NPFL099 Statistical Dialogue Systems
7. Dialogue Management (2)
Action Selection/Policy

Ondřej Dušek, Simone Ballocco, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

http://ufal.cz/npfl099
14. 11. 2023
Action selection: Recap

- Action selection: deciding what to do (or say) next
 - based on dialogue state (i.e. uses tracking output)
 - follows a **policy** towards an end goal
- FSM, frames, rule-based
- **trained policies**: typically with RL
 - explore more different paths than supervised
 - plan ahead – optimize for the whole dialogue, not just 1 turn
- RL: MDP formalism – agent in an environment, **state-action-reward**
 - POMDP = MDP with continuous states
 - trained with user simulator

(Sutton & Barto, 2018)
Reinforcement learning: Definition

• RL = finding a **policy that maximizes long-term reward**
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

\[R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1} \]

alternative – **episodes**: only count to \(T \) when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

\(\gamma \in [0,1] = \text{discount factor} \)
(immediate vs. future reward trade-off)

\(\gamma = 1 \): no discount, only usable if \(i \leq T \)
\(\gamma < 1 \): \(R_t \) is finite (if \(r_t \) is finite)
\(\gamma = 0 \): greedy approach (ignore future rewards)

• state transition is stochastic \(\rightarrow \) maximize **expected return**

\[\mathbb{E}[R_t | \pi, s_0] \]

expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
• Using return, we define the **value of a state** \(s \) under policy \(\pi \): \(V^{\pi}(s) \)
 - Expected return for starting in state \(s \) and following policy \(\pi \)
• Return is recursive: \(R_t = r_{t+1} + \gamma \cdot R_{t+1} \)
• This gives us a recursive equation (**Bellman Equation**):

\[
V^{\pi}(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \middle| \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^{\pi}(s'))
\]

• \(V^{\pi}(s) \) defines a **greedy policy**:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{ of } a's} & \text{for } a = \arg \max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^{\pi}(s')) \\
0 & \text{otherwise}
\end{cases}
\]
Action-value (Q-)Function

- *Q*π(s, a) – return of taking action *a* in state *s*, under policy *π*
 - Same principle as value *V*π(s), just **considers the current action, too**
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E} \sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

- *Q*π(s, a) also defines a greedy policy:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{of } a'} & \text{for } a = \arg \max_a Q^\pi(s, a) \\
0 & \text{otherwise}
\end{cases}
\]

again, “actions that look best for the next step”

simpler: no need to enumerate *s'*, no need to know *p(s'|s, a)* and *r(s, a, s')*

but *Q* function itself tends to be more complex than *V*
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

- π^* is a policy such that $V^\pi^*(s) \geq V^\pi'(s)$ $\forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agents Taxonomy

• Quantity to optimize:
 • value function – critic
 • either Q or V, typically Q in practice
 • policy – actor
 • both – actor-critic

• Environment model:
 • model-based (assume known $p(s'|s, a), r(s, a, s)$)
 • nice but typically not satisfied in practice
 • model-free (don’t assume anything, sample)
 • this is the usual real-world case
 • this is where using Q instead of V comes handy
Reinforcement Learning Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment → not practical for real-world use
 • **Monte Carlo learning** – learn from experience
 • sample, then update based on experience
 • **Temporal difference learning** – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • can’t use that with batch learning (decision policy is changing constantly)
 • **off-policy** – decide according to a different policy
Deep Reinforcement Learning

• Exactly the same as “plain” RL
 • agent & environment, actions & rewards
• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy

• function approximation approach
 • Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 • enumerating in a table would take up too much space, be too sparse
 • the parameters θ are optimized
• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states
• needs tricks to make it stable

(Sutton & Barto, 2018)
Q-Learning

• temporal difference – update Q as you go
• off-policy – directly estimates best Q^*
 • regardless of policy used for sampling
• choose learning rate α, initialize Q arbitrarily
• for each episode:
 • choose initial s
 • for each step:
 • choose a from s according to ϵ-greedy policy based on Q
 • take action a, observe observe reward r and state s'
 • $Q(s,a) \leftarrow (1 - \alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a') \right)$
 • $s \leftarrow s'$

any policy that chooses all actions & states enough times
will converge to $Q^*(s,a)$: we need to explore to converge

update uses best a', regardless of current policy:
a' is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
Deep Q-Networks

• Q-learning, where Q function is represented by a neural net
• “Usual” Q-learning doesn’t converge well with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown → numeric instability
• → DQN adds fixes:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
DQN tricks ~ making it more like supervised learning

Experience replay – break correlated samples
- run through some episodes (dialogues, games…)
- store all tuples \((s, a, r', s')\) in a buffer
- for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
- overwrite buffer as you go, clear buffer once in a while
- only possible for off-policy

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_a Q(s', a; \overline{\theta}) - Q(s, a; \theta))^2 \right]
\]

Target Q function freezing
- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
- once in a while, copy your current estimate over

"generate your own ‘supervised’ training data"

"have a fixed target, like in supervised learning"
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \ldots T$ in the episode:
 - select action a_t from ϵ-greedy policy based on $Q(\theta)$
 - take a_t, observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \theta) - Q(s, a; \theta))^2 \right]$
- once every λ steps (rarely):
 - $\overline{\theta} \leftarrow \theta$

storing experience (1 step of Q-learning exploration)

“replay” a. k. a. training (1 update)

update the frozen target function

Q TD model-free off-policy
DQN for Dialogue Systems

- DQN can drive dialogue action selection/policy
- **Warm start** needed to make the training actually work:
 - **Pretrain** the network using supervised learning
 - **Replay buffer spiking** – initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

DQN – feed-forward, 1 hidden ReLU layer

Rule-based simulator with agenda running on DA level

User Sim.

1. State
2. Agent action
3. (updated) agent action
4. User action
5. User action (w/ error)

Agent

1. Get State
2. Update w/ Agent
3. Get Action

State Tracker

4. User Action
5. User Action (w/ error)

EMC

- **[Infuse Error]**

Error Model Controller (simulating ASR/NLU noise)

Movie ticket booking: better than rule-based

Replay memory initialized using a simple handcrafted policy
Policy Gradients

• Instead of value functions, train a **network to represent the policy**
 • allows better action sampling – according to actual stochastic policy
 • no need for ϵ-greedy (which is partially random, suboptimal)

• To optimize, we need a **performance metric**: $J(\theta) = V^{\pi_\theta}(s_0)$
 • expected return in starting state when following π_θ
 • we want to directly optimize this using gradient ascent

• **Policy Gradient Theorem**:
 • expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s, \theta)$

\[
\nabla J(\theta) \propto \sum_s \mu(s) \sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) = \mathbb{E}_\pi \left[\sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) \right]
\]

$\mu(s)$ is state probability under π – this is the same as expected value \mathbb{E}_π

(Sutton & Barto, 2018; p. 324ff)
REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\theta) = V^{\pi_\theta}(s_0)$
- choose learning rate α, initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1, \ldots, T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta)$

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

variant – advantage instead of returns:
 - discounting a baseline $b(s)$ (predicted by any model)
 - $A_t = R_t - b(s_t)$ instead of R_t
 - gives better performance

$V(s)$ is actually a good $b(s)$

this will guarantee the right state distribution/frequency $\mu(s)$

this is stochastic $\nabla J(\theta)$:
 - from policy gradient theorem
 - using single action sample a_t
 - expressing Q^π as R_t (under \mathbb{E}_π)
 - using $\nabla \ln x = \frac{v_x}{x}$

(Sutton & Barto, 2018; p. 327f)
Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates – better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^θ, α^w

- loop forever:
 - set initial state s for the episode
 - for each step t of the episode:
 - sample action a from $\pi(\cdot|s, \theta)$, take a and observe reward r and new state s'
 - compute advantage $A \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w)$
 - update $\theta \leftarrow \theta + \alpha^\theta \gamma^t A \nabla \ln \pi(a|s, \theta)$, $w \leftarrow w + \alpha^w \cdot A \nabla \hat{V}(s, w)$
 - $s \leftarrow s'$

actor (policy update) critic (value function update)

same as REINFORCE, except:
- we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)

(Su et al., 2017) http://arxiv.org/abs/1707.00130
ACER: Actor-Critic with Experience Replay

• off-policy actor-critic – using `experience replay` buffer
 • same approach as Q-learning
 • since ER buffer has past experience with out-of-date policies (using “old” $\tilde{\theta}$), it’s considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 • sampling behaviour from $\pi_{\tilde{\theta}}$ is biased w. r. t. π_{θ}
 • correcting the bias – `importance sampling`: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$
 • all updates are summed over batches & importance-sampled
 • new objective/performance metric: $\mathbb{E}_t[\pi_{\theta}(a_t|s_t)\hat{A}_t]$

(Wang et al., 2017) http://arxiv.org/abs/1611.01224
(Su et al., 2017) http://arxiv.org/abs/1707.00130
Proximal Policy Optimization

- ACER is prone to very large updates, unstable
 - to avoid going “off a cliff”, it needs very low LR, trains slowly
 - → change the objective to produce more stable updates
- Basically clipping the ACER objective
 - define \(r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \) – ratio to old params
 - starting from \(\hat{E}_t \left[\frac{\pi_\theta(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta)\hat{A}_t] \) (see ACER)
 - using \(\hat{E}_t \left[\min(r_t(\theta)\hat{A}_t, \text{clip}[r_t(\theta)]^{1+\epsilon}_{1-\epsilon}\hat{A}_t) \right] \)

original clipped to stay close to 1

minimum – lower bound on the unclipped objective

(Shulman et al., 2017)
http://arxiv.org/abs/1707.06347
Rewards in RL

• Reward function is critical for successful learning
• Handcrafting is not ideal
 • domain knowledge typically needed to detect dialogue success
 • need simulated or paid users, can’t learn from users without knowing their task
 • paid users often fail to follow pre-set goals
• Having users provide feedback is costly & inconsistent
 • real users don’t have much incentive to be cooperative
• Learning/optimizing the rewards is desirable
Turn-level rewards

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019; Ultes & Maier, 2021)

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/
https://aclanthology.org/2021.sigdial-1.42

- Interaction quality
 - hand-annotated turns for ~200 dialogues
 - SVM/RNN on low-level domain-independent features
 (ASR confidence, # reprompts etc.)

- Discriminator
 - policy vs. human-human (iterative, adversarial learning)
 - reward for appearing human-like at each turn

- Information gain
 - reward system asking \(\approx \) changes in belief state distributions
 (Jensen-Shannon divergence \(\geq \) threshold)
 - combined with task success (Feudal RL, see \(\rightarrow \))

(Takanobu et al., 2019) http://arxiv.org/abs/1908.10719

http://arxiv.org/abs/2109.07129

(Geishauser et al., 2021) http://arxiv.org/abs/2109.07129
Alternating supervised & RL

- we can do better than just supervised pretraining
- alternate regularly
 - start with supervised more frequently
 - alleviate sparse rewards, but don’t completely avoid exploring
 - later do more RL
 - but don’t forget what you learned by supervised learning
- options:
 - schedule supervised every N updates
 - same + increase N gradually
 - use supervised after RL does poorly (worse than baseline)
 - baseline = moving average over history + $\lambda \cdot$ std. error of the average
 - agent is less likely to be worse than baseline in later stages of learning

(Xiong et al., 2018)

Everyone knows this, right? Right? Most RL agents are overfit and can be defeated by acting out-of-distribution. Everyone should know this.

https://twitter.com/mark_riedl/status/1682937331727192065
Deep Dyna-Q: learning from humans & simulator

- humans are costly, simulators are inaccurate
- ⇒ learn from both, improve simulator as you go
 - direct RL = learn from users
 - world model learning = improve internal simulator
 - supervised, based on previous dialogues with users
 - planning = learn from simulator
- DQN, feed-forward policy
- simulator: feed-forward multi-task net
 - draw a goal uniformly at the start
 - predict actions, rewards, termination
 - use K simulated (“planning”) dialogues per 1 real
- discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416
Hierarchical RL

- good for multiple subtasks
 - e.g. book a flight to London and a hotel for the same day, close to the airport
- top-level policy: select subtask g_i
- low-level policy: actions a_j,g_i to complete subtask g_i
 - given initiation/termination conditions
 - keeps on track until terminal state is reached
 - shared by all subtasks (subtask=parameter)
 - internal critic (=prob. that subtask is solved)
- global state tracker
 - integrates information from subtasks

(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237
Feudal RL

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

- spatial (slot-based) split instead of temporal
 - doesn’t need defined subtasks & sub-rewards
- belief state representation – features
 - master ϕ_m, slot-independent ϕ_i, per-slot ϕ_{s_k}
 - handcrafted (could be neural nets)
 - supports sharing parameters across domains
- two-step action selection:
 1) master action: “slot-dependent or not”?
 - master policy
 2) primitive action
 a) slot-independent policy
 b) slot-specific policies (with shared parameters, distinguished only by belief state)
 - chooses max. Q for all slot-action pairs – involves choosing the slot
- everything is trained using the same global reward signal
Summary

- **RL** for action selection / dialogue policy
 - MDP / agent in an environment, taking actions, getting rewards
 - dynamic programming, **Monte Carlo**, **Temporal Difference**
 - optimizing **value function** V/Q (critic), **policy** (actor), or both (**actor-critic**)
 - learning **on-policy** or **off-policy** (act by the policy you learn/not)
- **DQN** – representing & optimizing Q function with a network
 - minibatches, target function freezing, experience replay
- **Policy gradients** – policy network & direct policy optimization
 - **REINFORCE** (MC policy gradients) + advantage
 - **Actor-critic** (REINFORCE + TD + V estimates) + extensions (**ACER, PPO**)?
- rewards can be learned/estimated (supervised/GAN-style)
- learning multiple tasks: hierarchical, feudal RL
Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
- Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

Next Monday: NLG & HW4
We start at 9:50