
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

3. Neural Nets Basics
http://ufal.cz/npfl099

Ondřej Dušek, Zdeněk Kasner, Ondřej Plátek, Mateusz Lango

17. 10. 2024

http://ufal.cz/npfl099


Machine Learning

• ML is basically function 
approximation

• function: data (features)→ labels

• function shape:
• this is where different ML algorithms differ

• neural nets: compound non-linear functions

• training/learning = adjusting 
function parameters to minimize error (see next week)

• supervised learning = based on data + labels given in advance

• reinforcement learning = based on exploration & rewards given online
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https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3 
https://twitter.com/NecroKuma3/status/1794488577977409626  

https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3
https://twitter.com/NecroKuma3/status/1794488577977409626


Typical machine learning problems in NLP

• regression
• many inputs, 1 float output

• classification
• many inputs, 1 categorial output (k classes)

• sequence labelling
• sequence of inputs, label each (~ repeated classification)

• 1-to-1 input to output

• ranking
• multiple inputs, choose best one (~ diff regression)

• sequence prediction (autoregressive generation)

• some inputs (sequence/something else)

• generate outputs, use previous output in predicting next one
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Neural networks

• Non-linear functions, composed of basic building blocks
• stacked into layers

• Layers are made of activation functions:
• linear functions (~basic, default)

• nonlinearities – sigmoid, tanh, ReLU 

• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗) 

• Fully differentiable – training by gradient descent
• network output incurs loss/cost

• gradients backpropagated from loss to all parameters
(composite function differentiation)
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https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092 

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092


Layers visualization

• https://playground.tensorflow.org/ 
• 2 numeric features (=2 input variables) → binary classification (=1 output, 2 classes)

• easiest case, but you can see the internals

• more complex input features (→)

• feed-forward = fully connected = multi-layer perceptron
• easiest case: connect everything & let the network figure it out

• nice but gets too large very quickly, not good for variable-sized inputs

• added layers & power to distinguish different classes
• fits the training data Y/N ?

• different activation functions
• without them, it’s just linear – no matter how many layers!

• best conceptualization – pipeline/flow (computational graph)

• data flows through individual layers, gets changed

• corresponds to a math formula, but flow graph can be easier to read
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https://playground.tensorflow.org/
https://twitter.com/JonasTyroller/status/1801702312416596357


Feature representation

• technically can be anything, as long as it’s meaningful
• the network will learn to assign meaning/values itself

• 1-hot/binary
• words – numbered vocabulary

• bigrams, n-grams, positional…

• other features – especially handcrafted
• word classes

• various word combinations

• outputs of other classifiers (sentiment, part-of-speech…)

• is capitalized/is loud?

• numeric (floats)
• best for continuous inputs: vision, audio

• raw pixels, MFCCs…

• vectors (embeddings) →
6NPFL099 L3 2024



Embeddings
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http://ruder.io/word-embeddings-2017/ 

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/ 

• distributed (word) representation 
• each word = a vector of floats

• basically an easy conversion of 1-hot → numeric

• a dictionary of trainable features

• part of network parameters – trained
a) random initialization

b) pretraining

• the network learns which words are used similarly
• they end up having close embedding values

• embeddings end up different with different tasks & data & settings

• embedding size: ~100s-1000

• vocab size: ~50-100k

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/


Pretrained Word Embeddings

• Word2Vec 
• Continuous Bag-of-Words (CBOW)

(~ “masked LM”)
• predict a word, given ±𝑘 words window

• disregarding word order within the window

• Skip-gram: reverse
• given a word, predict its ±𝑘 word window

• closer words = higher weight in training

• GloVe
• optimized directly from corpus co-occurrences (= 𝑤1 close to 𝑤2)

• target: 𝑒1 ⋅ 𝑒2 = log(#co-occurrences)
• number weighted by distance, weighted down for low totals

• trained by minimizing reconstruction loss on a co-occurrence matrix
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(Mikolov et al., 2013)
http://arxiv.org/abs/1301.3781 

softmax

one-hot

embedding

shared
weights

CBOW

skip-gram

softmaxembedding

different weights

one-hot

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html 
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/ 

(Pennington et al., 2014)
http://aclweb.org/anthology/D14-1162 

https://projector.tensorflow.org/ 

http://arxiv.org/abs/1301.3781
https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/
http://aclweb.org/anthology/D14-1162
https://projector.tensorflow.org/


Word Embeddings

• Vocabulary is unlimited, embedding matrix isn’t
• + the bigger the embedding matrix, the slower your models

• Special out-of-vocabulary token <unk>

• “default” / older option

• all words not found in vocabulary are assigned this entry

• can be trained using some rare words in the data

• problem for generation – you don’t want these on the output

• Using limited sets
• characters – very small set

• works, but makes for very long sequences
(20 words ~ 80-100 characters)

• slower, might be less accurate

• subwords – compromise →
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Subwords

• group of characters that:
• make shorter sequences than using individual characters

• cover everything

• byte-pair encoding
• start from individual characters

• iteratively merge most frequent bigram, 
until you get desired # of subwords

• sub@@ word – the @@ marks “no space after”

• SentencePiece – don’t pre-tokenize
• criterium: likelihood of joined vs. separate 

• sub word_ – the _ marks a space

• 20-50k subwords for 1 language
• ~250k subwords to cover them all
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(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/   

https://blog.floydhub.com/tokenization-nlp/ 

https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html 

f a s t _
f a s t e r _
t a l l _
t a l l e r _

fast er _
tall er _
s l o w er _
tall e s t _

https://github.com/google/sentencepiece 

https://www.aclweb.org/anthology/P16-1162/
https://blog.floydhub.com/tokenization-nlp/
https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html
https://github.com/google/sentencepiece


Convolutional Networks

• Designed for computer vision – inspired by human vision
• works for language in 1D, too!

• less parameters than fully connected – filter/kernel

• Apply (multiple) filter(s) repeatedly over the input
• element-wise multiply window of input x filter

• sum + apply non-linearity (ReLU) to result

• => produce 1 element of output

• can have more dimensions (~“set of filters”)

• Stride – how many steps to skip
• less overlap, reducing output dimension

• Pooling – no filter, pre-set operation
• maximum/average on each window

• typical CNN architecture alternates convolution & pooling
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2 

input x filter

output

input

filter

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Recurrent Neural Networks

• Identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• basic RNN: linear + tanh
• tanh: squashes everything to [−1,1]

• good for repeated application

• very simple structure

• numeric problem: vanishing gradients
• training updates get too small

• can’t hold long sequences well

12NPFL099 L3 2024 https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57 

hidden state
out (ℎ𝑡)

= output

hidden state
in (ℎ𝑡−1)

concat

linear
& tanh

input embedding

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21 

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21


LSTMs & GRUs

• GRU, LSTM: more complex, 
to make training more stable
• “gates” to keep old values

• 𝜎~[0,1] decisions:
• forget stuff from previous?

• take input into account?

• put stuff onto output?

• over individual dimensions
(e.g. input has 100 dims, 
forget gate forgets dims 1-3 & 4-25)

• all based on current input & state

• LSTM is older & more complex

• GRU almost as good but faster

• both slower than base RNN

• both handle long recurrences

13

LSTM cell

GRU cell

reset gate

update gate

standard output ~ base RNN

σ
tanh

tanh

σ
σ

σ σ

tanh

forget gate

input gate

cell state

output gate

cell state

hidden state = output

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21 

hidden state 
= output

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21


RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3
ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

Encoder-Decoder Networks (Sequence-to-sequence)

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size

• used in MT, dialogue, parsing… 
• more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html 

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129 

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡

 𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129


Attention

• Encoder-decoder is too crude for complex sequences
• the whole input is crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination, re-weighted for every decoder step 

→ can focus on currently important part of input

• fed into decoder inputs + decoder softmax layer

• Self-attention – over previous decoder steps
• increases consistency when generating long sequences
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https://skymind.ai/wiki/attention-mechanism-memory-network 

https://skymind.ai/wiki/attention-mechanism-memory-network


Seq2seq RNNs with Attention
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target word embeddingssource “word” embeddings

token representation: embeddings
= vectors of ~100-1000 numbers

encoder outputs
– “hidden states”
(=again, vectors of numbers)

vocabulary is numbered

attention = weighted combination
(weights different for each step)

encoder decoder

probability distribution
over the whole vocabulary

cells: identical (compound) neural layers
input: prev. output + token embedding

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473 

http://arxiv.org/abs/1409.0473


Bahdanau & Luong  Attention

• different combination with decoder state
• Bahdanau: use on input to decoder cell

• Luong: modify final decoder state

• different weights computation

• both work well – exact formula not important

𝒄𝑡 = 

𝑖=1

𝑛

𝛼𝑡𝑖𝒉𝑖

attention value = context vector

attention weights = alignment model

𝛼𝑡𝑖 = softmax(𝒗𝛼 ⋅ tanh(𝐖𝜶 ⋅ 𝒔𝑡−1 + 𝐔𝛼 ⋅ 𝒉𝑖))

decoder state

trained parameters

encoder hidden state

sum of encoder hidden states 
weighted by attention weights 𝛼𝑡𝑖

Bahdanau:

Luong:

ℎ1 ℎ𝑛
𝑠𝑡−1 𝑠𝑡

encoder

decoder

context vector

alignment

ℎ1 ℎ𝑛

𝑠𝑡 𝑠𝑡+1
encoder

decoder

context vector

alignment

ǁ𝑠𝑡

𝛼𝑡𝑖 = softmax(𝒉𝑖
⊤ ⋅ 𝒔𝑡))

encoder hidden state

decoder state

(Bahdanau et al., 2015)
http://arxiv.org/abs/1409.0473
(Luong et al., 2015)
http://arxiv.org/abs/1508.04025 

Luong attention

Bahdanau attention

http://cnyah.com/2017/08/01/attention-variants/ 

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://cnyah.com/2017/08/01/attention-variants/


Transformer

• getting rid of (encoder) recurrences
• making it faster to train, allowing bigger nets

• replace everything with attention
+ feed-forward networks

• ⇒ needs more layers

• ⇒ needs to encode positions

• positional encoding
• adding position-dependent 

patterns to the input

• attention – dot-product (Luong style)

• scaled by 
1

#dims
 (so values don’t get too big)

• more heads (attentions in parallel) 
– focus on multiple inputs
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sin(
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10000
2⋅dim
#dims

) cos(
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2⋅dim
#dims

)

one of these 

for each word

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762 

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 

encoder

decoder

attention

attention

attention

self-att

self-att

self-att

FF

FF

FF

FF

FF

FF

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Transformer
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no recurrent connections

attention over all of input

attention over all of input (cross attention)
& output generated so far (self-attention)

encoder decoder

positional encoding
(indicate position in sentence)

feed-forward (fully connected) network
• ReLU activations
• tricks for better training

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762 

more layers (6-100+)

shared subword embeddings

http://arxiv.org/abs/1706.03762


Pretrained Language Models

• Beyond pretrained word embeddings
• reflects different word meanings in sentence context (~contextual embeddings)

• used as input to added layers on top / base for model finetuning (next week)

• LSTM-based: ELMo (trained on language modelling)

• weighted sum of static word embeddings & LSTM outputs

• Transformer encoders: BERT, RoBERTa…
• for classification, sequence tagging

• any Transformer layer used (typically the last one)

• Transformer decoders: GPT-2, GPT-3…
• for generation, language modelling

• input: force-decoding

• Transformer encoder-decoders: BART, T5…
• same as ↑, explicit input

https://github.com/jessevig/bertviz 

https://lilianweng.github.io/posts/2019-01-31-lm/ 

https://github.com/jessevig/bertviz
https://lilianweng.github.io/posts/2019-01-31-lm/


Large Language Models

• Most are just Transformer decoders

• Only difference w.r.t. previous: size (& training methods – see next time)
• BERT/GPT2/T5 etc.: typically 100M-1B params

• LLMs: 7B-70B (LlaMa), 100B+ (GPT3, PaLM…), unknown (ChatGPT, GPT4…)
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(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223 

NPFL099 L3 2024

(10B+ models shown here)

http://arxiv.org/abs/2303.18223


Mixture-of-Experts

• Prominent extension of Transformers
• some LLMs already based on it: Mixtral, GPT-4??

• Multiply feed-forward layers
& pick which version to use each time
• one copy = one “expert”

• more parameters, but sparse

• Lot of trickery needed to make it work
• working around hardware limitations

• Instruction tuning is important
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(Fedus et al., 2022) https://www.jmlr.org/papers/v23/21-0998.html 
(Gale et al., 2023) https://arxiv.org/abs/2211.15841 
(Shen et al., 2023)  http://arxiv.org/abs/2305.14705 

https://www.jmlr.org/papers/v23/21-0998.html
https://arxiv.org/abs/2211.15841
http://arxiv.org/abs/2305.14705


Summary

• ML as a function mapping in → out
• input features – 1-hot, numeric, embeddings

• pretrained embeddings

• function: layers ~ pipeline, data flows through (= complicated function)

• outputs: classification (category), regression (float)
• structured prediction – sequence tagging, ranking, generation

• Neural networks (~function shapes)
• feed-forward/fully connected

• CNNs (filters, pooling)

• RNNs (LSTMs, GRUs)

• encoder-decoder (seq2seq)

• attention, Transformer (positional encoding & feed-forward & attention)

• pretrained models

• Next week: how to train this stuff
23



Thanks

Contact us: 
 https://ufaldsg.slack.com/
 odusek@ufal.mff.cuni.cz
 Zoom/Skype/Troja

Get the slides here:

 http://ufal.cz/npfl099  

References/Further:
Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org )
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language (http://arxiv.org/abs/1812.06834)
Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer 

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0 
• https://minitorch.github.io/index.html 
• https://objax.readthedocs.io/en/latest/ 
LLM intro: https://www.understandingai.org/p/large-language-models-explained-with 
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No lab today
Next week: lecture & lab

Thu 10:40

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://www.deeplearningbook.org/
http://arxiv.org/abs/1812.06834
http://ufal.mff.cuni.cz/courses/npfl114/1819-summer
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
https://minitorch.github.io/index.html
https://objax.readthedocs.io/en/latest/
https://www.understandingai.org/p/large-language-models-explained-with
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