NPFL099 Statistical Dialogue Systems **3. Neural Nets Basics**

http://ufal.cz/npfl099

Ondřej Dušek, Zdeněk Kasner, Ondřej Plátek, Mateusz Lango 17. 10. 2024

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Machine Learning

- ML is basically function approximation
- function: data (features) → labels
- function shape:
 - this is where different ML algorithms differ
 - neural nets: compound non-linear functions
- training/learning = adjusting function parameters to minimize error (see next week)
 - **supervised learning** = based on data + labels given in advance
 - reinforcement learning = based on exploration & rewards given online

@jacekmarczyk4436 hace 2 semanas

The rebranding of Linear Algebra as "Artificial Intelligence" may be the most successful marketing campaing of all time.

Responder

Typical machine learning problems in NLP

- regression
 - many inputs, 1 float output
- classification
 - many inputs, 1 categorial output (k classes)

sequence labelling

- sequence of inputs, label each (~ repeated classification)
- 1-to-1 input to output

ranking

• multiple inputs, choose best one (~ diff regression)

sequence prediction (autoregressive generation)

- some inputs (sequence/something else)
- generate outputs, use previous output in predicting next one $_{_{/^{-}}}$

structured

prediction

Neural networks

- Non-linear functions, composed of basic building blocks
 - stacked into layers
- Layers are made of **activation functions**:
 - linear functions (~basic, default)
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

softmax(
$$\mathbf{x}$$
)_i = $\frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$

- Fully differentiable training by **gradient descent**
 - network output incurs loss/cost
 - gradients backpropagated from loss to all parameters (composite function differentiation)

https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Layers visualization

- <u>https://playground.tensorflow.org/</u>
 - 2 numeric features (=2 input variables) → binary classification (=1 output, 2 classes)
 - easiest case, but you can see the internals
 - more complex input features (→)

feed-forward = fully connected = multi-layer perceptron

- easiest case: connect everything & let the network figure it out
- nice but gets too large very quickly, not good for variable-sized inputs
- added layers & power to distinguish different classes
 - fits the training data Y/N ?
- different activation functions
 - without them, it's just linear no matter how many layers!
- best conceptualization pipeline/flow (computational graph)
 - data flows through individual layers, gets changed
 - corresponds to a math formula, but flow graph can be easier to read

This is a neural net that can play perfect tic-tac-toe. It had 0 seconds of training cause I hand-crafted it.

Feature representation

- technically can be anything, as long as it's meaningful
 - the network will learn to assign meaning/values itself

1-hot/binary

- words numbered vocabulary
 - bigrams, n-grams, positional...
- other features especially handcrafted
 - word classes
 - various word combinations
 - outputs of other classifiers (sentiment, part-of-speech...)
 - is capitalized/is loud?
- numeric (floats)
 - best for continuous inputs: vision, audio
 - raw pixels, MFCCs...

vectors (embeddings) →

Embeddings

- distributed (word) representation
 - each word = a vector of floats
 - basically an easy conversion of 1-hot \rightarrow numeric
 - a dictionary of trainable features
- part of network parameters trained
 - a) random initialization
 - b) pretraining
- the network learns which words are used similarly
 - they end up having close embedding values
 - embeddings end up different with different tasks & data & settings http://ruder.io/word-embeddings-2017/
- embedding size: ~100s-1000
- vocab size: ~50-100k

http://blog.kaggle.com/2016/05/18/home-depot-product-searchrelevance-winners-interview-1st-place-alex-andreas-nurlan/

NPFL099 L3 2024

Pretrained Word Embeddings

Word2Vec

https://projector.tensorflow.org/

- Continuous Bag-of-Words (CBOW) (~ "masked LM")
 - predict a word, given $\pm k$ words window
 - disregarding word order within the window
- Skip-gram: reverse
 - given a word, predict its $\pm k$ word window
 - closer words = higher weight in training

• GloVe

- optimized directly from corpus co-occurrences (= w_1 close to w_2)
- target: $e_1 \cdot e_2 = \log(\#co\text{-}occurrences})$
 - number weighted by distance, weighted down for low totals
- trained by minimizing reconstruction loss on a co-occurrence matrix

OUTPUT

PROJECTION

INPU'

(Pennington et al., 2014) http://aclweb.org/anthology/D14-1162

(Mikolov et al., 2013)

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/ w(t-2)

w(t-1)

w(t+1

softmax

Word Embeddings

- Vocabulary is unlimited, embedding matrix isn't
 - + the bigger the embedding matrix, the slower your models
- Special out-of-vocabulary token <unk>
 - "default" / older option
 - all words not found in vocabulary are assigned this entry
 - can be trained using some rare words in the data
 - problem for generation you don't want these on the output
- Using limited sets
 - characters very small set
 - works, but makes for very long sequences (20 words ~ 80-100 characters)
 - slower, might be less accurate
 - **subwords** compromise →

Subwords

- group of characters that:
 - make shorter sequences than using individual characters
 - cover everything

byte-pair encoding

- start from individual characters
- iteratively merge most frequent bigram, until you get desired # of subwords
- sub@@ word the @@ marks "no space after"
- SentencePiece don't pre-tokenize
 - criterium: likelihood of joined vs. separate
 - *sub word* the _ marks a space
- 20-50k subwords for 1 language
 - ~250k subwords to cover them all

(Sennrich et al., 2016) https://www.aclweb.org/anthology/P16-1162/

```
fast_faster_faster_taller_tall_slower_taller_tallest_
```

https://github.com/google/sentencepiece

https://blog.floydhub.com/tokenization-nlp/

https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html

Convolutional Networks

- Designed for computer vision inspired by human vision
 - works for language in 1D, too!
- less parameters than fully connected filter/kernel
- Apply (multiple) filter(s) repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - => produce 1 element of output
 - can have more dimensions (~"set of filters")
- Stride how many steps to skip
 - less overlap, reducing output dimension
- Pooling no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Recurrent Neural Networks

- Identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = **hidden state** fed to the next step
 - additional input next token features
- **basic RNN**: linear + tanh
 - tanh: squashes everything to [−1,1]
 - good for repeated application
 - very simple structure
 - numeric problem: vanishing gradients
 - training updates get too small
 - can't hold long sequences well

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57

LSTMs & GRUs

- **GRU, LSTM**: more complex, to make training more stable
 - "gates" to keep old values
 - $\sigma \sim [0,1]$ decisions:
 - forget stuff from previous?
 - take input into account?
 - put stuff onto output?
 - over individual dimensions (e.g. input has 100 dims, forget gate forgets dims 1-3 & 4-25)
 - all based on current input & state
 - LSTM is older & more complex
 - GRU almost as good but faster
 - both slower than base RNN
 - both handle long recurrences

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input —
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax.
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - used in MT, dialogue, parsing...
 - more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

 $h_0 = \mathbf{0}$ $h_t = \operatorname{cell}(x_t, h_{t-1})$

 $s_0 = h_T$ $p(y_t | y_1, \dots y_{t-1}, \mathbf{x}) = \text{softmax}(s_t)$ $s_t = \text{cell}(y_{t-1}, s_{t-1})$

Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- Self-attention over previous decoder steps
 - increases consistency when generating long sequences

Attention Mechanism

https://skymind.ai/wiki/attention-mechanism-memory-network

Seq2seq RNNs with Attention

Bahdanau & Luong Attention

- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation
- both work well exact formula not important

attention value = context vector

sum of encoder hidden states weighted by attention weights α_{ti}

$$\boldsymbol{c}_t = \sum_{i=1}^n \alpha_{ti} \boldsymbol{h}_i$$

attention weights = alignment model Bahdanau: $\alpha_{ti} = \operatorname{softmax}(v_{\alpha} \cdot \tanh(W_{\alpha} \cdot s_{t-1} + U_{\alpha} \cdot h_{i}))$ encoder hidden state Luong: $\alpha_{ti} = \operatorname{softmax}(h_{i}^{\top} \cdot s_{t}))$ decoder state

encoder hidden state

Transformer

(Waswani et al., 2017) https://arxiv.org/abs/1706.03762

DOS

2.dim

- getting rid of (encoder) recurrences
 - making it faster to train, allowing bigger nets
 - replace everything with attention
 + feed-forward networks
 - ⇒ needs more layers
 - \Rightarrow needs to encode positions
- positional encoding .
 - adding position-dependent patterns to the input
- attention dot-product (Luong style)
 - scaled by $\frac{1}{\sqrt{\#dims}}$ (so values don't get too big)
 - more heads (attentions in parallel)
 - focus on multiple inputs

Transformer

Pretrained Language Models

- Beyond pretrained word embeddings
 - reflects different word meanings in sentence context (~contextual embeddings)
 - used as input to added layers on top / base for model finetuning (next week)
- LSTM-based: ELMo (trained on language modelling)
 - weighted sum of static word embeddings & LSTM outputs
- Transformer encoders: BERT, RoBERTa...
 - for classification, sequence tagging
 - any Transformer layer used (typically the last one)
- Transformer decoders: GPT-2, GPT-3...
 - for generation, language modelling
 - input: force-decoding

• Transformer encoder-decoders: BART, T5...

• same as ↑, explicit input

В

Large Language Models

- Most are just Transformer decoders
- Only difference w.r.t. previous: **size** (& training methods see next time)
 - BERT/GPT2/T5 etc.: typically 100M-1B params
 - LLMs: 7B-70B (LlaMa), 100B+ (GPT3, PaLM...), unknown (ChatGPT, GPT4...)

Mixture-of-Experts

- Prominent extension of Transformers
 - some LLMs already based on it: Mixtral, GPT-4??
- Multiply feed-forward layers
 & pick which version to use each time
 - one copy = one "expert"
 - more parameters, but sparse
- Lot of trickery needed to make it work
 - working around hardware limitations
- Instruction tuning is important

NPFL099 L3 2024

Summary

- ML as a function mapping in \rightarrow out
 - input features 1-hot, numeric, **embeddings**
 - pretrained embeddings
 - function: layers ~ pipeline, data flows through (= complicated function)
 - outputs: classification (category), regression (float)
 - structured prediction sequence tagging, ranking, generation
- Neural networks (~function shapes)
 - feed-forward/fully connected
 - CNNs (filters, pooling)
 - RNNs (LSTMs, GRUs)
 - encoder-decoder (seq2seq)
 - attention, **Transformer** (positional encoding & feed-forward & attention)
 - pretrained models
- Next week: how to train this stuff

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> odusek@ufal.mff.cuni.cz Zoom/Skype/Troja

No lab today Next week: lecture & lab Thu 10:40

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (<u>http://www.deeplearningbook.org</u>) Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language (<u>http://arxiv.org/abs/1812.06834</u>) Milan Straka's Deep Learning slides: <u>http://ufal.mff.cuni.cz/courses/npfl114/1819-summer</u>

Neural nets tutorials:

- <u>https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0</u>
- <u>https://minitorch.github.io/index.html</u>
- <u>https://objax.readthedocs.io/en/latest/</u>

LLM intro: <u>https://www.understandingai.org/p/large-language-models-explained-with</u>