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Natural Language Understanding

• words → meaning
• whatever “meaning” is – can be different tasks

• typically structured, explicit representation

• alternative names/close tasks:
• spoken language understanding

• semantic decoding/parsing

• integral part of dialogue systems, also explored elsewhere
• stand-alone semantic parsers

• other applications: 
• human-robot interaction

• question answering

• machine translation (not so much nowadays)

• nowadays often just part of dialogue state tracking (next week)
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NLU Challenges

• non-grammaticality

• disfluencies
• hesitations – pauses, fillers, repetitions

• fragments

• self-repairs (~6%!) 

• ASR errors

• synonymy

• out-of-domain utterances
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uhm I want something in the west the west part of town

uhm find something uhm something cheap no I mean moderate

I’m looking for a for a chip Chinese rest or rant

oh yeah I’ve heard about that place my son was there last month

find something cheap for kids should be allowed

uhm I’m looking for a cheap

Chinese city centre
I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please



Semantic representations

• syntax/semantic trees
• typical for standalone semantic parsing

• different variations

• frames 
• technically also trees, but smaller, more abstract

• (mostly older) DSs, some standalone parsers

• graphs (AMR)
• trees + co-reference 

(e.g. pronouns referring to the same object)

• dialogue acts = intent + slots & values
• flat – no hierarchy

• most DSs nowadays

4NPFL099 L5 2024

(Seneff, 1992)
https://www.aclweb.org/anthology/J92-1004 

oui l’hôtel don’t le prix ne dépasse pas cent dix euros

(Bonneau-Maynard et al., 2005)
https://www.isca-speech.org/
archive/interspeech_2005/i05_3457.html 

http://cohort.inf.ed.ac.uk/amreager.html 
inform(date=Friday, stay=“2 nights”)

https://www.aclweb.org/anthology/J92-1004
https://www.isca-speech.org/archive/interspeech_2005/i05_3457.html
https://www.isca-speech.org/archive/interspeech_2005/i05_3457.html
http://cohort.inf.ed.ac.uk/amreager.html


Handling ASR noise

• ASR produces multiple hypotheses

• Combine & get resulting NLU hypotheses
• NLU: 𝑝(DA|text)

• ASR: 𝑝 text audio

• we want  𝑝(DA|audio)

• Easiest: sum it up

• Alternative: joint models
• in-domain ASR & NLU trained jointly

• dual encoders, pretrained representations
& combination
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𝑝 DA audio = ෍

texts

𝑃 DA text 𝑃(text|audio)

(from Filip Jurčíček’s slides)

(Zorrilla et al., 2021) https://ieeexplore.ieee.org/document/9688296 
(Si et al., 2023) http://arxiv.org/abs/2305.13040 
(Rubenstein et al., 2023) http://arxiv.org/abs/2306.12925 `

https://ieeexplore.ieee.org/document/9688296
http://arxiv.org/abs/2305.13040
http://arxiv.org/abs/2306.12925


Handling out-of-domain queries

• Handcrafted: no pattern matches → out-of-domain

• Datasets: rarely taken into account!

• Low confidence on any intent → out-of-domain?
• might work, but likely to fail (no explicit training for this)

• Out-of-domain data + specific OOD intent
• adding OOD from a different dataset

• problem: “out-of-domain” should be broad, not just some different domain

• collecting out-of-domain data specifically
• worker errors for in-domain

• replies to specifically chosen irrelevant queries

• always need to ensure that they don’t match any intent randomly

• not so many instances needed (expected to be rare)
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(Larson et al., 2019)
http://arxiv.org/abs/1909.02027 

in-domain

misrecognized 
out-of-domain

correctly captured 
out-of-domain

http://arxiv.org/abs/1909.02027


NLU as classification

• using DAs – treating them as a set of semantic concepts
• concepts: 

• intent

• slot-value pair

• binary classification: is concept Y contained in utterance X?

• independent for each concept

• consistency problems
• conflicting intents (e.g. affirm + negate)

• conflicting values (e.g. kids-allowed=yes + kids-allowed=no)

• need to be solved externally, e.g. based on classifier confidence
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NER + delexicalization

• Approach:

1) identify slot values/named entities 

2) delexicalize = replace them 
with placeholders (indicating entity type)
• or add the NE tags as more features for classification

• generally needed for NLU as classification
• otherwise in-domain data is too sparse

• this can vastly reduce the number of concepts to classify & classifiers

• NER is a problem on its own
• but general-domain NER tools may need to be adapted

• in-domain gazetteers, in-domain training data
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What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.
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I need to leave after 12:00.
I need to leave after <time>.
leave_at -> <time>
arrive_by -> none

Both can be <time>



NLU Classifier models

• note that data is usually scarce!

• handcrafted / rules
• simple mapping: word/n-gram/regex match → concept

• can work really well for a limited domain

• no training data, no retraining needed (tweaking on the go)

• linear classifiers
• logistic regression, SVM…

• need handcrafted features

• neural nets (=our main focus today)
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*  | classif



NN neural classifiers

• intent = multi-class (softmax)

• slot tagging = set of binary classifiers (logistic loss)

• using word embeddings (task-specific or pretrained)
• no need for handcrafted features

• still needs delexicalization (otherwise data too sparse)

• different architectures possible
• bag-of-words feed-forward NN

• RNN / CNN encoders + classification layers

• attention-based
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(Raffel & Ellis, 2016)
https://colinraffel.com/publications/iclr2016feed.pdf 

encoder hidden states

attention
model

softmax

*NN  | classif

https://colinraffel.com/publications/iclr2016feed.pdf


Slot filling as sequence tagging

• get slot values directly – no need for delexicalization
• each word classified

• classes = slots & IOB format (inside-outside-beginning)

• slot values taken from the text 
(where a slot is tagged)

• NER-like approach

• rules + classifiers still work
• keywords/regexes found at specific position

• apply classifier to each word in the sentence left-to-right

• linear classifiers are still an option
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I   need a flight from Boston   to New   York  tomorrow
O O       O O        O       B-dept  O  B-arr I-arr B-date

* | seq tag



Neural sequence tagging

• Basic neural architecture:
RNN (LSTM/GRU) → softmax over hidden states
• + some different model for intents (such as classification)

• Sequence tagging problem: overall consistency
• slots found elsewhere in the sentence might influence what’s classified now

• may suffer from label bias
• trained on gold data – single RNN step only

• during inference, cell state is influenced by previous steps – danger of cascading errors

• solution: structured/sequence prediction
– conditional random fields (CRF)
• can run CRF over NN outputs
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https://www.depends-on-the-definition.com/guide-
sequence-tagging-neural-networks-python/ 
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RNN (+CRF) | seq tag

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/


Joint Intent & Slots Model

• Same network for both tasks

• Bidirectional encoder
• 2 RNN encoders: left-to-right, right-to-left

• “see everything before you start tagging”

• Decoder – tag word-by-word, inputs:
• attention

• input encoder hidden states  (“aligned inputs”)

• both

• Intent classification: 
softmax over last encoder state 
• + specific intent context vector 𝑐intent(attention)
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(Liu & Lane, 2016) 
http://arxiv.org/abs/1609.01454 

RNN | classif + seq tag

http://arxiv.org/abs/1609.01454


NN for Joint Intent & Slots

• Extended version: 
use slot tagging results in intent classification
• Bidi encoder

• Slots decoder with encoder states & attention

• Intent decoder 
– attention over slots decoder states

• Training for both intent & slot detection 
improves results on ATIS flights data
• this is multi-task training ☺ 

• intent error lower (2% → 1.5%)

• slot filling slightly better (F1 95.7% → 95.9%)

• Variant: treat intent detection as slot tagging 
• append <EOS> token & tag it with intent
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same as (c) 
on previous slide

this is new

(Liu & Lane, 2016) 
http://arxiv.org/abs/1609.01454 

(Hakkani-Tür et al, 2016)
https://doi.org/10.21437/Interspeech.2016-402 

5k instances
17 intents
~100 slots

RNN | classif + seq tag

http://arxiv.org/abs/1609.01454
https://doi.org/10.21437/Interspeech.2016-402


Seq2seq-based NLU

• seq2seq with copy mechanism = pointer-generator net
• normal seq2seq with attention – generate output tokens (softmax over vocabulary)

• pointer net: select tokens from input (attention over input tokens)

• prediction = weighted combination of  ⬏

• can work with out-of-vocabulary
• e.g. previously unseen restaurant names

• (but IOB tagging can, too)

• generating slots/values + intent
• it’s not slot tagging (doesn’t need alignment)

• works for slots expressed implicitly 
or not as consecutive phrases

• treats intent as another slot to generate

(Zhao & Feng, 2018)
https://www.aclweb.org/anthology/P18-2068/ 

generate copy(or)

GRU cells

DSTC2 resultsCan I bring my kids along to this restaurant?
I want a Chinese place with a takeaway option.

confirm(kids_friendly=yes)
inform(food=Chinese_takeaway)

RNN | seq gen

https://www.aclweb.org/anthology/P18-2068/


BERT-based NLU

• slot tagging on top of pretrained BERT 
• standard IOB approach

• just feed final hidden layers to softmax over tags
• classify only at 1st subword in case of split words

(don’t want tag changes mid-word)

• special start token tagged with intent

• optional CRF on top of the tagger
• for global sequence optimization
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subwords

slot tagsintent tag

start token

only 1 tag for 
whole word

% completely correct sentences

accuracy F1

slightly different numbers, 
most probably a 

reimplementation

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909

pre-LM | seq tag

http://arxiv.org/abs/1902.10909


Dialogue Pretrained Models

• Pretraining on dialogue tasks can do better (& smaller) than BERT
• ConveRT: Transformer-based dual encoder

• 2 Transformer encoders: context + response
• optionally 3rd encoder with more context (concatenated turns)

• feed forward + cosine similarity on top

• training objective: response selection
• response that actually happened = 1

• random response from another dialogue = 0

• trained on a large dialogue dataset (Reddit)

• can be used as a base to train models for:
• slot tagging (top self-attention layer → CNN → CRF)

• intent classification (top feed-forward → more feed-forward → softmax)

• Transformer layers are fixed, not fine-tuned

• works well for little training data (few-shot)
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for intent 
classification

for slot
tagging

(Henderson et al., 2020)
http://arxiv.org/abs/1911.03688 

(Casanueva et al., 2020)
https://www.aclweb.org/anthology/2020.nlp4convai-1.5 

(Coope et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.11 

pre-LM | classif / seq tag

http://arxiv.org/abs/1911.03688
https://www.aclweb.org/anthology/2020.nlp4convai-1.5
https://www.aclweb.org/anthology/2020.acl-main.11


TOD-BERT

• pre-finetuning BERT on vast task-oriented dialogue data
• basically combination of 2 previous

• BERT + add user/sys tokens + train for:
• masked language modelling

• response selection (dual encoder style)
• over [CLS] tokens from whole batch

• other examples in batch = negative

• result: “better dialogue BERT”
• can be finetuned for various dialogue tasks

• intent classification

• slot tagging

• good performance even “few-shot”
• just 1 or 10 examples per class

• bigger difference w. r. t. BERT
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pre-LM | classif / seq tag

(Wu et al., 2020)
https://www.aclanthology.org/2020.emnlp-main.66 

https://www.aclanthology.org/2020.emnlp-main.66


SETFIT: Sentence BERT + contrastive pre-finetuning

• Sentence Transformer (ST) = Transformer dual encoder
• general, based on RoBERTa, produces sentence-level representations

• trained for semantic similarity (NLI data)

• Contrastive pre-finetuning:
• 2 examples from same intent class = 1

• 2 examples from random different intent classes = 0

• Intent classifier trained on top 
of the pre-finetuned model

• Good for low-data situations
19NPFL099 L5 2024

(Tunstall et al., 2022)
http://arxiv.org/abs/2209.11055 

(Reimers & Gurevych, 2019)
https://aclanthology.org/D19-1410/ 

http://arxiv.org/abs/2209.11055
https://aclanthology.org/D19-1410/


Incremental NLU

• Aim: low latency, real-time performance

• Parsing incomplete sentences
• guessing during parsing: 

create a full parse from incomplete sentences

• predicting user input: use LM to finish utterance

• both reduce latency

• Specific architecture
• more like unidirectional encoders

(so you don’t need to recompute)

• but retain bidirectional at higher layers
• optionally, based on a specific classifier
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classifier:
use bidi?

bidi used here
bidi not used here

unidirectional
layers

…

(Zhou et al., 2022) https://aclanthology.org/2022.acl-long.110 
(Kaushal et al., 2023) https://aclanthology.org/2023.eacl-main.31 

https://aclanthology.org/2022.acl-long.110
https://aclanthology.org/2023.eacl-main.31


Regular Expressions & NNs for NLU

• Regexes as manually specified features
• binary: any matching sentence (for intents)

+ any word in a matching phrase (for slots)
• regexes meant to represent an intent/slot

• combination at different levels
1) “input”: aggregate word/sent + regex embeddings

(at sentence level for intent, word level for slots)

2) “network”: per-label supervised attentions
(log loss for regex matches)

3) “output”: alter final softmax (add weighted regex value)

• Good for limited amounts of data (few-shot)
• works with 10-20 training examples per slot/intent
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(Luo et al., 2018) http://arxiv.org/abs/1805.05588 

rule + NN | classif / seq tag

http://arxiv.org/abs/1805.05588


Unsupervised NLU

• Clustering intents & slots

• Features:
• word embeddings

• POS

• word classes

• topic modelling (biterm)

• Autoencoder to normalize # of dimensions for features

• Dynamic hierarchical clustering
• decides # of clusters – stops if cluster distance exceeds threshold

• Slot clustering – word-level
• over nouns, using intent clustering results
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ATIS

(Shi et al., 2018)
https://www.aclweb.org/anthology/D18-1072/ 

linear | unsup cluster

https://www.aclweb.org/anthology/D18-1072/


Weak Supervision from Semantic Frames

• Finding relevant slots based on generic (frame) parser output
• filter irrelevant candidates, merge similar ones & generalize better

• Iterative merging & selection
• frequency, coherence, TextRank

• w. r. t. to head verbs

• Training an LSTM tagger
• standalone, based 

on merged annotation

• 2nd option threshold 
to improve recall

• Promising, but not perfect
• DB connection, interpretation of slots
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Predict 
this

O B
(Hudeček et al., 2021)
https://aclanthology.org/2021.acl-long.189 

linear + RNN | weak-sup cluster + seq tag

https://aclanthology.org/2021.acl-long.189


Weak supervision: QA-style NLU

• Zero-shot – just needs some slot descriptions
• no in-domain training data needed

• Use a “question answering” BERT 
to do slot detection
• generate questions from slot description

– specifically ask for slots (rule-based)

• QA model output = slot values

• pretrained on other datasets
(generate questions from ontology)

• generalizes to unseen slots
(though still far from perfect)
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pre-LM + prompting | span select

standard supervised
slot tagger (for comparsion)

QA (span selection)

BERT seq tagging
BERT QA style
+ pretraining on other sets

train: SNIPS, test: TOP

(Du et al., 2021)
https://aclanthology.org/2021.acl-short.83 

https://aclanthology.org/2021.acl-short.83


LLMs for (open-domain) NLU

• LLM prompts asking 
questions to:
• classify sentences 

into a fixed schema

• classify specific properties

• Prompt engineering
• simple prompts

• asking 1 question at a time

• asking for reasoning

• examples/not: depends
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(Ostyakova et al., 2023) https://aclanthology.org/2023.sigdial-1.23 
(Finch et al., 2023) https://aclanthology.org/2023.sigdial-1.20 

https://aclanthology.org/2023.sigdial-1.23
https://aclanthology.org/2023.sigdial-1.20


Universal Intents

• typically DAs are domain-dependent

• ISO 24617-2 DA tagging standard
• pretty complex: multiple dimensions 

• Task, Social, Feedback…

• DA types (intents) under each dimension

• Simpler approach – non-hierarchical
• union looking at different datasets

• Mapping from datasets – manual/semi-automatic
• mapping tuned on classifier performance

• Intent tagging improved using multiple datasets/domains
• generic intents only

• Slots stay domain-specific

26

(Mezza et al, 2018) https://www.aclweb.org/anthology/C18-1300

(Paul et al, 2019)
http://arxiv.org/abs/1907.03020 
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https://www.aclweb.org/anthology/C18-1300
http://arxiv.org/abs/1907.03020


Summary

• NLU is mostly intent classification + slot tagging

• Rules + simple methods work well with limited domains

• Neural NLU: 
• shapes: CNN, LSTM, attention, seq2seq + pointer nets

• tasks: classification, sequence tagging, sequence prediction, span selection

• it helps to do joint intent + slots

• pretrained LMs help (models are large though)
• BERT, specific pretrained dialogue models

• NNs can be combined with regexes/handcrafted features
• helps with limited data

• Less/no supervision: pretrained LMs & prompting, generic parsers, clustering

• helps with domain generalization
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Thanks

Contact us: 
 https://ufaldsg.slack.com/
 odusek@ufal.mff.cuni.cz
 Skype/Meet/Zoom (by agreement)

Get the slides here:

 http://ufal.cz/npfl099 

References/Inspiration/Further:
• mostly papers referenced from slides
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html 
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/ 
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html 
• Gokhan Tur & Renato De Mori (2011): Spoken Language Understanding
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No labs today
Next week: lecture & labs

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://www.cs.utexas.edu/~mooney/ir-course/
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
https://hao-fang.github.io/ee596_spr2018/syllabus.html
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