NPFL099 Statistical Dialogue Systems 6. Dialogue Management (1) mostly Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek, , Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

7. 11. 2023

Dialogue Management & State

- Dialogue management consists of:
 - State update ← we need to track dialogue state over time
 - Action selection (discussed later)
- Dialogue state needed to remember what was said in the past
 - tracking the dialogue progress
 - summary of the whole dialogue history
 - basis for action selection decisions

U: I'm looking for a restaurant in the <u>city centre</u>.

S: OK, what kind of food do you like?

U: Chinese.

- **X** S: What part of town do you have in mind?
- X S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
- ✓ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the <u>city centre</u>.

Dialogue State Contents

- "All that is used when the system decides what to say next"

- **User goal**/preferences ~ NLU output
 - slots & values provided (search constraints)
 - information requested
- Past system actions
 - information provided

U: Give me the address of the first one you talked about.

slots and values

U: Is there <u>any other</u> place in this area?

- list of venues offered
- slots confirmed S: OK, Chinese food. [...]
- slots requested S: What time would you like to leave?
- Other semantic context
 - user/system utterance: bye, thank you, repeat, restart etc.

Problems with Dialogue State

- NLU is unreliable
 - takes unreliable ASR output
 - makes mistakes by itself some utterances are ambiguous
 - output might conflict with ontology
- Possible solutions:
 - detect contradictions, ask for confirmation
 - ignore low-confidence NLU input
 - what's "low"?
 - what if we ignore 10x the same thing?
- Better solution: make the state probabilistic belief state

→ ASR: 0.5 I'm looking for an expensive hotel
 0.5 I'm looking for inexpensive hotels

NLU: 0.3 inform(type=restaurant, stars=5)

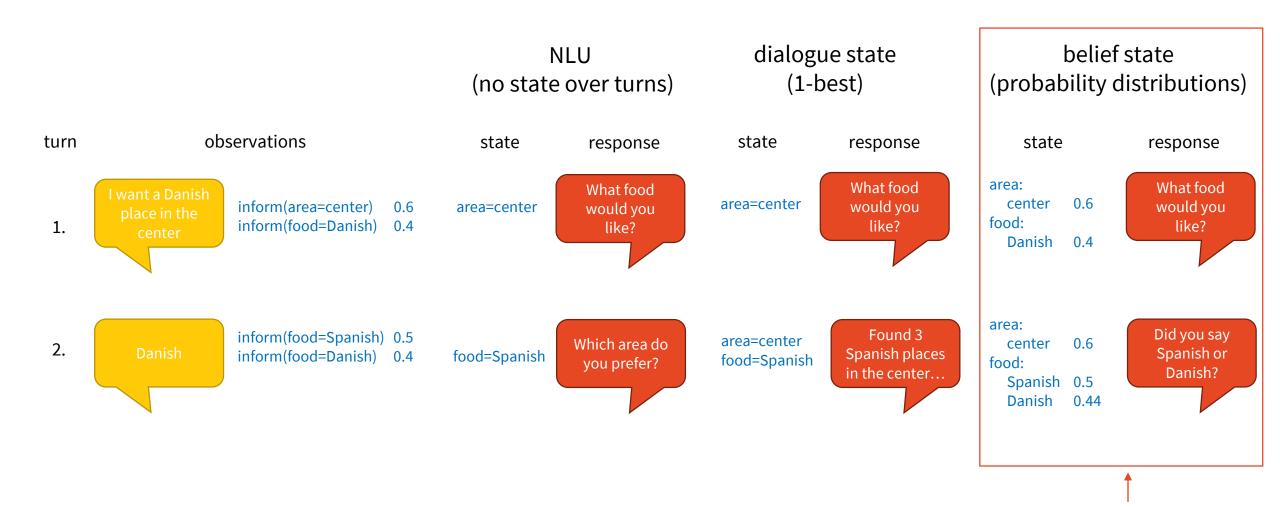
only hotels have stars!

Belief State

- Assume we don't know the true current dialogue state s_t
 - states (what the user wants) influence **observations** o_t (what the system hears)
 - based on observations o_t & system actions a_t , we can estimate a probability distribution b(s) over all possible states **belief state**
- More robust than using dialogue state directly
 - accumulates probability mass over multiple turns
 - low confidence if the user repeats it, we get it the 2nd time
 - accumulates probability over NLU n-best lists
- Plays well with probabilistic dialogue policies (POMDPs)
 - but not only them rule-based, too

NPFL099 L6 2023 5

Belief State



(based on Milica Gašić's slides)

NPFL123 L5 2022

this is what we want

"user mentioned this value"

user silent about slot i

Basic Discriminative Belief Tracker (= what we used on the previous slide)

- Partition the state by assuming conditional independence
 - simplify assume each slot is independent:
 - state $\mathbf{s} = [s^1, \dots s^N]$, belief $b(\mathbf{s}_t) = \prod_i b(s_t^i)$
- Always trust the NLU
 - this makes the model parameter-free
 - ...and basically rule-based
 - but very fast, with reasonable performance

$$p(s_t^i|a_{t-1}^i, s_{t-1}^i, o_t^i) = \begin{cases} p(o_t^i) \text{ if } s_t^i = o_t^i \land o_t^i \neq \textcircled{s} \\ p(o_t^i) \text{ if } s_t^i = s_{t-1}^i \land o_t^i = \textcircled{s} \\ 0 \text{ otherwise} \end{cases}$$
"no change"

NLU output

update $b(s_t^i) = \sum_{\substack{s_{t-1}^i, o_t^i \\ \text{rule}}} p(s_t^i | a_{t-1}^i, s_{t-1}^i, o_t^i) b(s_{t-1}^i)$

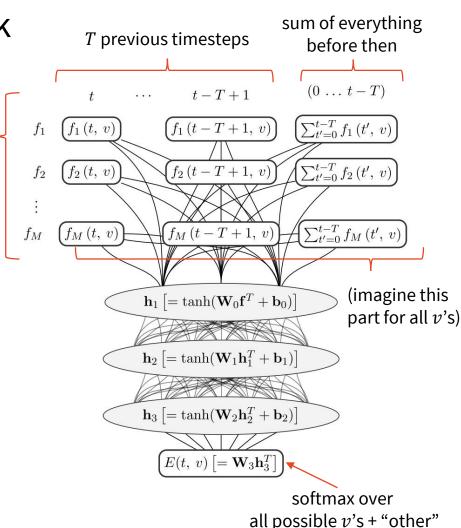
scriminative model $b(s_t^i) = \begin{cases} s_t^i = \textcircled{s}: & p(s_{t-1}^i = \textcircled{s})p(o_t^i = \textcircled{s}) \\ else: & p(o_t^i = s_t^i) + p(o_t^i = \textcircled{s})p(s_t^i = s_{t-1}^i) \\ \text{"mon-null"} & \text{"mentioned now"} & \text{"carry-over"} \end{cases}$

(Žilka et al., 2013) http://www.aclweb.org/anthology/W13-4070

the belief state update rule is deterministic

Basic Feed-forward Neural Tracker

- a simple feed-forward (fully connected) network
 - input features (w.r.t. slot-value v & time t)
 - NLU score of v
 - n-best rank of v
 - user & system intent (inform/request)
 - ... other domain-independent, low-level NLU features
 - 3 tanh layers
 - output softmax (= probability distribution over values)
- static does not model dialogue as a sequence
 - uses a **sliding window**:
 current time t + few steps back + ∑previous

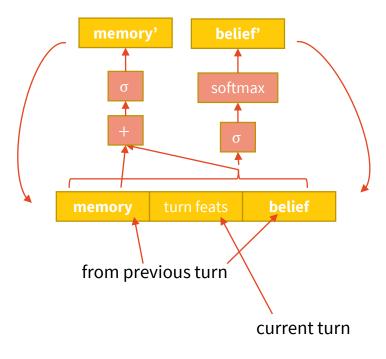


M input

features

Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
 - turn-level LSTM would work similarly
- does not need NLU
 - turn features = lexicalized + delexicalized *n*-grams from ASR n-best list, weighted by confidence
- delexicalization is very harsh: <slot> <value>
 - you don't even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- dynamic explicitly models dialogue as sequence
 - using the network recurrence



Incremental Recurrent Tracker

- Simple: LSTM over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)
 - classification can occur after each word, right as it comes in from ASR
- **Dynamic**/sequential
- Doesn't use any NLU
 - infrequent values are delexicalized (otherwise it can't learn them)
- Slightly worse performance possible causes:
 - only uses ASR 1-best
 - very long recurrences (no hierarchy)

LSTM

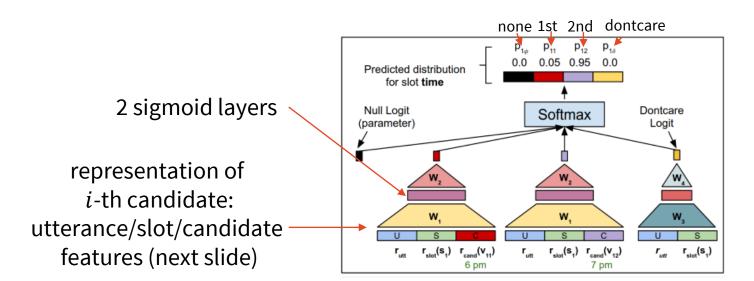
Enc Enc Enc Vector representation of the dialog w_1 w_2 w_3 w_4 word embeddings w_1 w_2 w_3 w_4 word embeddings w_1 w_2 w_3 w_4 w_4 w_4 w_4 w_4 w_5 w_4 w_5 w_6 w_7 w_8 w_8 w_9 $w_$

(Žilka & Jurčíček, 2015) https://dl.acm.org/citation.cfm?id=2955040 http://arxiv.org/abs/1507.03471

Candidate Ranking

- Previous systems consider all values for each slot
 - this is a problem for open-ended slots (e.g. restaurant name)
 - enumerating over all takes ages, some are previously unseen
- Alternative: always consider just *K* candidates
 - use last K candidates from system actions and NLU output
 - NB: only way history is incorporated here (~static)
 - select from them using a per-slot softmax

pictures assume K = 2



(Rastogi et al., 2017) https://arxiv.org/abs/1712.10224



Candidate Ranking

Representation

• BiGRU lexicalized/delex. utterances + binary (~presence slot/val. in prev. turn)

Extensions

- What if multiple values are true?
 - previous approach picks one (softmax)
 - use set of binary classifiers (log loss) instead
- Making it dynamic
 - embedding previous states, system actions, text of the whole dialogue
- Hybrid classify/rank
 - ranking is faster & more flexible vs. classification can be more accurate for some slots

(Goel et al., 2018)

http://arxiv.org/abs/1811.12891

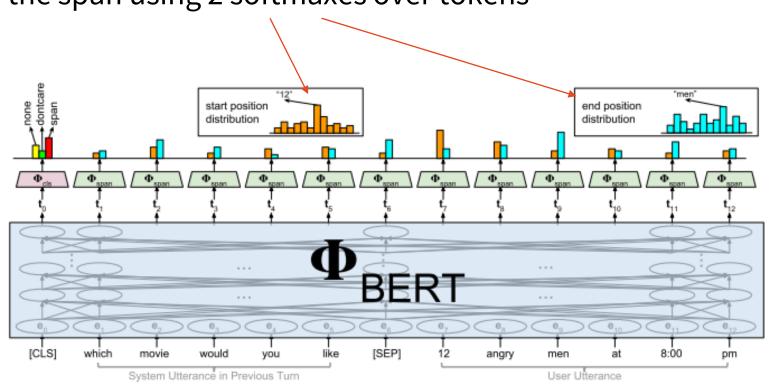
- generally ranking better with many values, classification with fewer values
- check for performance on development data & decide which model to use

a.k.a. Span Tagging(~question answering/reading comprehension)

• BERT over previous system & current user utterance

(Chao & Lane, 2019) http://arxiv.org/abs/1907.03040

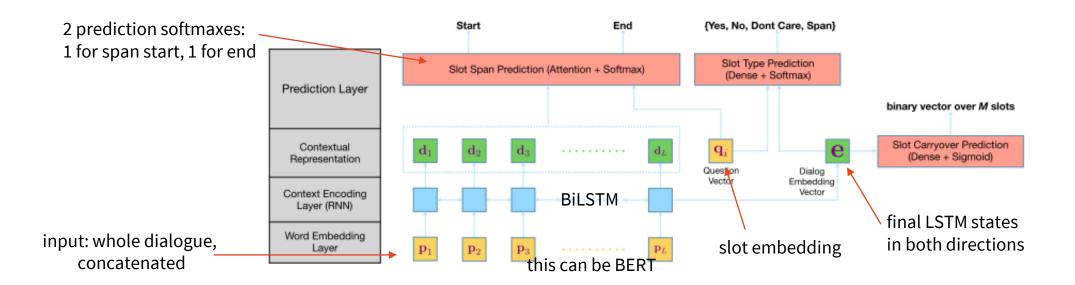
- from 1st token's representation, get a decision: none/dontcare/span
 - per-slot (BERT is shared, but the final decision is slot-specific)
- span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes over tokens
- rule-based update (static):
 - if *none* is predicted, keep previous value



Span Selection with Modelled Update

(Gao et al., 2019) https://www.aclweb.org/anthology/W19-5932/

- Also uses BERT, but not necessarily
 - works slightly worse with random-initialized word embeddings
- sequence of 3 decisions
 - do we carry over last turn's prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 - if span: predict span's start and end

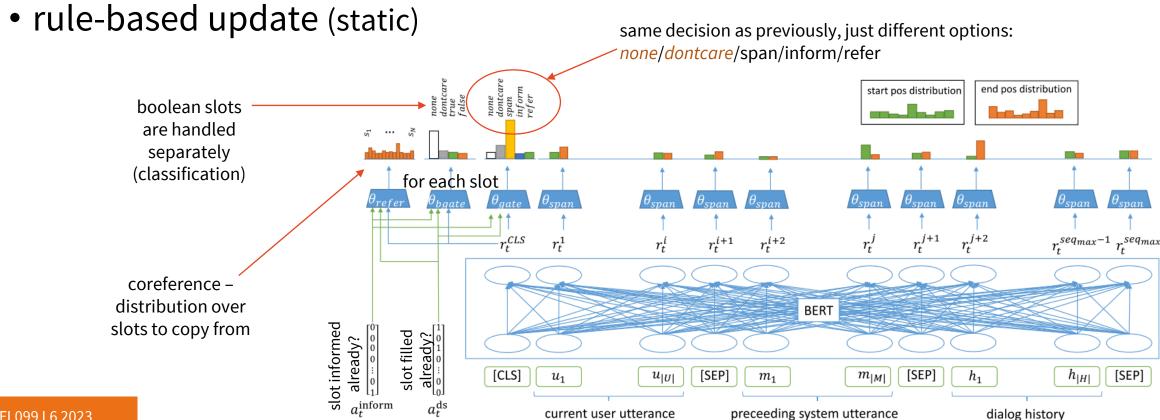


Span Selection & Better Copying

(Heck et al., 2020)

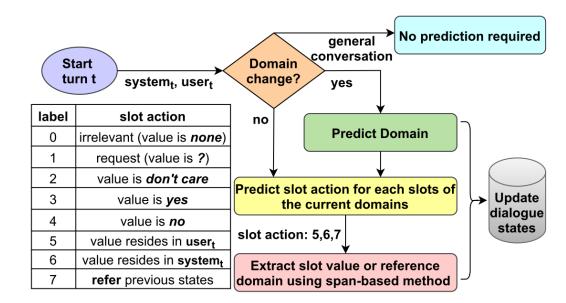
https://aclweb.org/anthology/2020.sigdial-1.4/

- "triple-copy" gets the value from 3 sources:
 - user utterance (same as previous span tagging models)
 - system informs (last value the system mentioned)
 - another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)



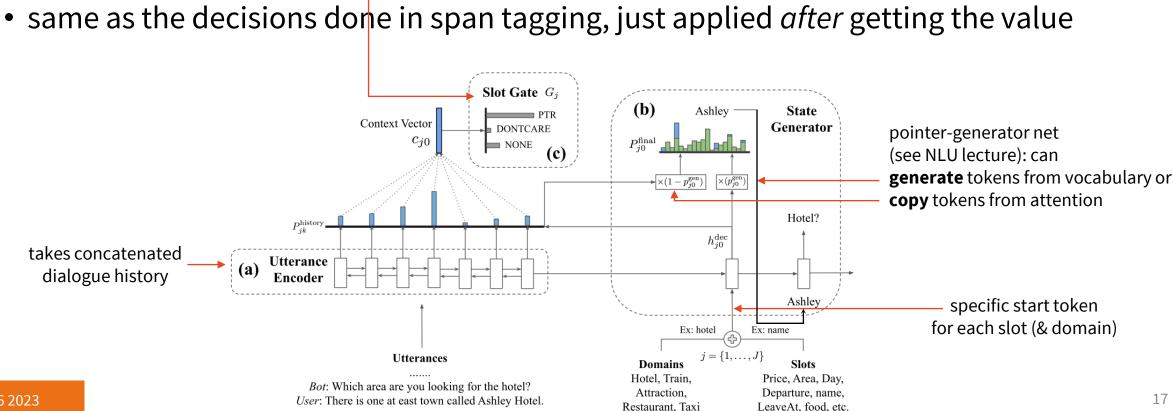
Multi-domain Span Selection

- encode domain & slot names w. static pretrained word-embeddings (GloVe)
 - adding new unseen domains & slots is easy (no retraining)
- otherwise similar as previous, BERT-based:
 - decide if domain changed (BERT: yes/no/chitchat)
 - if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)
 - for each domain, find values (BERT + GloVe span selection)



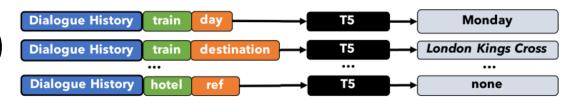
(Dey & Desarkar, 2021) https://aclanthology.org/2021.sigdial-1.23

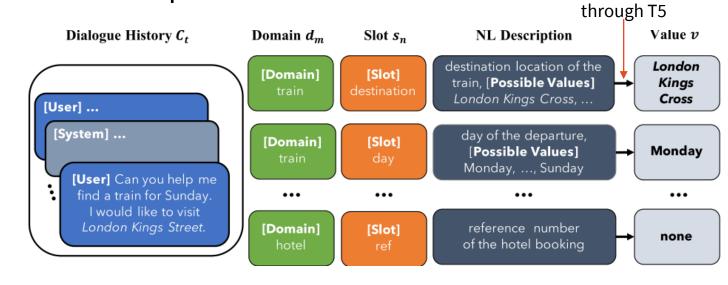
- Similar to span selection: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: "use generated"/dontcare/none



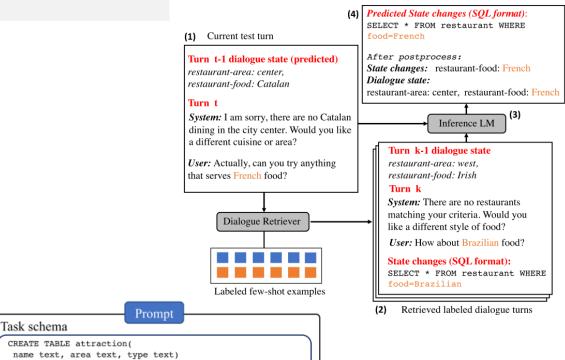
passed

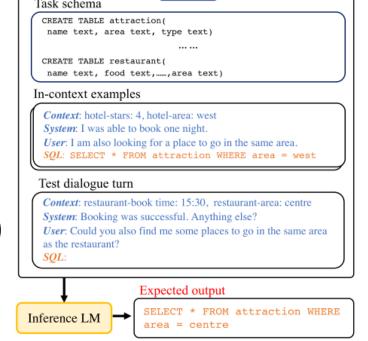
- Same as previous, but use a pretrained model (T5) + make it simpler
 - generate any value, including none
 - no explicit copying (T5 can copy itself)
- Finetune T5 with specific inputs (prompts)
 - dialogue history
 - domain + slot
 - (optional) slot description, may include list of possible values
- Generate just the slot value
 - may be multi-word
- T5 learns to use descriptions
- Potential for unseen domains
 - though not explored in the paper





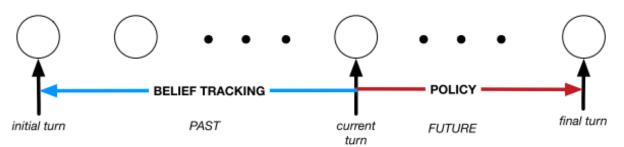
- https://aclanthology.org/2022.findings-emnlp.193
- Prompt LLM to produce state
 - this work: GPT-Neo, CodeGen, GPT-3
- Needs context
 - DB schema shown in SQL
 - Dialogue context: prev. state + 1 turn
 - Retrieved few-shot examples
 - SBERT similarity
- Needs framing
 - State changes ~ SQL
- Works well in few-shot settings
 - Needs less data for retrieval (~1-5%/100-500 dialogues works already)





Action Selection / Policy

- Dialogue management:
 - State tracking (↑)
 - Action selection/Policy (\downarrow)



(from Milica Gašić's slides)

- action selection deciding what to do next
 - based on the current belief state under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic
- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don't be repetitive

e.g. ask for all information you require

Action Selection Approaches

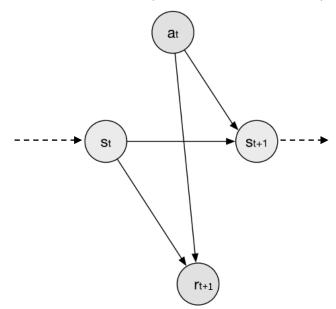
- Finite-state machines
 - simplest possible
 - dialogue state is machine state
- Frame-based (VoiceXML)
 - slot-filling + providing information basic agenda
 - rule-based in essence
- Rule-based
 - any kind of rules (e.g. Python code)
- Statistical
 - typically using reinforcement learning

Why Reinforcement Learning

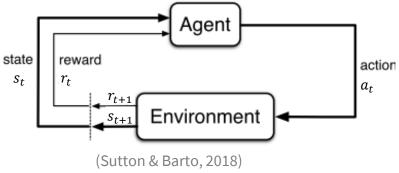
- Action selection ~ classification → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features
- Yes, but...
 - You'd **need** sufficiently large **human-human data** hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there's no single correct next action—multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won't behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs should behave differently make the best of what they have
 - supervised classification doesn't plan ahead!
 - RL optimizes for the whole dialogue, not just the immediate action

RL World Model: Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - agent in an environment:
 - has internal **state** $s_t \in \mathcal{S}$ (~ dialogue state)
 - takes **actions** $a_t \in \mathcal{A}$ (~ system dialogue acts)
 - actions chosen according to **policy** $\pi: \mathcal{S} \to \mathcal{A}$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
 - Markov property state defines everything
 - no other temporal dependency
 - policy may be **deterministic** or **stochastic**
 - stochastic: prob. dist. of actions, sampling

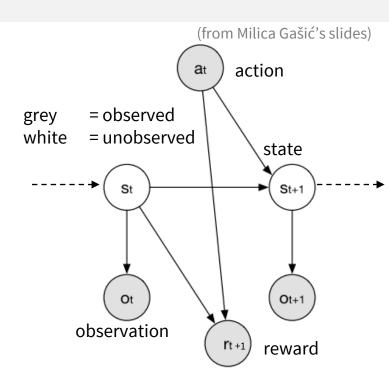


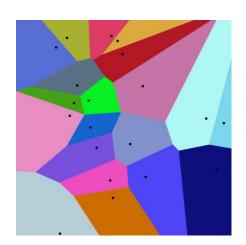
(from Milica Gašić's slides)



Partially-observable MDPs

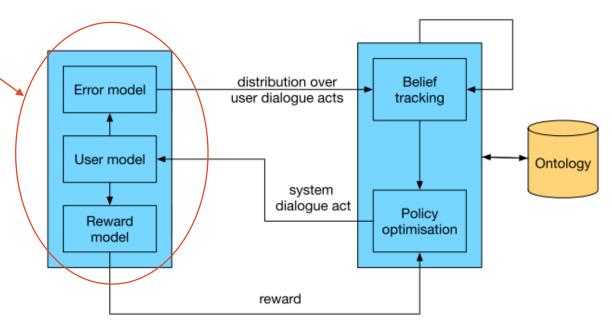
- POMDPs belief states instead of dialogue states
 - true states ("what the user wants") are not observable
 - observations ("what the system hears") depend on states
 - belief probability distribution over states
 - can be viewed as MDPs with continuous-space states
 - just represent 1 slot as set of binary floats ©
- All MDP algorithms work…
 - if we quantize/discretize the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- Deep RL typically works out of the box
 - function approximation approach, allows continuous states





Simulated Users

- Static datasets aren't enough for RL
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k's dialogues used for training, depending on method
- solution: user simulation
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE/supervised policy from data
 - combination (best!)



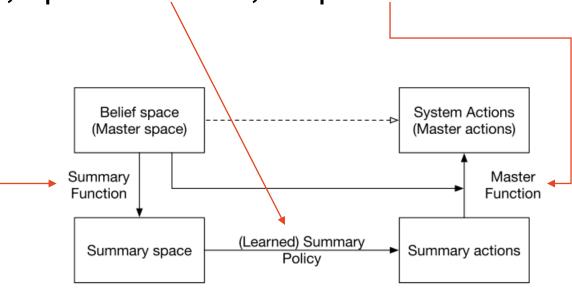
Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

reduced space = summary space

- handcrafted state features
- e.g. top slots, # found, slots confirmed...
- reduced action set = summary actions
 - e.g. just DA types (inform, confirm, reject)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions
- state is still tracked in original space
 - we still need the complete information for accurate updates



(from Milica Gašić's slides)

Reinforcement learning: Definition

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

alternative – **episodes**: only count to
$$T$$
 when we encounter a terminal state (e.g. 1 episode = 1 dialogue)
$$R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1} \qquad \qquad \gamma \in [0,1] = \textbf{discount factor} \text{ (immediate vs. future reward trade-off)}$$
 (from turn t onwards)
$$y = 1 \text{: no discount, only usable if } i \leq T$$

$$\gamma < 1 : R_t \text{ is finite (if } r_t \text{ is finite)}$$

$$\gamma = 0 \text{: greedy approach (ignore future rewards)}$$

state transition is stochastic → maximize expected return

 $\mathbb{E}[R_t|\pi,s_0]$ expected R_t if we start from state s_0 and follow policy π

Summary

- State tracking: track user goal over multiple turns (probabilistic belief state)
 - good NLU + rules works well (and is used frequently)
 - static (sliding-window/rule-based update) vs. dynamic (explicit modelling)
 - with vs. without NLU
 - classification vs. candidate ranking vs. span selection vs. generation
 - classifiers are more accurate than rankers but slower, limited to seen values
 - span selection or generation are the SotA approaches, work nicely but relatively slow
 - many architectures (FC/RNN), newest mostly based on pretrained LMs
- Action selection: deciding what to do next (following a policy)
 - FSM, frames, rule-based, supervised, reinforcement learning
 - **RL** agent in an environment, taking actions, getting rewards
 - MDP formalism (+POMDP can be converted to it)
 - summary states might be needed
 - trained often with user simulators

Thanks

Contact us:

https://ufaldsg.slack.com/ odusek@ufal.mff.cuni.cz

Skype/Meet/Zoom/Troja (by agreement)

Labs in 10 minutes Finetuning GPT-2

Next Tue 10:40 rest of Dialogue Policy

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.) http://incompleteideas.net/book/the-book.html
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf