-policy (behaviour policy 𝜋෩𝜃  ≠ target policy 𝜋𝜃)
• sampling behaviour from 𝜋෩𝜃  is biased w. r. t. 𝜋𝜃

• correcting the bias – importance sampling: multiply by importance weight 𝜌𝑡 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋෩𝜃(𝑎𝑡|𝑠𝑡)

• all updates are summed over batches & importance-sampled

• new objective/performance metric:  𝔼𝑡[
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋෩𝜃 𝑎𝑡 𝑠𝑡
መ𝐴𝑡]

18NPFL099 L7 2024

(Wang et al., 2017) http://arxiv.org/abs/1611.01224 
(Su et al., 2017) http://arxiv.org/abs/1707.00130 
(Weisz et al., 2018) http://arxiv.org/abs/1802.03753  

using advantage instead of returns

batch average
over timesteps 𝑡 importance sampled

π&V | TD  | model-free | off-policy

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753


Proximal Policy Optimization

• ACER is prone to very large updates, unstable
• to avoid going “off a cliff”, it needs very low LR, trains slowly

• → change the objective to produce more stable updates

• Basically clipping the ACER objective

• define 𝑟𝑡 𝜃 =
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋෩𝜃 𝑎𝑡 𝑠𝑡
  – ratio to old params

• starting from 𝔼𝑡
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋෩𝜃 𝑎𝑡 𝑠𝑡
መ𝐴𝑡 = 𝔼𝑡 𝑟𝑡 𝜃 መ𝐴𝑡    (see ACER)

• using 𝔼𝑡 min 𝑟𝑡 𝜃 መ𝐴𝑡, clip 𝑟𝑡 𝜃 1−𝜖
1+𝜖 መ𝐴𝑡

19NPFL099 L7 2024

original clipped to stay close to 1

minimum – lower bound on the unclipped objective

optimization 
starting 
point

can’t get 
much higher

(Schulman et al., 2017)   
http://arxiv.org/abs/1707.06347 

positive 
advantages

negative 
advantages

π&V | TD  | model-free | off-policy

http://arxiv.org/abs/1707.06347


Rewards in RL

• Reward function is critical for successful learning

• Handcrafting is not ideal
• domain knowledge typically needed to detect dialogue success

• need simulated or paid users,
can’t learn from users without knowing their task

• paid users often fail to follow pre-set goals

• Having users provide feedback is costly & inconsistent
• real users don’t have much incentive to be cooperative

• Learning/optimizing the rewards is desirable

20NPFL099 L7 2024



Turn-level rewards

• Interaction quality
• hand-annotated turns for ~200 dialogues

• SVM/RNN on low-level domain-independent features 
(ASR confidence, # reprompts etc.)

• Discriminator
• policy vs. human-human (iterative, adversarial learning)

• reward for appearing human-like at each turn

• Information gain
• reward system asking ≈ changes in belief state distributions

(Jensen-Shannon divergence ≥ threshold)

• combined with task success (Feudal RL, see →)

21NPFL099 L7 2024

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019; Ultes & Maier, 2021)
https://doi.org/10.1016/j.specom.2015.06.003 
https://doi.org/10.21437/Interspeech.2017-1032 
https://aclweb.org/anthology/W19-5902/ 
https://aclanthology.org/2021.sigdial-1.42 (Takanobu et al., 2019) http://arxiv.org/abs/1908.10719 

rule-based
feed-forward feed-forward

generated

human-human 
from data

(Geishauser et al., 2021) http://arxiv.org/abs/2109.07129 

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/
https://aclanthology.org/2021.sigdial-1.42
http://arxiv.org/abs/1908.10719
http://arxiv.org/abs/2109.07129


Alternating supervised & RL

• we can do better than just supervised pretraining

• alternate regularly
• start with supervised more frequently

• alleviate sparse rewards, 
but don’t  completely avoid exploring

• later do more RL
• but don’t forget what you learned by supervised learning

• options: 
• schedule supervised every 𝑁 updates

• same + increase 𝑁 gradually

• use supervised after RL does poorly (worse than baseline)
• baseline = moving average over history + 𝜆 ⋅ std. error of the average

• agent is less likely to be worse than baseline in later stages of learning

22NPFL099 L7 2024
(Xiong et al., 2018)
http://arxiv.org/abs/1806.06187 

https://twitter.com/mark_riedl/status/1682937331727192065 

http://arxiv.org/abs/1806.06187
https://twitter.com/mark_riedl/status/1682937331727192065


Deep Dyna-Q: learning from humans & simulator

• humans are costly, simulators are inaccurate

• ⇒ learn from both, improve simulator as you go
• direct RL = learn from users

• world model learning = improve internal simulator
• supervised, based on previous dialogues with users 

• planning = learn from simulator

• DQN, feed-forward policy

• simulator: feed-forward multi-task net
• draw a goal uniformly at the start

• predict actions, rewards, termination

• use 𝐾 simulated (“planning”) dialogues per 1 real

• discriminative DDQ: only use a simulated dialogue 
if it looks real (according to a discriminator)

user action

internal simulator = world model

reward terminate?

movie booking:
name, date, # tickets etc.

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203 
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416 

https://www.aclweb.org/anthology/P18-1203
https://www.aclweb.org/anthology/D18-1416


LLM-based simulators

• Closer to humans than traditional simulators, but cheaper

• Off-the-shelf LLMs are good enough to do this

• Work best in text mode (for full dialogue system)

• Prompt LLM with task generated from ontology
• direct prompting

• chain of thought

• explicit user state tracking

• Reward: can be computed by LLM too
• feed LLM with whole dialogue

• ask if goal was fulfilled

24NPFL099 L7 2024

(Kazi et al., 2024) http://arxiv.org/abs/2411.09972 

http://arxiv.org/abs/2411.09972


Hierarchical RL

• good for multiple subtasks
• e.g. book a flight to London and a hotel for the same day,

close to the airport

• top-level policy: select subtask 𝑔𝑖

• low-level policy: actions 𝑎𝑗,𝑔𝑖
 to complete subtask 𝑔𝑖

• given initiation/termination conditions
• keeps on track until terminal state is reached

• shared by all subtasks (subtask=parameter)

• internal critic (=prob. that subtask is solved)

• global state tracker 
• integrates information from subtasks

25NPFL099 L7 2019

top-level Q-network low-level Q-network
(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237 

http://aclweb.org/anthology/D17-1237


Feudal RL

• spatial (slot-based) split instead of temporal
• doesn’t need defined subtasks & sub-rewards

• belief state representation – features
• master 𝜙𝑚, slot-independent 𝜙𝑖, per-slot 𝜙𝑠𝑘

• handcrafted (could be neural nets)

• supports sharing parameters across domains

• two-step action selection:
1) master action: “slot-dependent or not”?

• master policy

2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)

• chooses max. 𝑄 for all slot-action pairs – involves choosing the slot

• everything is trained using the same global reward signal
26

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232 

request, confirmhello, inform

inform = “inform over all slots”

http://arxiv.org/abs/1803.03232


Embeddings/LLM Dialogue Flow Induction

• No RL, creating rule-based flows automatically

• No need for annotation
• good if you have e.g. call center recordings

• Analyze existing data, with dialogue embeddings
• BERT finetuned on many dialogue datasets

• cluster actions

• create flow graph based on actions in data

• Prompt LLM to write dialogue flows
• multi-step, with feedback & update

• use real dialogues to augment the LLM-written flows
• cluster actions & use dialogues with centroids as representatives

NPFL099 L7 2024

(Burdisso et al., 2024)
http://arxiv.org/abs/2410.18481 

(Agrawal et al., 2024)
https://aclanthology.org/2024.sigdial-1.6 

http://arxiv.org/abs/2410.18481
https://aclanthology.org/2024.sigdial-1.6


Summary

• RL for action selection / dialogue policy 
• MDP / agent in an environment, taking actions, getting rewards

• dynamic programming, Monte Carlo, Temporal Difference

• optimizing value function 𝑉/𝑄 (critic), policy (actor), or both (actor-critic)

• learning on-policy or off-policy (act by the policy you learn/not)

• DQN – representing & optimizing 𝑄 function with a network
• minibatches, target function freezing, experience replay

• Policy gradients – policy network & direct policy optimization
• REINFORCE (MC policy gradients) + advantage

• Actor-critic (REINFORCE + TD + 𝑉 estimates) + extensions (ACER, PPO)

• rewards can be learned/estimated (supervised/GAN-style)

• learning multiple tasks: hierarchical, feudal RL

28NPFL099 L7 2024



Thanks

Contact us: 
 https://ufaldsg.slack.com/ 
 odusek@ufal.mff.cuni.cz
 Skype/Meet/Zoom/Troja (by agreement) 

Get these slides here:

 http://ufal.cz/npfl099  

References/Inspiration/Further:

• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.)
http://incompleteideas.net/book/the-book.html 

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267 
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html 
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf 
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf 

29

Next Week:
End-to-end systems

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1809.08267
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

	Slide 1: NPFL099 Statistical Dialogue Systems 7. Dialogue Management (2) Action Selection/Policy
	Slide 2: Action selection: Recap
	Slide 3: Reinforcement learning: Definition
	Slide 4: State-value Function
	Slide 5: Action-value (Q-)Function
	Slide 6: Optimal Policy in terms of bold italic cap V and bold italic cap Q
	Slide 7: RL Agents Taxonomy
	Slide 8: Reinforcement Learning Approaches
	Slide 9: Deep Reinforcement Learning
	Slide 10: Q-Learning
	Slide 11: Deep Q-Networks
	Slide 12: DQN tricks
	Slide 13: DQN algorithm
	Slide 14: DQN for Dialogue Systems
	Slide 15: Policy Gradients
	Slide 16: REINFORCE: Monte Carlo Policy Gradients
	Slide 17: Policy Gradients (Advantage) Actor-Critic
	Slide 18: ACER: Actor-Critic with Experience Replay
	Slide 19: Proximal Policy Optimization
	Slide 20: Rewards in RL
	Slide 21: Turn-level rewards
	Slide 22: Alternating supervised & RL
	Slide 23: Deep Dyna-Q: learning from humans & simulator
	Slide 24: LLM-based simulators
	Slide 25: Hierarchical RL
	Slide 26: Feudal RL
	Slide 27: Embeddings/LLM Dialogue Flow Induction
	Slide 28: Summary
	Slide 29: Thanks

