NPFL099 Statistical Dialogue Systems 2. Data & Evaluation

http://ufal.cz/npfl099

Ondřej Dušek, Zdeněk Kasner, Ondřej Plátek 10. 10. 2024

Before you build a dialogue system

Two significant questions, regardless of system architecture:

1) What data to base it on?

- even if you handcraft, you need data
 - people behave differently
 - you can't enumerate all possible inputs off the top of your head
- ASR can't be handcrafted always needs data

2) How to evaluate it?

- is my system actually helpful?
- did recent changes improve/worsen it?
- actually the same problem as data
 - you can't think of all possible ways to talk to your system

NPFL099 L2 2024

Dialogue Data Collection

- Typical options:
- in-house collection using experts (or students)
 - safe, high-quality, but very expensive & time-consuming
 - scripting whole dialogues / Wizard-of-Oz

web crawling

- fast & cheap, but typically not real dialogues
 - may not be fit for purpose
- potentially unsafe (offensive stuff)
- need to be careful about the licensing

crowdsourcing

• compromise: employing (potentially untrained) people over the web

NPFL099 L2 2024

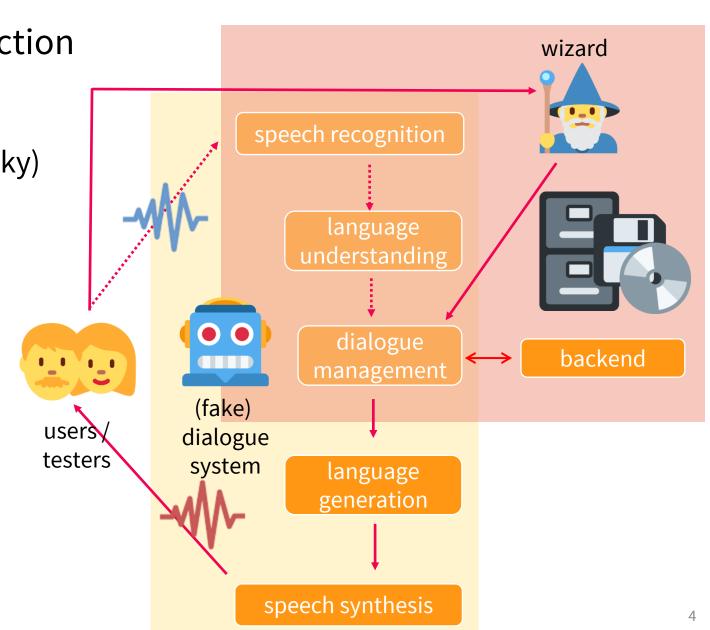
Wizard-of-Oz (WoZ)

typically for in-house data collection

 also: to prototype/evaluate a system before implementing it!

can be crowdsourced (but it's tricky)

- users believe they're talking to a system
 - different behaviour than when talking to a human
 - typically simpler
- system in fact controlled
 by a human "wizard" (=you)
 - typically selecting options (free typing too slow)



Crowdsourcing

hire people over the web

- create a webpage with your task
 - data collection / evaluation
- no need for people to come to your lab
- faster, larger scale, cheaper
- platforms/marketplaces
 - Amazon Mechanical Turk
 - Appen (previously CrowdFlower/FigureEight)
 - Prolific.co
- problems
 - can't be used in some situations (physical robots, high quality audio...)
 - crowd workers tend to game the system → noise/lower quality data, needs checks
 - mainly English speakers, forget about e.g. Czechs

Using the following information:

from=Penn Station, to=Central Park

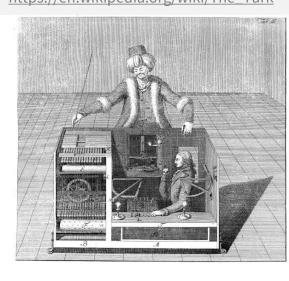
Please confirm that you understand this user request: yes i need a ride from Penn Station to Central Park

Operator (your) reaction:

Your reply is missing the following information: Central Park

Alright, a ride from Penn Station, let me see.

Respond in a natural and fitting English sentence.



- more than recordings/texts typically needed
 - transcripts (for ASR&TTS)
 - semantics, dialogue state (NLU, DM, end-to-end)
 - named entities (NLU)
- getting annotation: similar to getting data itself
- annotation is inherently ambiguous
 - need to test if it's reasonably reliable
 measure inter-annotator agreement (IAA)
 - 2 or more people annotate/transcribe the same thing
 - need to account for agreement by chance
- typical measure: **Cohen's Kappa** $(0 < \kappa < 1)$
 - for categorial annotation
 - 0.4 ~ fair, >0.7 ~ great

$$\kappa = \frac{\text{agreement - chance}}{1 - \text{chance}}$$

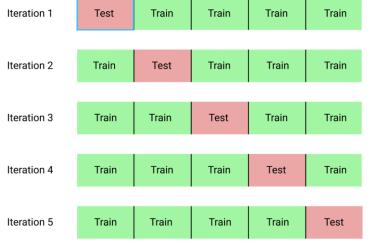
Available Dialogue Datasets

- Many sets available, typically from various research projects (see labs)
 - license: some of them research-only, some free
 - Various types:
 - human-human, human-machine, Wizard-of-Oz
 - generated=synthetic data (~machine-machine)
 - task-oriented or non-task-oriented
 - text-based, multimodal, (audio + text rare)
- Common drawbacks:
 - domain choice is rather limited
 - but it's getting better
 - non-task-oriented are still not ideal (mostly discussion forums, subtitles)
 - **size** is very often not enough (big AI firms have much more, but this is improving)
 - annotation level & quality varies
 - vast majority is **English only** (non-English ones exist, but depend on language/domain)

Dataset Splits

Never evaluate on data you used for training

- memorizing training data would give you 100% accuracy
- you want to know how well your model works on new, unseen data
- Typical dataset split:
 - training set = to train your model
 - development/validation set = for evaluation during system development
 - this influences your design decisions, model parameter settings, etc.
 - test/evaluation set = only use for final evaluation
 - need sufficient sizes for all portions
- Cross-validation when data is scarce:
 - split data into 5/10 equal portions, run 5/10x & test on different part each time
- Evaluating LLMs: beware of leaked datasets!



Dialogue System Evaluation

- Depends on dialogue system type / specific component
- Types:
 - extrinsic = how the system/component works in its intended purpose (ideal)
 - effect of the system on something outside itself, in the real world (i.e. user)
 - intrinsic = checks properties of systems/components in isolation, self-contained
 - **subjective** = asking users' opinions, e.g. questionnaires (~**manual/human**)
 - × should be more people, so overall not so subjective ☺
 - objective = measuring properties directly from data (~automatic)
 - might or might not correlate with users' perception
- Evaluation discussed here is mostly quantitative
 - i.e. measuring & processing numeric values
 - (qualitative ~ e.g. in-depth interviews, more used in social science)

Significance Testing

- Higher score is not enough to prove your model is better
 - Could it be just an accident?

- Need significance tests to actually prove it
 - Statistical tests, H_0 (null hypothesis) = "both models performed the same"
 - H_0 rejected with >95% confidence \rightarrow pretty sure it's not just an accident
 - more test data = more independent results → can get higher confidence (99+%)
- Various tests with various sensitivity and pre-conditions
 - Student's t-test– assumes normal distribution of values
 - Mann-Whitney U test any ordinal, same distribution
 - Bootstrap resampling doesn't assume anything
 - randomly re-draw your test set (same size, some items 2x/more, some omitted)
 - recompute scores on re-draw, repeat 1000x → obtain range of scores
 - check if range overlap is less than 5% (1%...)

Subjective Evaluation: Getting Subjects

- Can't do without people
 - **simulated user** = another (simple) dialogue system
 - can help & give guidance sometimes, but it's not the real thing more for intrinsic
- In-house = ask people to come to your lab (or access your website)
 - students, friends/colleagues, hired people
 - expensive, time-consuming, doesn't scale (difficult to get subjects)
- Crowdsourcing = hire people over the web
 - much cheaper, faster, scales (unless you want e.g. Czech)
 - not real users mainly want to get their reward
- Real users = deploy your system and wait
 - best, but needs time & advertising & motivation
 - you can't ask too many questions
 - Ethics and privacy implications (see recent OpenAI disputes)

Subjective Evaluation (Questionnaires)

- Questionnaires for users/testers
 - based on what information you need (overall satisfaction, individual components)
- Question types
 - Open-ended qualitative
 - Yes/No questions
 - **Likert scales** agree ... disagree (typically 3-7 points)
 - with a middle point (odd number) or forced choice (even number)
 - "Continuous" scales e.g. 0-100 (or no numbers shown, just a slider)
- Question guidelines:
 - easy to understand
 - not too many
 - neutral: not favouring/suggesting any of the replies
 - refer to existing conventions to avoid confusion

Question Examples

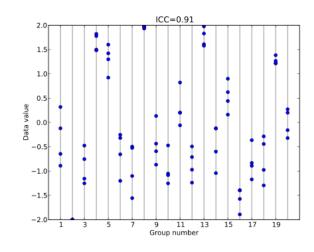
- Success rate (task-oriented):
 Did you get all the information you wanted?
 - typically different from objective measures!
- Future use: Would you use the system again?
- Likeability/engagement: Did you enjoy the conversation?
- **ASR/NLU**: Do you think the system understood you well?
- NLG: Were the system replies fluent/well-phrased?
- TTS: Was the system's speech natural?

System	# calls	Subjective Success Rate	Objective Success Rate
HDC	627	$82.30\%~(\pm 2.99)$	$62.36\%~(\pm 3.81)$
NBC	573	$84.47\%~(\pm 2.97)$	$63.53\%~(\pm 3.95)$
NAC	588	$89.63\%~(\pm 2.46)$	$66.84\% \ (\pm 3.79)$
NABC	566	$90.28\%~(\pm 2.44)$	$65.55\% \ (\pm 3.91)$

(Jurčíček et al., 2012) https://doi.org/10.1016/j.csl.2011.09.004

Question Types

- Aiming at rater consistency (multiple people rating the same)
 - high intraclass correlation coefficient (or other measure of agreement)
- Likert vs. continuous
 - Continuous scales seem to increase consistency
- alternatives: mainly for individual system outputs
 - too hard to do for whole dialogue
 - also work better than Likert
 - Relative ranking / Best-worst scaling
 - sort outputs from best to worst
 - variants: ties allowed / not
 - Magnitude estimation: continuous + reference value
 - rank-based: ask to assign values to multiple outputs at once
 - indirectly ranking



https://en.wikipedia.org/wiki/Intraclass correlation

Intrinsic Objective Evaluation: NLU

• Slot Precision & Recall & F-measure (F1)

(F1 is evenly balanced & default, other F variants favor P or R)

precision
$$P = \frac{\# correct \ slots}{\# detected \ slots}$$
 how much of the identified stuff is identified correctly $R = \frac{\# correct \ slots}{\# true \ slots}$ how much of the true stuff is identified at all

F-measure
$$F = \frac{2PR}{P+R}$$
 harmonic mean – you want both P and R to be high (if one of them is low, the mean is low)

true: inform(name=Golden Dragon, food=Chinese) P = 1/3NLU: inform(name=Golden Dragon, food=Czech, price=high) R = 1/2F = 0.2

Intrinsic Objective Evaluation: NLU

- Accuracy (% correct) used for intent/act type
 - intent detection is multi-class classification (1 utterance → 1 intent)
- alternatively, also exact matches on the whole semantic structure
 - easier, but ignores partial matches
- Assumes one true answer, which might not be accurate
 - there's ambiguity in some user inputs
 - it's still used since it's too hard to account for multiple correct options
- NLU on ASR outputs vs. human transcriptions
 - both options make sense, but they measure different things!
 - intrinsic NLU errors vs. robustness to ASR noise

Extrinsic / Intrinsic Objective Evaluation: Dialogue Manager

- Objective measures (task success rate, duration) can be measured with a user simulator
 - works on dialogue act level
 - responds to system actions
- Simulator implementation
 - handcrafted (rules + a bit of randomness)
 - n-gram models over DA/dialogue turns + sampling from distribution
 - agenda-based (goal: constraints, agenda: stack of pending DAs)
 - reinforcement learning policy
- Problems:
 - cost: the simulator is basically another dialogue system
 - might not be fair (depending on the simulation accuracy)
 - your system would typically work better with a simulator than with humans

Extrinsic / Intrinsic Objective Evaluation: NLG

- No single correct answer here
 - many ways to say the same thing
- Word-overlap with reference text(s): BLEU score

range [0,1] (percentage)
$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{4} \frac{1}{4} \log{(p_n)}\right) \qquad \qquad \text{n-$gram precision:} \\ p_n = \frac{\sum_u \# \text{ matching n-grams in } u}{\sum_u \# \text{ n-grams in } u}$$

- n-gram = span of adjacent n tokens
 - 1-gram (one word) = unigram, 2-gram (2 words) = bigram, 3-gram = trigram

NPFL099 L2 2024

• Example:

```
output: The Richmond's address is 615 Balboa Street. The phone number is 4153798988.
```

<u>ref1</u>: The number for Richmond is 4153798988, the address is 615 Balboa.

ref2: The Richmond is located at 615 Balboa Street and their number is 4153798988.

matching unigrams: the (2x), Richmond, address, is (2x), 615, Balboa, . (only 1x!), number, 4153798988 $p_1 = 11/15$

matching bigrams: The Richmond, address is, is 615, 615 Balboa, Balboa Street, number is, is 4153798988, 4153798988.

$$p_2 = 8 / 14$$

 $p_3 = 5 / 13$, $p_4 = 2 / 12$, BP = 1, BLEU = 0.4048

- BLEU is not very reliable (known for 20 years → people still use it anyway)
 - correlation with humans is questionable
 - never use for a single sentence, only over whole datasets

(Reiter, 2018) https://aclanthology.org/J18-3002/

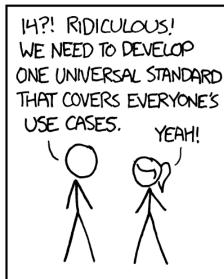
Ext./Int. Objective Evaluation: NLG

Alternatives (not that great):

- Other word-overlap metrics (NIST, METEOR, ROUGE, ChrF ...)
 - many more, often more complex, but frankly not much better performance
 - beware of implementation differences

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.



SOON: SITUATION: THERE ARE 15 COMPETING STANDARDS.

https://xkcd.com/927

- Slot error rate only for delexicalized NLG in task-oriented systems
 - delexicalized → generates placeholders for slot values
 - compare placeholders with slots in the input DA #missed+added+wrong_value slots #total slots
- Diversity mainly for non-task-oriented

$$D = \frac{\text{#distinct } x}{\text{#total } x}, \text{ where } x = \text{unigrams, bigrams, sentences}$$

• can our system produce different replies? (if it can't, it's boring)

Extrinsic / Intrinsic Objective Evaluation: NLG

Entropy / perplexity

- intrinsic for language modelling / word prediction
 - fitting the test set / reference outputs: lower is better
 - actually cross-entropy $-\frac{1}{N}\sum_{i=1}^{N}\log q\left(x_{i}\right)$
 - variant: checking your system's output **fluency** with an existing language model
- extrinsic model output diversity (Shannon entropy)

$$H(p) = -\sum_{x} p(x) \log p(x)$$
 • model outputs per se, no references – *higher is better*

- Variant: n-gram conditional entropy
 - entropy with known previous context

Extrinsic Objective Evaluation

- Analyzing the logs of people/testers/simulator interacting with the system
 - multi-turn evaluation can work out differently from single-turn
- Metrics:

(Takanobu et al., 2020) https://www.aclweb.org/anthology/2020.sigdial-1.37/

- Task success (task-oriented): did the user get what they wanted?
 - testers with agenda → check if they found what they were supposed to
 - [warning] sometimes people go off script
 - basic check: did we provide any information at all? (any bus/restaurant)
- **Duration**: number of turns
 - task oriented: fewer is better, non-task-oriented: more is better
- Other (not so standard):
 - % returning users
 - % turns with null semantics (task-oriented)
 - % swearing / thanking

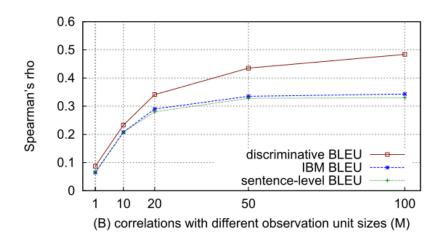
Retrieval metrics

- For retrieval/ranking systems
- Recall: $R_N@k$
 - assuming N candidates, 1 relevant response
 - % of time the relevant one is among top-k rated
 - e.g. $R_{100}@1$ only the 1st out of 100 candidates
- $R_N@1$ given context = **next utterance classification** (NUC)
- precision possible in theory, but not used very much
 - "% of top-k rated that are relevant"
 - actually $P_N@1 = R_N@1$, assuming 1 relevant response
 - $R_N@k$ grows with higher $k, P_N@k \to 0$ with higher k
 - not many datasets have multiple outputs tagged as relevant

ABLEU

- BLEU problem for dialogue: multiple answers are OK
 - but most dialogue datasets only have 1 reference
- ΔBLEU: "discriminative" BLEU
 - get multiple references
 - have them rated (~crowdsourcing)
 - for appropriateness $\in [-1,1]$
 - weigh each n-gram match by highest-scoring reference in which it is found

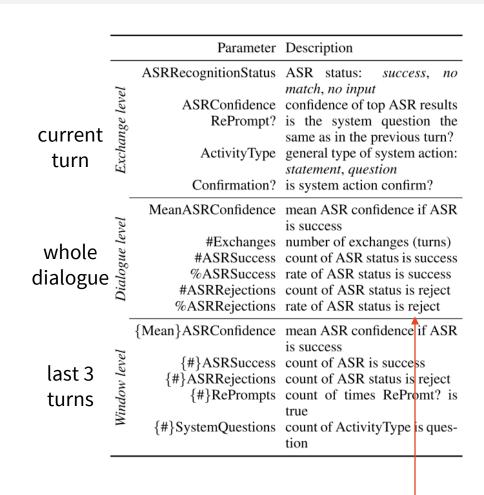
- identical to multi-ref BLEU if all weights = 1
- better correlation with humans



Turn-level Quality Estimation

Interaction Quality

- turns annotated by experts (Likert 1-5)
- trained model (SVM/RNN)
 - very low-level features
 - mostly ASR-related
 - multi-class classification
- result is domain-independent
 - trained on a very small corpus (~200 dialogues)
 - same model applicable to different datasets



"reject" = ASR output doesn't match in-domain LM

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019) https://doi.org/10.1016/j.specom.2015.06.003 https://doi.org/10.21437/Interspeech.2017-1032 https://aclweb.org/anthology/W19-5902/

Trained Dialogue Metrics (works as intrinsic for NLG too)

- Train a supervised machine learning model
 - predict a score of "goodness" of each response
- Inputs may vary:
 - dialogue context + reference response (RUBER, USR)
 - works similarly to BLEU
 - predict if the response fits the context
 - alternative (adversarial evaluation): is the response human-written or not?
 - context + training human ratings = quality estimation
 - can be used at system runtime e.g. select best reply candidate
 - just context (FED)
 - using a pretrained language model
 - how likely the sentence is (~ fluency)
 - how likely it is that something positive/negative comes afterwards

(Tao et al., 2018) http://arxiv.org/abs/1701.03079 (Mehri & Eskenazi, 2020) https://aclanthology.org/2020.sigdial-1.28/

(Bruni & Fernandez, 2017) http://aclanthology.org/W17-5534

(Dušek et al., 2017; 2019) https://arxiv.org/abs/1708.01759 https://arxiv.org/abs/1910.04731

(Mehri & Eskenazi, 2020) https://aclanthology.org/2020.acl-main.64/

Better correlation with people than BLEU, but still not great (~0.4-0.5)

NPFL099 L2 2024

LLM-based metrics

- Prompting an LLM to evaluate
- Various ways:
 - give a score
 - find errors / issues
- Does not need training a model
 - needs examples / definitions for the LLM
- Success varies
 - typically needs large LLMs (~70B, GPT4)
 - depends on the task (and dialogue is hard)

(Kocmi & Federmann, 2023) https://aclanthology.org/2023.wmt-1.64/

- depends a lot on the setup
- ~ 0.3-0.7 correlation with humans

Following is a dialogue context and the response to it. Express how the response is appropriate given the context with a continuous number between 1 and 5. The higher the score, the more appropriate the sentences are. Here are a few examples:

-------{examples}

Now complete the following with just a single float number:

Context: {dialogue_context}

Response: {response}
Appropriateness Score:

(Plátek et al., 2023) https://aclanthology.org/2023.dstc-1.14

(Kasner & Dušek, 2024) https://aclanthology.org/2024.acl-long.651

```
Given the data:

...

data
...

Annotate all the errors in the following text:
...

text
...

Output the errors as a JSON list "errors" in wh and "type". The value of "text" is the text of for the error. The value of "type" is one of 0
```

Output the errors as a JSON list "errors" in which each object contains fields "reason", "text", and "type". The value of "text" is the text of the error. The value of "reason" is the reason for the error. The value of "type" is one of \emptyset , 1, 2, 3 based on the following list:

- 0: Incorrect fact: The fact in the text contradicts the data.
- 1: Not checkable: The fact in the text cannot be checked in the data.
- $\hspace{0.1cm}$ 2: Misleading: The fact in the text is misleading in the given context.
- 3: Other: The text is problematic for another reason, e.g. grammatically or stylistically incorrect, irrelevant, or repetitive.

The list should be sorted by the position of the error in the text. *Example:*

(Jiang et al., 2023) <a href="http://http://https://ht

http://arxiv.org/abs/2310.00752 https://aclanthology.org/2023.dstc-1.16

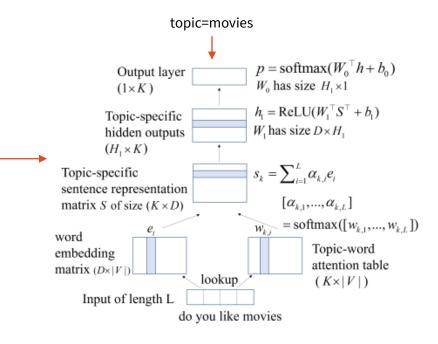
Non-task-oriented: Self-play

- Let the system be its own user simulator
- Have it talk to itself + measure some dialogue properties
- (Ghandeharioun et al., 2019) http://arxiv.org/abs/1906.09308

- sentiment: sentiment classification + changes over dialogue
- semantics/embeddings: coherence ~ embedding similarity
- engagement: # words + # ?'s in responses
- Result = linear combination of ↑, on 10-turn generated dialogues
 - seems to work pretty good (correlation ~0.7)
 - better than individual metrics, better than measuring individual turns

Non-task-oriented: Topic-based Evaluation

- based on a topic classifier
 - "attentional deep averaging networks"
 - using topic-specific saliency ∀ word
 per-topic attentions
 - few fully connected layers + final classification
 - given a turn, assign topic
 - two levels: coarse / fine (e.g. entertainment / movies)
- conversation topic breadth & depth
 - breadth: average number of distinct topics in each dialogue
 - depth: average **length of sub-dialogue** (consecutive turns on the same topic)
- correlates well with human overall dialogue ratings



(Guo et al, 2017) http://arxiv.org/abs/1801.03622

Summary

- You need data (corpus) to build your systems
 - various sources: human-human, human-machine, synthetic
 - various domains
 - size matters
- Evaluation needs to be done on an unseen test set
 - intrinsic (component per se) / extrinsic (in application)
 - objective (measurements) / subjective (asking humans)
 - don't forget to check significance
- Evaluation is non-trivial
 - there is no ideal metric humans, BLEU, recall... all have their problems
 - you can try training a model / using LLM for evaluation might work better
- Next week: Machine learning

Thanks

Contact us:

https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Zoom/Slack/Troja (by agreement)

Get the slides here:

http://ufal.cz/npfl099

References/Further:

- Deriu et al. (2019): Survey on Evaluation Methods for Dialogue Systems: http://arxiv.org/abs/1905.04071
- Santhanam & Shaikh (2019): Towards Best Experiment Design for Evaluating Dialogue System Output https://www.aclweb.org/anthology/W19-8610/
- Takanobu et al. (2020): Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation https://www.aclweb.org/anthology/2020.sigdial-1.37/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Oliver Lemon & Arash Eshghi's slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Helen Hastie's slides (Heriot-Watt University): http://letsdiscussnips2016.weebly.com/schedule.html

Lab in 10 mins 1st homework assignment

Next Lecture Thu 10:40 (no lab)