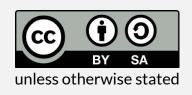
NPFL099 Statistical Dialogue Systems 8. Natural Language Generation

Zdeněk Kasner, Ondřej Dušek, Simone Balloccu, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

http://ufal.cz/npfl099

21.11.2023



Natural Language Generation

- = task of automatically producing text in e.g. English (or any other language)
- covers many subtasks:

task	input	output
unconditional language generation	Ø	arbitrary text
conditional language generation	short text prompt	continuation of the prompt
machine translation	text in language A	text in language B
summarization	long text	text summary
question answering	question	answer
image captioning	image	image caption
data-to-text generation	structured data	description of the data
dialogue response generation	dialogue act	system response

NLG in a narrow sense

NLG Objectives

general NLG objective:

given input & communication goal create accurate + natural, well-formed, human-like text

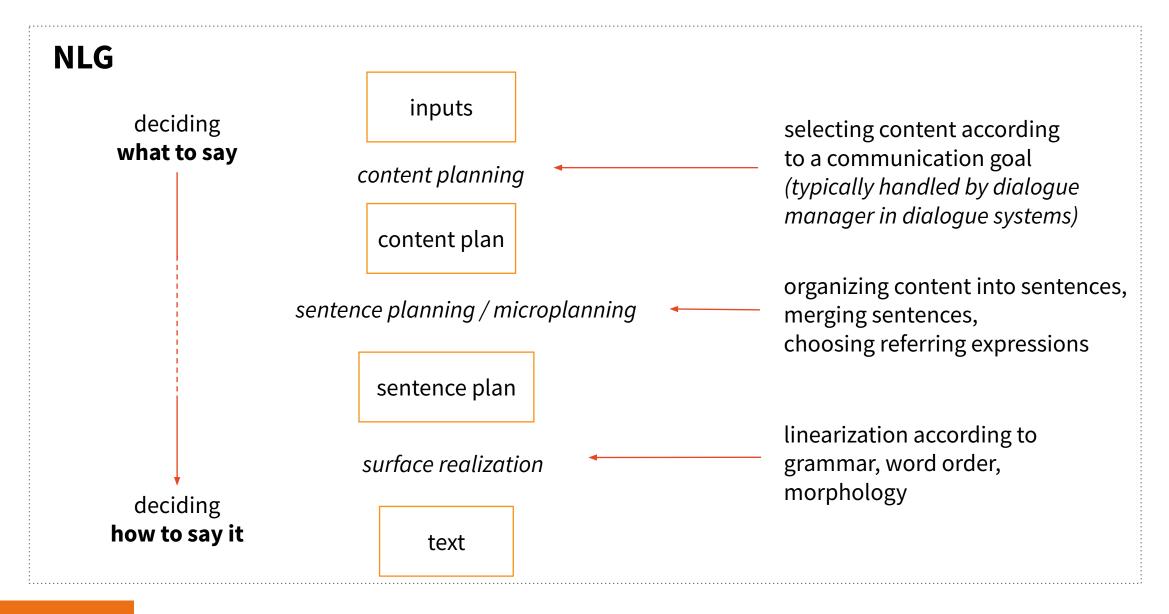
- additional NLG desired properties:
 - variation (avoiding repetitiveness)
 - simplicity (saying only what is intended)
 - adaptability (conditioning on e.g. user model)

NLG in Dialogue Systems

• in the context of dialogue systems:

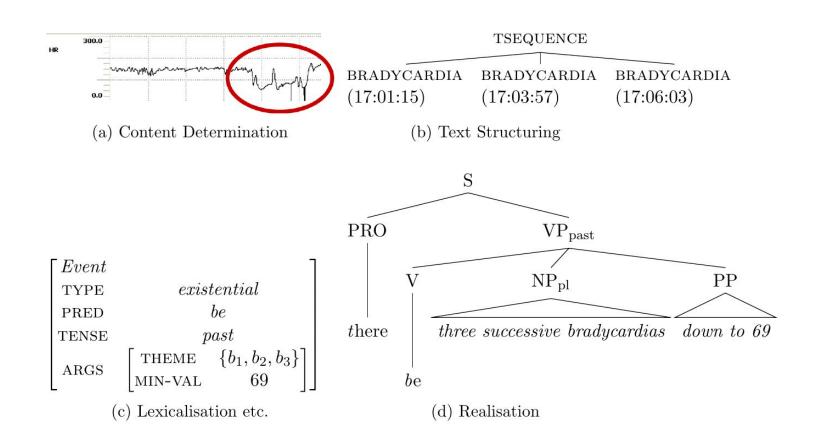
- system action
 - selected by the dialogue manager
 - may be conditioned on:
 - dialogue state
 - dialogue history (→ referring expressions, avoiding repetition)
 - user model (→ "user wants short answers")

NLG Subtasks (Textbook Pipeline) = how proper NLG had to be done before neural approaches



NLG Subtasks (Textbook Pipeline)

Example: classical NLG pipeline in medical domain



NLG Basic Approaches

- hand-written prompts ("canned text")
 - most trivial hard-coded, no variation
 - doesn't scale (good for DTMF phone systems)
- templates ("fill in blanks")
 - simple, but much more expressive covers most common domains nicely
 - can scale if done right, still laborious
 - most production dialogue systems

• grammars & rules

- grammars: mostly older research systems
- rules: mostly content & sentence planning

machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- NNs made it work much better

Template-based NLG

- most common in commercial dialogue systems
- simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- lacks generality and variation
 - difficult to maintain, expensive to scale up
- can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules (heuristics, random variation)
- can be a good starting point for ML algorithms
 - post-editing / reranking the templates with neural language models

Template-based NLG – Examples

Example: Facebook



NPFL099 L8 2023 9

Template-based NLG – Examples

Example: Dialogue assistants

Alexa

On the **Intents** detail page, the **Intent Slots** section after the **Sample Utterances** section displays the slots you add. When you highlight a word or phrase in an utterance, you can add a new slot or select an existing slot.

For example, the set of utterances shown earlier now looks like the following example.

```
i am going on a trip on {travelDate}
i want to visit {toCity}
I want to travel from {fromCity} to {toCity} {travelDate}
I'm {travelMode} from {fromCity} to {toCity}
i'm {travelMode} to {toCity} to go {activity}
```

(https://developer.amazon.com/en-US/docs/alexa/custom-skills/create-intents-utterances-and-slots.html)

Mycroft

```
Order some {food}.
Order some {food} from {place}.
Grab some {food}.
Grab some {food} from {place}.
```

Rather than writing out all combinations of possibilities, you can embed them into a single line by writing each possible option inside parentheses with | in between each part. For example, that same intent above could be written as:

```
(Order | Grab) some {food} (from {place} | )
```

(https://mycroft-ai.gitbook.io/docs/mycroft-technologies/padatious)

Template-based NLG – Examples

Example: Research systems

```
'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
    "Alright, from {from_stop} to {to_stop},",

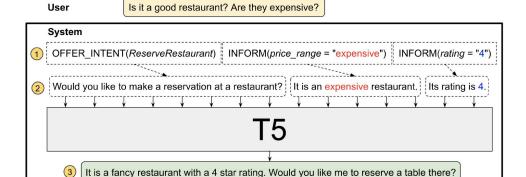
'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "Alright, to {to_stop} in {arrival_time_rel},",

'iconfirm(arrival_time="{arrival_time}")':
    "You want to be there at {arrival_time},",

'iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "You want to get there in {arrival_time_rel},",

(Alex public transport information rules)
    https://github.com/UFAL-DSG/alex
```

CONFIRM!!date!!@	The date is @.
CONFIRM!!party_size!!@	The reservation is for @ people.
CONFIRM!!restaurant_name!!@	Booking a table at @.
CONFIRM!!time!!@	The reservation is at @.
GOODBYE	Have a good day.
INFORM!!cuisine!!@	They serve @ kind of food.
INFORM!!has_live_music!!False	They do not have live music.
INFORM!!has_live_music!!True	They have live music.

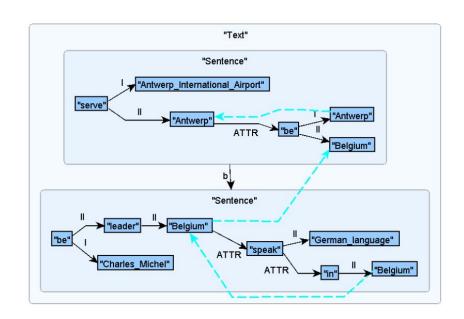


(Kale & Rastogi, 2020) https://www.aclweb.org/anthology/2020.emnlp-main.527

Grammar / Rule-based NLG

based on top of linguistic theories

- state-of-the-art research systems until NLG the arrival of NNs
- rules for building tree-like structures
 → rules for tree linearization
- reliable, more natural than templates
- takes a lot of effort, naturalness still not human-level
- see NPFL123 for more details



(Mille et al., 2019) https://aclanthology.org/W19-8659.pdf

Neural NLG

- learning the task from the data
- sequence-to-sequence generation / editing / re-ranking
- fluency can match human-level, minimal hand-crafting
- not controllable ("black-box"), semantic inaccuracies (omissions / hallucinations), low diversity, expensive data gathering, expensive training, expensive deployment
 - → promising research area 😉
- getting better with larger models

Seq2seq Generation

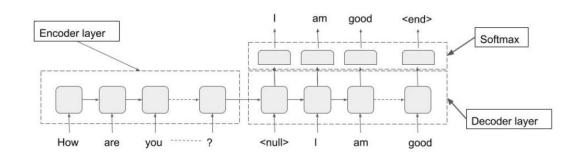
encoder-decoder

- RNN: encoder updates the hidden state → decoder is initialized with the hidden state
- *Transformer*: encoder generates a sequence of hidden states → decoder attends to this sequence
- pretrained Transformers (PLMs): BART, T5 (trained on sequence denoising)

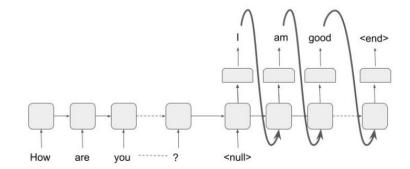
decoder-only

- input sequence is prepended as a context, the decoder generates continuation
- PLMs: GPT-2, GPT-3 (trained on autoregressive language modelling)
- training vs. inference:

Encoder-Decoder Training



Encoder-Decoder Inference



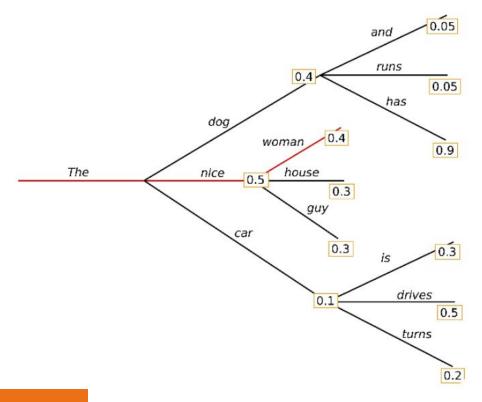
- for each time step t, the decoder outputs a probability distribution: $P(y_t | y_{1:t-1} | X)$
- how to use it?
- exact inference: find a sequence maximizing $P(y_{1:T} | X)$
 - not possible in practice (why? and is it our goal?)
- approximation algorithms
 - greedy search
 - beam search
- stochastic algorithms
 - random sampling
 - top-k sampling
 - nucleus sampling (=top-p sampling)

(+ repetition penalty → decreasing probabilities of generated tokens)

NPFL099 L8 2023 15

 $\underline{https://towardsdatascience.com/decoding\text{-}strategies\text{-}that\text{-}you\text{-}need\text{-}to\text{-}know\text{-}for\text{-}response\text{-}generation\text{-}ba95ee0faadc}$

- greedy search: always take the argmax
 - does not necessarily produce the most probable sequence (why?)
 - often produces dull responses



Example:

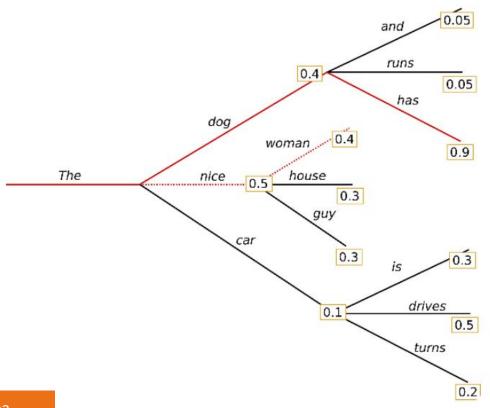
Context: Try this cake. I baked it myself.

Optimal Response: This cake tastes great.

Greedy search: This is okay.

many examples start with "This is", no possibility to backtrack

- **beam search:** try *k* continuations of *k* hypotheses, keep *k* best
 - o better approximation of the most probable sequence, bounded memory & time
 - allows re-ranking generated outputs
 - \circ k=1 \rightarrow greedy search



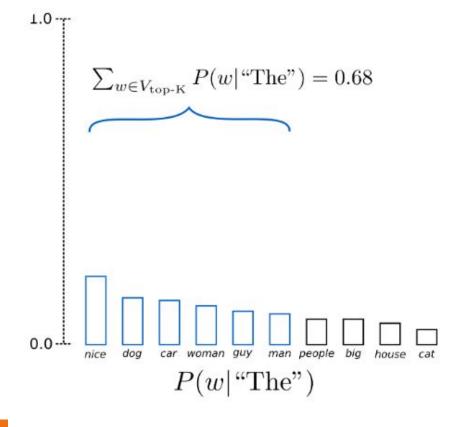
Reranking:

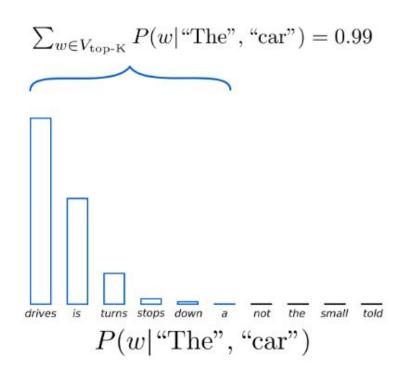
```
is there a later time
inform_no_match(alternative=next)

-2.914 No route found later , sorry .
-3.544 The next connection is not found .
-3.690 I'm sorry , I can not find a later ride .
-3.836 I can not find the next one sorry .
-4.003 I'm sorry , a later connection was not found .

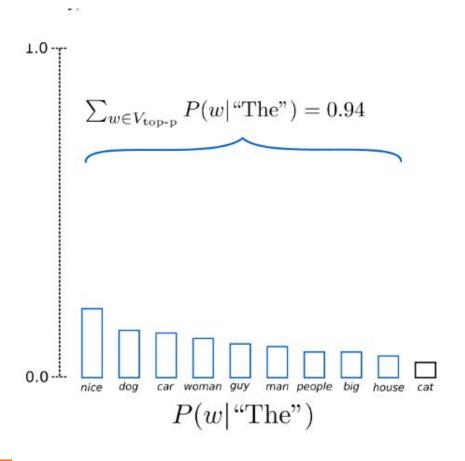
(Ondřej's PhD thesis, Fig. 7.7)
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
```

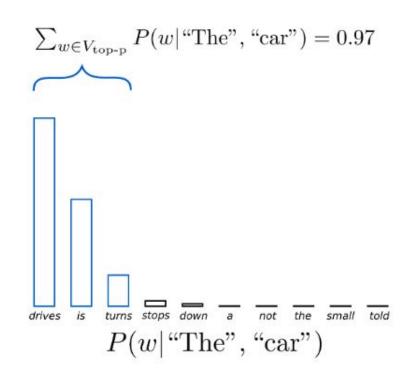
- top-k sampling: choose top k options (~5-500), sample from them
 - avoids the long tail of the distribution
 - more diverse outputs





- **nucleus sampling:** choose top options that cover $\geq p$ probability mass (~ 0.9)
 - "k" is adapted according to the distribution shape

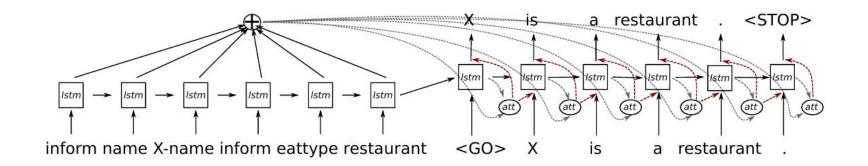




RNN-based Approaches

- first neural approaches: ~2015
- TGen: standard LSTM with attention
 - encoder triples <intent, slot, value>
 - decodes words (possibly delexicalized)
 - · beam search & reranking

(Dušek & Jurčíček, 2016) https://aclweb.org/anthology/P16-2008



- RNNLM
 - using special LSTM gate cells (SC-LSTM) to control slot mentions

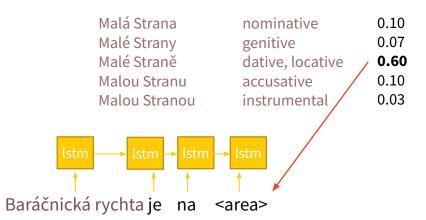
(Wen et al, 2015; 2016)

http://aclweb.org/anthology/D15-1199 http://arxiv.org/abs/1603.01232

NPFL099 L8 2023 20

Delexicalization Alternatives

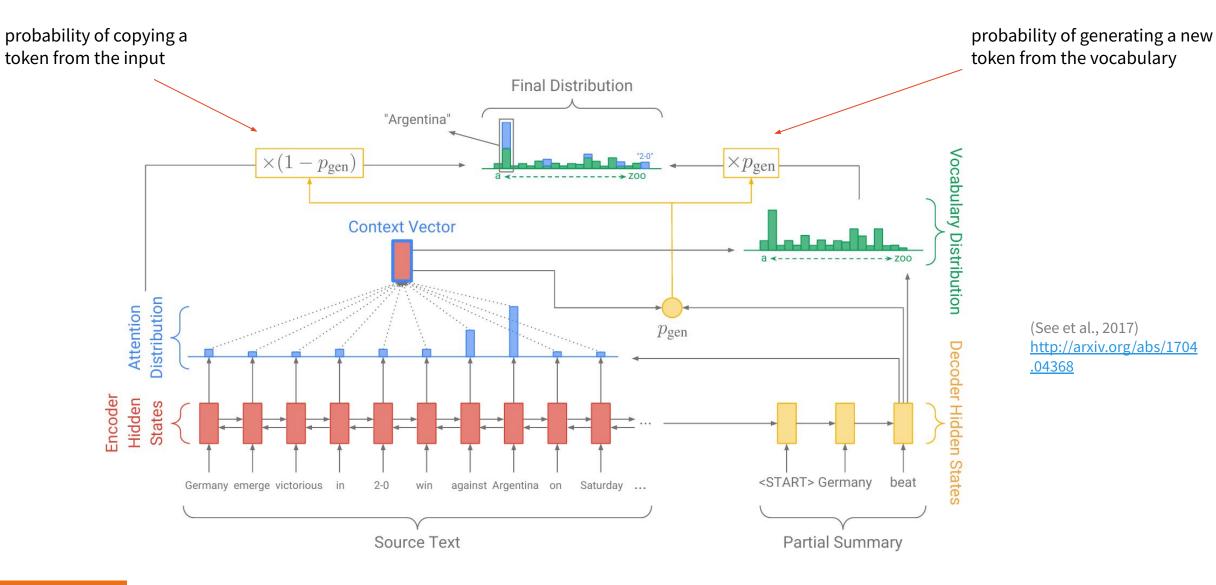
- copy mechanism (see NLU & the next slide)
 - select (or interpolate) between:
 - generating a new token
 - copying a token from input
 - removes the need for pre/postprocessing
- inflection model
 - useful for languages with rich morphology (e.g., Czech)
 - a simple LM such as RNN LM
- pretrained models
 - the model learns to copy and inflect words implicitly during pretraining
 - works well for high-resource languages



Baráčnická rychta is in Malá Strana

(Dušek & Jurčíček, 2019) https://arxiv.org/abs/1910.05298

Delexicalization Alternatives - Copy Mechanism



Finetuning PLMs

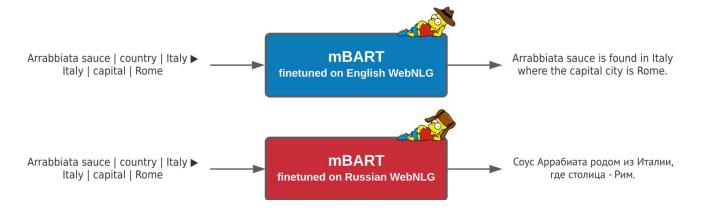
- GPT-2 or BART / T5 finetuned for NLG
 - different pretraining tasks similar outcomes
- works nicely when simply finetuned for data-to-text
 - encode linearized data, decode text
 - the model learns copying implicitly
- mBART / mT5 (multilingual) → allows multilingual generation
 - can generate e.g. Russian outputs from English triples
- are we done now?

(Liu et al., 2020)

(Kale & Rastogi, 2020)

https://www.aclweb.org/anthology/2020.in lg-1.14

http://arxiv.org/abs/2001.08210



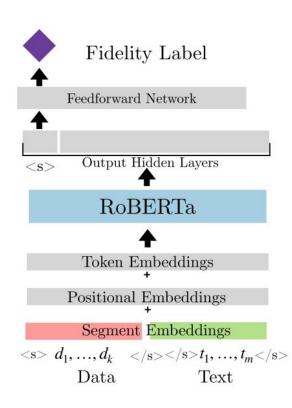
(Kasner & Dušek, 2020) https://aclanthology.org/2020. webnlg-1.20/

Finetuning PLMs with Reranking

- goal: improving semantic accuracy
- seq2seq + reranking with GPT-2 & RoBERTa
- GPT-2 fine-tuned for <data> name[Zizzi] eatType[bar] <text> Zizzi is a bar.

prompt (fed into GPT-2) decoded given the prompt

- beam search decoding
- RoBERTa for classification
 - accurate/omission/repetition/hallucination/value error
 - training data synthesized
 - "accurate" examples from original training data
 - others created by manipulating the data and texts (adding/removing/replacing sentences and/or data items)



PLMs + Templates

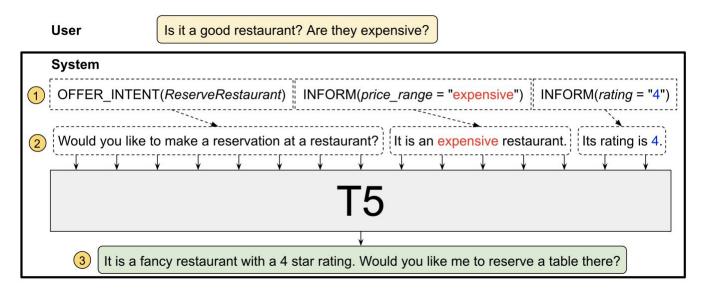
- combining advantages of templates (controllability) and PLMs (fluency)
- concatenate simple templates and then use pretrained LMs (e.g. T5/BART) to rephrase them
 - basically text-to-text denoising, i.e. what the models were originally trained to do
- needs less data & generalizes to new domains

(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.emnlp-main.527

templates

CONFIRM!!date!!@	The date is @.
CONFIRM!!party_size!!@	The reservation is for @ people.
CONFIRM!!restaurant_name!!@	Booking a table at @.
CONFIRM!!time!!@	The reservation is at @.
GOODBYE	Have a good day.
INFORM!!cuisine!!@	They serve @ kind of food.
INFORM!!has_live_music!!False	They do not have live music.
INFORM!!has_live_music!!True	They have live music.

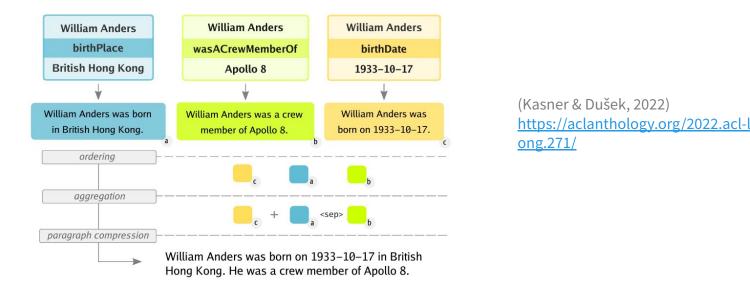
system



NPFL099 L8 2023 25

PLMs + Templates

- data-to-text NLG without human-written references
- start with templates → postprocess them with BART-based models
 - trained for text-based operations learned from Wikipedia



improvement: using prompted GPT-3 instead of hand-crafted templates

Prompting LLMs

- direct instructions instead of task-specific finetuning (see Lecture 4, slide 21)
- works only with very large models (about >1B par.)
- ChatGPT, GPT-4 → best performance, but many issues (replicability, cost, data contamination, ...)
- preliminary results for NLG: prompting competitive to finetuning, but different kinds of problems:
 - variability in responses ("Here is the answer: (...)", "As an AI language model (...)"
 - prompt sensitivity
 - hallucinations
- for NLG in dialog, overgenerate-and-rerank still helps

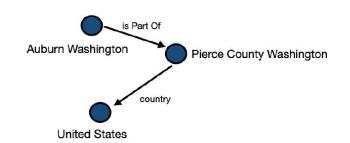
(Ramirez et al., 2023)

https://aclanthology.org/2023.sigdial-1.32

Before Chat GPT

After Chat GPT

https://www.boredpanda.com/chatgpt-memes/



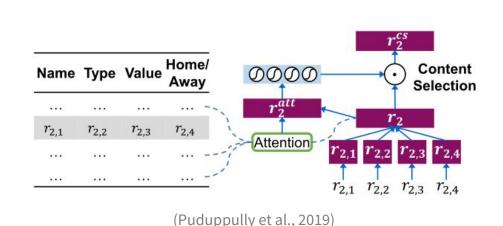
(b) Generate text from graph: <H> Auburn Washington <R> is Part Of <T> Pierce County Washington <H> Pierce County Washington <R> country <T> United States

(Yuan and Färber, 2023) http://arxiv.org/abs/2307.14712

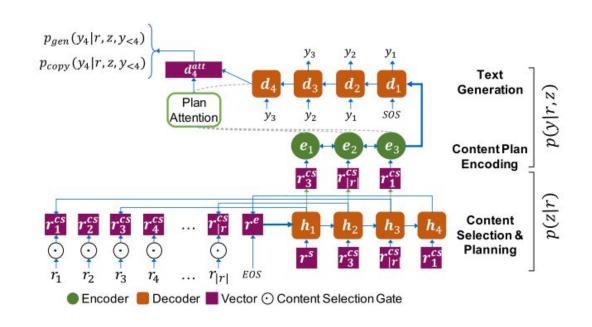
Content Planning: Content Selection

- explicit content selection
- usually done by DM in dialogue systems
- needed for complex inputs, e.g. sports report generation
 - records (team / entity / type / value) → summary
 - content selection: pointer network
- still largely unsolved problem w.r.t. semantic accuracy

(Thomson & Reiter, 2022) http://arxiv.org/abs/2108.05644



http://arxiv.org/abs/1809.00582



Content Planning: Content Selection

Example of NLG with content planning

source statistics (excerpt)

TEAM	WIN	LOSS	PTS	FG	PCT	RB	AST	,	
Pacers	4	6	99	100	42	40	17		
Celtics	5	4	105	19	44	47	22		
PLAYE	R	H/V	AST	RB	PTS	FG	CITY	′	
Jeff Tea	igue	Н	4	3	20	4	India	na	
Miles Ti	urner	Н	1	8	17	6	India	na	
Isaiah 7	Thoma	s V	5	0	23	4	Bost	on	
Kelly O	lynyk	V	4	6	16	6	Bost	on .	
Amir Jo	hnson	٧	3	9	14	4	Bost	on	
					111	1.1.1	13.0		

PTS: points, FT_PCT: free throw percentage, RB: rebounds, AST: assists, H/V: home or visiting, FG: field goals, CITY: player team city.

content plan (for the 1st sentence)

Value	Entity	Туре	H/V
Boston	Celtics	TEAM-CITY	٧
Celtics	Celtics	TEAM-NAME	V
105	Celtics	TEAM-PTS	V
Indiana	Pacers	TEAM-CITY	Н
Pacers	Pacers	TEAM-NAME	Н
99	Pacers	TEAM-PTS	Н
42	Pacers	TEAM-FG_PCT	Н
22	Pacers	TEAM-FG3_PCT	Н
5	Celtics	TEAM-WIN	V
4	Celtics	TEAM-LOSS	V
Isaiah	Isaiah_Thomas	FIRST_NAME	٧
Thomas	Isaiah_Thomas	SECOND_NAME	V
23	Isaiah_Thomas	PTS	V
5	Isaiah_Thomas	AST	V
4	Isaiah_Thomas	FGM	V
13	Isaiah_Thomas	FGA	V
Kelly	Kelly_Olynyk	FIRST_NAME	V
Olynyk	Kelly_Olynyk	SECOND_NAME	V
16	Kelly_Olynyk	PTS	V
6	Kelly_Olynyk	REB	V
4	Kelly_Olynyk	AST	٧

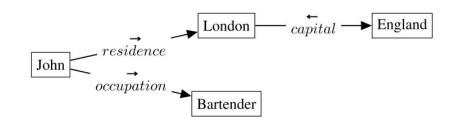
target text

The Boston Celtics defeated the host Indiana Pacers 105-99 at Bankers Life Fieldhouse on Saturday. In a battle between two injury-riddled teams, the Celtics were able to prevail with a much needed road victory. The key was shooting and defense, as the Celtics outshot the Pacers from the field, from three-point range and from the free-throw line. Boston also held Indiana to 42 percent from the field and 22 percent from long distance. The Celtics also won the rebounding and assisting differentials, while tying the Pacers in turnovers. There were 10 ties and 10 lead changes, as this game went down to the final seconds. Boston (5–4) has had to deal with a gluttony of injuries, but they had the fortunate task of playing a team just as injured here. Isaiah Thomas led the team in scoring, totaling 23 points and five assists on 4–of–13 shooting. He got most of those points by going 14–of–15 from the free-throw line. Kelly Olynyk got a rare start and finished second on the team with his 16 points, six rebounds and four assists.

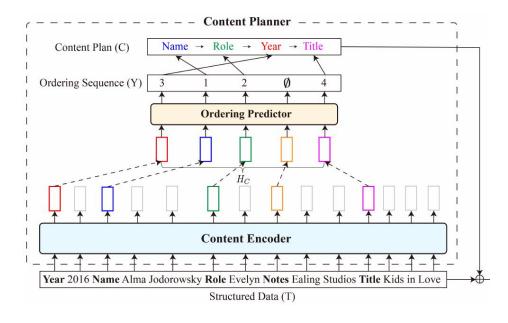
(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

Content Planning: Ordering & Aggregation

- ordering the facts + aggregating them into sentences
- content already selected at this point
- can help the generator not to miss any facts
- for graphs with oriented edges:
 - generating all possible content plans using DFS
 (possibly pruning unpromising branches) →
 re-ranking the plans using a feature-based classifier
- for a set of key-value pairs:
 - using Conditional Random Field (CRF) for finding the optimal plan



(Moryossef et al., 2019a,b) http://arxiv.org/abs/1904.03396 https://arxiv.org/pdf/1909.09986.pdf



(Su et al., 2020) http://arxiv.org/abs/2108.13740

NLG with tree-shaped inputs

- simple case: discourse relations (discourse connectives, sentence splits) between individual fields
 - much flatter than usual syntactic trees
- improvements to account for the input structure:
 - constrained beam search decoding, tree-LSTM, self-training on synthetic data

Reference 1	JJ's Pub is not family friendly, but has a
	high customer rating of 5 out of 5. It is a
	restaurant near the Crowne Plaza Hotel.
Reference 2	JJ's Pub is not a family friendly restau-
	rant. It has a high customer rating of
	5 out of 5. You can find it near the
	Crowne Plaza Hotel.
E2E MR	name[JJ's Pub] rating[5 out of 5]
	familyFriendly[no] eatType[restaurant]
	near[Crowne Plaza Hotel]
	CONTRAST [
	INFORM [name[JJ's Pub]
	familyFriendly[no]]
Our MR for	INFORM [rating[5 out of 5]]]
Reference 1	INFORM [
	eatType[restaurant]
	near[Crowne Plaza Hotel]]

```
MR
Query
            Context
                                                                                                Response
When will
            Reference
                          [CONTRAST
             date: 29th
it snow
                            [INFORM_]
                              [LOCATION [CITY Parker] ] [CONDITION_NOT snow ]
            September
next?
            2018
                              [DATE_TIME [DAY 29] [MONTH September] [YEAR 2018] ]
                                                                                                Parker is not expecting any
                                                                                                snow, but today there's a very
                                                                                                likely chance of heavy rain
                            INFORM_2
                              [DATE_TIME [DAY 29] [MONTH September] [YEAR 2018] ]
                                                                                                showers, and it'll be partly
                              [LOCATION [CITY Parker]]
                                                                                                cloudy
                              [CONDITION heavy rain showers] [CLOUD_COVERAGE partly cloudy]
                                                    Annotated Response
[CONTRAST [INFORM_1 [LOCATION [CITY Parker ] ] is not expecting any [CONDITION_NOT snow] ], but [IN-
FORM.2 [DATE_TIME [COLLOQUIAL today]] there's a [PRECIP_CHANCE_SUMMARY very likely chance] of
```

NPFL099 L8 2023

[CONDITION heavy rain showers] and it'll be [CLOUD_COVERAGE partly cloudy]]]]

Data Noise & Cleaning

- NLG errors are often caused by data errors
 - ungrounded facts (← hallucinating)
 - missing facts (← forgetting)

(Khayrallah & Koehn, 2018)

domain mismatch

https://www.aclweb.org/anthology/W18-2709

- noise (e.g. source instead of target)
 - just 5% untranslated stuff kills an NMT system
- easy-to-get data are noisy
 - web scraping lot of noise, typically not fit for purpose
 - crowdsourcing workers forget/don't care
- cleaning improves situation a lot
 - can be done semi-automatically up to a point

Original MR and an accurate reference

MR name[Cotto], eatType[coffee shop], food[English], priceRange[less than £20], customer_rating[low], area[riverside], near[The Portland Arms]

Reference At the riverside near The Portland Arms, Cotto is a coffee shop that serves English food at less than £20 and has low customer rating.

Example corrections

Reference: Cotto is a coffee shop that serves English food in the city centre. They are located near the Portland Arms and are low rated.

Correction: removed price range; changed area

Reference: Cotto is a cheap coffee shop with one-star located near The

Portland Arms.

Correction: removed area

A faulty correction

Reference: Located near The Portland Arms in riverside, the Cotto coffee shop serves English food with *a price range of \$20* and a low customer rating.

Correction: incorrectly(!) removed price range
– our script's slot patterns are not perfect

(Dušek et al., 2019)

https://arxiv.org/abs/1911.03905

(Wang, 2019)

https://www.aclweb.org/anthology/W19-8639/

Summary

- NLG: system action → system response
- templates work pretty well
- seq2seq generation with finetuned PLMs
 - best among data-driven
 - problems hallucination, not enough diversity, needs lots of data
- prompting-based approaches with LLMs
 - less effort than finetuning
 - problems hallucination, controllability, prompt sensitivity, model access
- mitigating problems: re-ranking, modularization, data cleaning

Thanks

Contact us:

https://ufaldsg.slack.com/
{kasner,odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Labs in 10 minutes Assignment 4

Next week: End-to-end models

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation http://arxiv.org/abs/1703.09902
- Sharma et al. (2022). Innovations in Neural Data-to-text Generation. https://arxiv.org/pdf/2207.12571.pdf
- Ondřej's PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

Icons from https://www.flaticon.com/

NPFL099 L8 2023 34