NPFL099 Statistical Dialogue Systems
6. Dialogue Management (1)
mostly Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek, Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

7. 11. 2023
Dialogue Management & State

• Dialogue management consists of:
 • **State update** ← we need to track dialogue state over time
 • Action selection (discussed later)

• **Dialogue state** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the **city centre**.
S: OK, what kind of food do you like?
U: Chinese.

❌ *S:* What part of town do you have in mind?
❌ *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the **city centre**.
Dialogue State Contents

• “All that is used when the system decides what to say next” (Henderson, 2015)

• **User goal/preferences ~ NLU output**
 • slots & values provided (search constraints)
 • information requested

• **Past system actions**
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested

• **Other semantic context**
 • user/system utterance: bye, thank you, repeat, restart etc.
Problems with Dialogue State

- NLU is unreliable
 - takes unreliable ASR output
 - makes mistakes by itself – some utterances are ambiguous
 - output might conflict with ontology

 Possible solutions:
 - detect contradictions, ask for confirmation
 - ignore low-confidence NLU input
 - what’s “low”?
 - what if we ignore 10x the same thing?

- Better solution: make the state probabilistic – belief state
Belief State

• Assume we don’t know the true current dialogue state s_t
 • states (what the user wants) influence observations o_t (what the system hears)
 • based on observations o_t & system actions a_t, we can estimate a probability distribution $b(s)$ over all possible states – **belief state**

• More robust than using dialogue state directly
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
 • but not only them – rule-based, too
Belief State

<table>
<thead>
<tr>
<th>turn</th>
<th>observations</th>
<th>state</th>
<th>response</th>
<th>dialogue state (1-best)</th>
<th>belief state (probability distributions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I want a Danish place in the center</td>
<td>inform(area=center) 0.6</td>
<td>area=center</td>
<td>What food would you like?</td>
<td>state: area: center 0.6 response: What food would you like?</td>
</tr>
<tr>
<td></td>
<td>inform(food=Danish) 0.4</td>
<td></td>
<td></td>
<td></td>
<td>response: food: 0.6 Danish 0.4</td>
</tr>
<tr>
<td>2.</td>
<td>Danish</td>
<td>inform(food=Spanish) 0.5</td>
<td>food=Spanish</td>
<td>Which area do you prefer?</td>
<td>state: area: center response: Did you say Spanish or Danish?</td>
</tr>
<tr>
<td></td>
<td>inform(food=Danish) 0.4</td>
<td></td>
<td></td>
<td></td>
<td>response: area: center Spanish 0.6 Danish 0.44</td>
</tr>
</tbody>
</table>

(based on Milica Gašić’s slides)

this is what we want
Basic Discriminative Belief Tracker (what we used on the previous slide)

- **Partition the state** by assuming conditional independence
 - simplify – assume each slot is independent:
 - state \(s = [s^1, ..., s^N] \), belief \(b(s_t) = \prod_i b(s^i_t) \)

- **Always trust the NLU**
 - this makes the model parameter-free
 - ...and basically rule-based
 - but very fast, with reasonable performance

update rule

\[
b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})
\]

discriminative model

user silent about slot \(i \)

<table>
<thead>
<tr>
<th>NLU output</th>
<th>user mentioned this value</th>
<th>no change</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(o^i_t)) if (s^i_t = o^i_t \land o^i_t \neq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p(o^i_t)) if (s^i_t = s^i_{t-1} \land o^i_t =)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 otherwise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

the belief state update rule is deterministic
Basic Feed-forward Neural Tracker

- a simple feed-forward (fully connected) network
 - input – features (w.r.t. slot-value \(v \) & time \(t \))
 - NLU score of \(v \)
 - n-best rank of \(v \)
 - user & system intent (inform/request)
 - … – other domain-independent, low-level NLU features

- 3 tanh layers
- output – softmax
 (= probability distribution over values)

- **static** – does not model dialogue as a sequence
 - uses a sliding window:
 current time \(t \) + few steps back + \(\sum \) previous timesteps

(Henderson et al., 2013)

https://aclweb.org/anthology/W13-4073
Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
 - turn-level LSTM would work similarly
- does not need NLU
 - turn features = lexicalized + delexicalized n-grams from ASR n-best list, weighted by confidence
- delexicalization is very harsh: <slot> <value>
 - you don’t even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- **dynamic** – explicitly models dialogue as sequence
 - using the network recurrence

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190
Incremental Recurrent Tracker

- Simple: LSTM over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)
 - classification can occur after each word, right as it comes in from ASR

- Dynamic/sequential

- Doesn’t use any NLU
 - infrequent values are delexicalized (otherwise it can’t learn them)

- Slightly worse performance – possible causes:
 - only uses ASR 1-best
 - very long recurrences (no hierarchy)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471
Candidate Ranking

• Previous systems consider all values for each slot
 • this is a problem for open-ended slots (e.g. restaurant name)
 • enumerating over all takes ages, some are previously unseen

• Alternative: always consider just K candidates
 • use last K candidates from system actions and NLU output
 • NB: only way history is incorporated here (~static)
 • select from them using a per-slot softmax

2 sigmoid layers

representation of i-th candidate: utterance/slot/candidate features (next slide)

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

additional values to consider (even if not mentioned in NLU)
padding (not enough values mentioned)

pictures assume $K = 2$
Candidate Ranking

Representation

• BiGRU lexicalized/delex. utterances + binary (~presence slot/val. in prev. turn)

Extensions

• What if multiple values are true?
 • previous approach picks one (softmax)
 • use set of binary classifiers (log loss) instead

• Making it dynamic
 • embedding previous states, system actions, text of the whole dialogue

• Hybrid classify/rank
 • ranking is faster & more flexible vs. classification can be more accurate for some slots
 • generally ranking better with many values, classification with fewer values
 • check for performance on development data & decide which model to use
• BERT over previous system & current user utterance
• from 1st token’s representation, get a **decision: none/dontcare/span**
 • per-slot (BERT is shared, but the final decision is slot-specific)
• span = need to find a concrete value as a span somewhere in the text
 • **predict start & end token** of the span using 2 softmaxes over tokens
• rule-based update (static):
 • if **none** is predicted, keep previous value
Span Selection with Modelled Update

- Also uses BERT, but not necessarily
 - works slightly worse with random-initialized word embeddings
- sequence of 3 decisions
 - do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 - if span: predict span’s start and end

2 prediction softmaxes: 1 for span start, 1 for end

input: whole dialogue, concatenated

BiLSTM

this can be BERT

final LSTM states in both directions

Slot Type Prediction (Dense + Softmax)

binary vector over M slots

Slot Carryover Prediction (Dense + Sigmoid)

span select

pre-LM

pre-LM | span select

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/
Span Selection & Better Copying

- “triple-copy” – gets the value from 3 sources:
 - user utterance (same as previous span tagging models)
 - system informs (last value the system mentioned)
 - another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

- rule-based update (static)

Boolean slots are handled separately (classification)

Coreference – distribution over slots to copy from

Same decision as previously, just different options:
none/dontcare/span/inform/refer

NPFL099 L6 2023

(Heck et al., 2020)
https://aclweb.org/anthology/2020.sigdial-1.4/
Multi-domain Span Selection

- encode domain & slot names w. static pretrained word-embeddings (GloVe)
 - adding **new unseen domains & slots** is easy (no retraining)
- otherwise similar as previous, BERT-based:
 - decide if domain changed (BERT: yes/no/chitchat)
 - if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)
 - for each domain, find values (BERT + GloVe span selection)

(Dey & Desarkar, 2021)
https://aclanthology.org/2021.sigdial-1.23
Generator-based Tracker

- Similar to span selection: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: “use generated”/\textit{dontcare}/\textit{none}
 - same as the decisions done in span tagging, just applied after getting the value

(Wu et al., 2019)
https://www.aclweb.org/anthology/P19-1078
Generator + Pretrained LMs

- Same as previous, but use a pretrained model (T5) + make it simpler
 - generate any value, including *none*
 - no explicit copying (T5 can copy itself)

- Fine-tune T5 with specific inputs (prompts)
 - dialogue history
 - domain + slot
 - (optional) slot description, may include list of possible values

- Generate just the slot value
 - may be multi-word

- T5 learns to use descriptions

- Potential for unseen domains
 - though not explored in the paper

(Received from: Lee et al., 2021
https://aclanthology.org/2021.emnlp-main.404/)

Diagram: Dialogue History C_t → Domain d_m → Slot s_n → NL Description → Value v
• Prompt LLM to produce state
 • this work: GPT-Neo, CodeGen, GPT-3
• Needs context
 • DB schema shown in SQL
 • Dialogue context: prev. state + 1 turn
• Retrieved few-shot examples
 • SBERT similarity
• Needs framing
 • State changes ~ SQL
• Works well in few-shot settings
 • Needs less data for retrieval
 (~1-5%/100-500 dialogues works already)
• Dialogue management:
 • **State tracking** (↑)
 • **Action selection/Policy** (↓)
• action selection – **deciding what to do next**
 • based on the current belief state – under uncertainty
 • following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 • controlling the coherence & flow of the dialogue
 • actions: linguistic & non-linguistic
• DM/policy should:
 • manage uncertainty from belief state
 • recognize & follow dialogue structure
 • plan actions ahead towards the goal

Did you say Indian or Italian?

- follow convention, don’t be repetitive
- e.g. ask for all information you require

(from Milica Gašić’s slides)
Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state

- Frame-based (VoiceXML)
 - slot-filling + providing information – basic agenda
 - rule-based in essence

- Rule-based
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning
Why Reinforcement Learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You’d need sufficiently large human-human data – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s no single correct next action – multiple options may be equally good
 • but datasets will only have one next action
 • some paths will be unexplored in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • **DSs should behave differently** – make the best of what they have
 • supervised classification doesn’t plan ahead!
 • RL optimizes for the whole dialogue, not just the immediate action
RL World Model: Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an environment:
 - has internal state $s_t \in S$ (~ dialogue state)
 - takes actions $a_t \in A$ (~ system dialogue acts)
 - actions chosen according to policy $\pi: S \rightarrow A$
 - gets rewards $r_t \in \mathbb{R}$ & state changes from the environment
 - rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
 - Markov property – state defines everything
 - no other temporal dependency
 - policy may be **deterministic** or **stochastic**
 - stochastic: prob. dist. of actions, sampling

(from Milica Gašić’s slides)
(Sutton & Barto, 2018)
Partially-observable MDPs

- **POMDPs** – belief states instead of dialogue states
 - true states (“what the user wants”) are not observable
 - observations (“what the system hears”) depend on states
 - belief – probability distribution over states
 - can be viewed as **MDPs with continuous-space states**
 - just represent 1 slot as set of binary floats 😊

- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex

- Deep RL typically works out of the box
 - function approximation approach, allows continuous states
Simulated Users

• Static datasets aren’t enough for RL
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE/supervised policy from data
 • combination (best!)
Summary Space

• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = **summary space**
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = **summary actions**
 • e.g. just DA types (inform, confirm, reject)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates

(from Milica Gašić's slides)
Reinforcement learning: Definition

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

$$R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}$$

- accumulated long-term reward (from turn \(t\) onwards)
- alternative – **episodes**: only count to \(T\) when we encounter a terminal state (e.g. 1 episode = 1 dialogue)

- state transition is stochastic → maximize **expected return**

$$\mathbb{E}[R_t | \pi, s_0]$$

- expected \(R_t\) if we start from state \(s_0\) and follow policy \(\pi\)

\(\gamma \in [0,1] = \text{discount factor}\) (immediate vs. future reward trade-off)

- \(\gamma = 1\): no discount, only usable if \(i \leq T\)
- \(\gamma < 1\): \(R_t\) is finite (if \(r_t\) is finite)
- \(\gamma = 0\): greedy approach (ignore future rewards)
• **State tracking**: track user goal over multiple turns (probabilistic – belief state)
 • good NLU + rules – works well (and is used frequently)
 • **static** (sliding-window/rule-based update) vs. **dynamic** (explicit modelling)
 • with vs. without NLU
• **classification** vs. candidate **ranking** vs. span **selection** vs. **generation**
 • classifiers are more accurate than rankers but slower, limited to seen values
 • span selection or generation are the SotA approaches, work nicely but relatively slow
 • many architectures (FC/RNN), newest mostly based on pretrained LMs

• **Action selection**: deciding what to do next (following a **policy**)
 • FSM, frames, rule-based, supervised, **reinforcement learning**
 • **RL** – agent in an environment, taking actions, getting rewards
 • MDP formalism (+POMDP can be converted to it)
 • summary states might be needed
 • trained often with user simulators
Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html