NFPL099 Statistical Dialogue Systems

10. Chatbots/Open-Domain Systems

http://ufal.cz/npfl099

Ondřej Dušek, Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtova

5.12.2023
Chatbots / Chatterbots

- dialogue systems for **open-domain** dialogue – **chitchat**
 - i.e. “talk about anything”, though this definition is problematic
 - we don’t talk about anything with anyone, there’s a lack of shared context (common ground)
 - definitions aren’t unified across literature (may be more “social”)
- mostly **non-task-oriented** (though this changes)
 - main goal: keep the user entertained
 - standard evaluation: conversation length, user engagement
- (somewhat) different architecture
 - mostly simpler, integrated – like end-to-end DS (i.e. no separate NLU/DM/NLG)
 - it’s hard to have explicit NLU – no task to guide the meaning formalism
 - some of them don’t need a DB connection (but some use it)
- beware: *any dialogue system* is called a “chatbot” nowadays
 - this lecture: only non-task-oriented / open-domain systems
Chatbot tests

• **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990-2019)
 - Turing test style, first topic-restricted 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – hype but no real progress

• **Amazon Alexa Prize** (2017+, “Socialbot Grand Challenge”)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)
• 1st chatbot: **Eliza** (1966)
 • rule-based, simulates a therapist
• **Parry** (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test
• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems
• 1990’s/2000’s – retrieval-based systems
• 2015+ – huge surge of generative models
Chatbot basic architectures

• **Rule-based**
 • human-scripted, react to keywords/phrases in user input
 • very time-consuming to make, but still popular
 • chitchat by conversational assistants is typically rule-based
 • AIML – standard for keyword spotting rules (e.g. Pandorabots platform)

• **Data-driven**
 • retrieval – remember a corpus & get replies from there
 • “nearest neighbour” approaches
 • corpus can contain past conversations with users
 • chatbots differ in the sophistication of reply selection
 • **generative** – (typically) seq2seq-based models
 • trained typically on static corpora
 • (theoretically) able to handle unseen inputs, produce original replies
 • basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. alike → what is the connection
- fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user’s phrasing
- it’s all about the framing
 - it’s easier to appear human as a therapist (or paranoid schizophrenic)
Retrieval-based chatbots

- remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

- needs 2 steps
 1) rough retrieval
 • needs to be fast to search the whole corpus (e.g. TF-IDF)
 2) more accurate reranking for candidates
 • most research focuses on this step

- problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

- solution:
 • use postprocessing, combine with rules (e.g. Cleverbot/Xiaoice bots)
Ranking responses

- **Machine learning** – **learning to rank**
 - **pointwise**: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - **pairwise**: just learn to rank good > bad
 - incur loss for inversions
 - **architecture** – anything possible
 - typical neural: **dual encoder / Siamese network**
 - 2 RNNs, for context & response + fully connected

- **training data problem:**
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
DialogRPT: Ranking with pretrained LMs

- GPT-2-based model (DialoGPT →)
- contrastive learning: feed 1 context + 2 responses, classify which is better
 - binary classification layer on top of last token
 - better than classify good/bad in isolation
- self-supervised data for ranking from Reddit
 - width = # of direct replies
 - depth = max. dialog length in subtree
 - updown = 👍儿 - 👎 votes

(Gao et al., 2020)
https://aclanthology.org/2020.emnlp-main.28/
Generative chatbots: RNNs

- Generic LSTM-based **Seq2seq** model
 - encode context / input, decode response
 - examples in the paper look great, but… (→)
 - the paper also reports some problems, but they’re much more prevalent than it looked

<table>
<thead>
<tr>
<th>U: who is skywalker ?</th>
<th>S: he is a hero .</th>
</tr>
</thead>
<tbody>
<tr>
<td>U: who is bill clinton ?</td>
<td>S: he ’s a billionaire .</td>
</tr>
<tr>
<td>U: what is the purpose of life ?</td>
<td>S: to serve the greater good .</td>
</tr>
<tr>
<td>U: what is moral ?</td>
<td>S: what empowered humanity , what intellectual the essence is .</td>
</tr>
</tbody>
</table>

Human: who is skywalker ?
Machine: he is a hero .
Human: who is bill clinton ?
Machine: he 's a billionaire .
Human: is sky blue or black ?
Machine: blue .
Human: does a cat have a tail ?
Machine: yes .
Human: does a cat have a wing ?
Machine: no .
Human: can a cat fly ?
Machine: no .
Human: how many legs does a cat have ?
Machine: four , i think .
Human: how many legs does a spider have ?
Machine: three , i think .
Human: how many legs does a centipede have ?
Machine: eight .
Human: what is the color of the sky ?
Machine: blue .
Human: what is the color of water ?
Machine: water .
Human: what is the color of blood ?
Machine: it is the same as a black eye .
Human: what is the usual color of a leaf ?
Machine: it is a green one .
Human: what is the color of a yellow car ?
Machine: yellow .
Human: how much is two plus two ?
Machine: four .
Human: how much is ten minus two ?
Machine: seventy - two .

(Vinyals & Le, 2015)
https://arxiv.org/abs/1506.05869
Seq2seq Chatbot Problems

• **generic/dull responses**
 - short, low-entropy, repetitive
 - problem: too many possible outputs given input
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

• **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

• **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

(U: How old are you?
S: 16 and you?
U: What’s your age?
S: 18.

U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?)
Improving diversity & coherence: MMI, HRED

Reranking: MMI
- avoid dull replies that work anywhere
- instead of maximizing $P(\text{Resp}|\text{Context})$, **maximize mutual information**
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

Longer context: HRED (Hierarchical Recurrent Encoder-Decoder)
- 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input

(Li et al., 2016)
https://www.aclweb.org/anthology/N16-1014

Input: what is your name?

<table>
<thead>
<tr>
<th>I don’t know.</th>
<th>-0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>I don’t know!</td>
<td>-0.92</td>
</tr>
<tr>
<td>I don’t know, sir.</td>
<td>-1.58</td>
</tr>
<tr>
<td>Oh, my god!</td>
<td>-0.97</td>
</tr>
<tr>
<td>My name is John.</td>
<td>-1.59</td>
</tr>
</tbody>
</table>

$MI = \log \frac{P(R,C)}{P(R)P(C)}$

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698
Improving diversity: VAE-style

- joining **next turn generation & autoencoding**
 - LSTM VAE-like model, shared latent space
 - multi-task learning
 - shared decoder
 - additional “fusion loss” enforcing the same encoding for both tasks

- inference: adding a little noise to encodings
 - to produce different outputs

(Gao et al., 2019)
http://arxiv.org/abs/1902.11205
Improving coherence: Additional objectives

- Transformer-based architectures
- **Denoising** (autoencoder): additional decoders
 - shuffled word order
 - masked words
 - masked utterance (mid-dialogue)
 - utterance order (GRU decoding order)

- **Unlikelihood** – demoting unlikely tokens
 - penalize set of tokens selected at each time step
 - repeating n-grams, too much high-freq. vocab…
 - weighted combination with regular MLE loss

(Zhao et al., 2020) https://www.aclweb.org/anthology/2020.emnlp-main.279/

(Li et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.428
Chat-Specific Pretrained Language Models

- **DialoGPT** – GPT-2 finetuned on Reddit (147M dialogues)
 - no hierarchy, whole chat as a long text – next-word prediction
 - works better than seq2seq-based ones

- **Meena**
 - “Evolved Transformer” architecture (Transformer + small changes automatically tuned)
 - encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
 - rule-based postprocessing
 - evaluation: “making sense” & “being specific” – better on both

- **BlenderBot**
 - again, huge Transformers (but has a smaller version)
 - retrieval & generative versions
 - pretrained on Reddit, finetuned on a combination of specific dialogue datasets
 - constrained beam search (avoid too short replies), better than sampling

(Adiwardana et al., 2020)

(Zhang et al., 2020)
https://www.aclweb.org/anthology/2020.acl-demos.30

(Roller et al., 2021)
https://aclanthology.org/2021.eacl-main.24/
Consistent Personality

- improving consistency by modelling chatbot’s personality
- **Persona embeddings**
 - train speaker embeddings
 - use speaker + word embeddings in the decoder
 - needs lots of data
- **Persona copy-net**
 - add & attend to personal bio in context
 - chunks of text
 - copy-net or pretrained LMs

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

(Yavuz et al., 2019)
https://www.aclweb.org/anthology/W19-5917/
Personality in LLMs

• LLM prompts often include “persona”
 • in their **system prompt / metaprompt / system message**
 • special prompt added before the actual conversation starts
 • ChatGPT: *You are a helpful assistant*

• Can include more details
 • personality, limitations, capabilities
 • behavior “guardrails” (*Avoid harmful or unethical content.*)

• Different personalities influence LM behavior & performance
 • adding a role help, esp. interpersonal & not too intimate (*friend, colleague*)
 • choosing the best role is tricky

(Zheng et al., 2023)
http://arxiv.org/abs/2311.10054
Retrieval-augmented bots

- Combination of generation & retrieval
 1) **Retrieve** a candidate,
 2) **Edit** it using a seq2seq model to better match context

- Knowledge grounding
 - candidate = knowledge to be used in response
 - Wizard-of-Wikipedia

- Problem: right amount of copying
 - Don’t ignore the retrieved
 - Don’t copy it verbatim
 - Question of parameters, tradeoff, various hacks to achieve this
 - α-blending: replace retrieved with target with some probability, to promote copying

(Pandey et al., 2018) https://aclanthology.org/P18-1123/
(Weston et al., 2018) https://aclanthology.org/W18-5713/
(Xu et al., 2021) http://arxiv.org/abs/2107.07567
(Roller et al., 2021) https://aclanthology.org/2021.eacl-main.24
Retrieval Transformer / Toolformer

- Retrieval as you generate
 - conditioned on the already generated tokens
 - allows to feed in relevant factual info

- RETRO
 - 2 nearest neighbor prefixes from DB
 - retrieved for each chunk = 4 tokens
 - retrieve, use in attention (via special layers)

- Toolformer
 - LM decodes special prefix + params for “tools” i.e. different API calls
 - finetuned on data with interleaved API calls
 - API calls sampled & filtered by loss reduction
 - QA, Wiki search, calc, calendar, MT

(Borgeaud et al., 2022) http://arxiv.org/abs/2112.04426
https://jalammar.github.io/illustrated-retrieval-transformer/

(Schick et al., 2023) http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2112.04426
Reasoning via external model

- COMET: pretrained commonsense model
 - inferring user/system emotion (xReact) + user desire (xWant) & system intent (xIntent)
 - user at runtime, system at training only (from ground truth data)
- system intent & emotion inferred at runtime
 - from user intent & emotion
 - using ChatGPT with specially crafted prompts
- ChatGPT / T5 conversation model
 - inferred intent & emotion inserted before reply
Training from feedback

• **LaMDA**: LM + retrieval + “calculator”
 - pretrained on dialogue
 - finetuned on annotated corrections of its own outputs
 - usage of retrieval & calculator annotated
 - generate multiple, filter (safety) & rerank
 - 2B/137B params versions

• **RLHF**: “standard” set by ChatGPT
 1) supervised finetuning
 2) evaluation/ranker model training
 • human annotations for model generation
 3) RL with proximal policy optimization
 • ranker model as reward
 • direct preference optimization: RL-free alternative

https://openai.com/blog/chatgpt, https://www.youtube.com/watch?v=0A8ljAkdfTg

https://huggingface.co/blog/rlhf
Training from feedback

JUICER
- Get sparse user feedback & corrections
- Label rest of the data
- Train corrector LM
- Convert bad → good replies
- Retrain model on converted replies

SYNDICOM
- GPT-3 generated dialogues by rephrasing templates
- GPT-3 error injection
- Human feedback → corrector LM

(Richardson et al., 2023) https://aclanthology.org/2023.sigdial-1.27
• Production SotA*: combing all methods
 • rule-based for sensitive/frequent/important questions
 • retrieval for jokes, trivia etc.
 • task-oriented-like systems for specific topics (handcrafted/specially trained)
 • news, weather etc.
 • seq2seq for everything else
• NLU is typically shared, with advanced NLP pipelines
 • NER is very important – can get relevant news & trivia
• Decision among bots
 • based on NLU topic detection
 • ranking multiple answers
 • profanity detection – censoring outputs

*if you want to retain some control
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn’t like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself – conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

<table>
<thead>
<tr>
<th>Turn</th>
<th>User</th>
<th>Sounding Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Let’s chat.</td>
<td>Hi! This is an Alexa Prize socialbot. How’s your day?</td>
</tr>
<tr>
<td>2</td>
<td>I’m fine.</td>
<td>Glad to hear it! We could talk about robots, Batman, or Superman. Say “next”, to chat about other things.</td>
</tr>
<tr>
<td>3</td>
<td>Superman.</td>
<td>It looks like you wanna chat about Superman. I was high in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?</td>
</tr>
<tr>
<td>4</td>
<td>I guess so.</td>
<td>Did you know that Henry Cavill almost missed the call for the role of Superman cause he was playing "World of Warcraft"</td>
</tr>
<tr>
<td>5</td>
<td>Really, I didn’t know that.</td>
<td>Weird, right? Speaking of Superman, did you see Superman? It was released in 1997. It’s a comedy.</td>
</tr>
<tr>
<td>6</td>
<td>Yes, it was hilarious.</td>
<td>I’m glad you feel this is hilarious. Which part do you like best about this movie?</td>
</tr>
<tr>
<td>7</td>
<td>The part when he met Lewis</td>
<td>Interesting. Wescott and Reilly co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good! Do you like the movie’s director?</td>
</tr>
</tbody>
</table>

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Alana (Heriot-Watt University, 2017 & 2018 3rd)

- **Bots:**
 - Rule-based chit-chat
 - Ontologies – knowledge graph walk
 - movies, music, sports, books
 - Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
 - Specific services
 - Bots compete for reply
 - priority list
 - bots can “lock”

http://arxiv.org/abs/1712.07558
Alquist (Czech Technical University, 2017&2018 2nd)

- full NLU pipeline (similar to Alana)
- 2017 – handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 – adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

http://alquistai.com/
https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb
https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f
• Knowledge graph: Wikidata + User + Bot model
 • RDF triples, partially delexicalized
 • allows building user profile + referencing it
• NLU – BERT-based segmenting (multiple intents)
 • produce responses to all, then select
• DM/NLG – response based on “adjacency pairs”
 • predefined input-response pairs/sub-graphs
 • transition depends on KG search
 • adding prompts (questions, fun facts etc.)
• Out-of-domain: detection & DialoGPT response
 • DialogRPT reranker
• Exploration vs. exploitation
 • first get to know user, then use this information
Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem
• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)
• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work well
• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)
• brutal variance in the evaluation – very subjective
Summary

• chatbots = **non-task oriented** systems
 • targets: **conversation length & user engagement**
 • impersonating a human – Turing test

• approaches:
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq/transformer trained on corpora of dialogues
 • too many possible responses don’t go well with MLE \(\rightarrow\) safe, short, dull
 • many extensions: personality, coherence, diversity, retrieval-augmented, RLHF
 • **hybrid** – combining all of the above

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Thanks

Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Mainly individual papers referenced directly on slides
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test XiaoIce Zo_(bot)