NPFL099 Statistical Dialogue Systems **5. Language Understanding**

http://ufal.cz/npfl099

Ondřej Dušek, Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

31. 10. 2023

Natural Language Understanding

- words → meaning
 - whatever "meaning" is can be different tasks
 - typically structured, explicit representation
- alternative names/close tasks:
 - spoken language understanding
 - semantic decoding/parsing
- integral part of dialogue systems, also explored elsewhere
 - stand-alone semantic parsers
 - other applications:
 - human-robot interaction
 - question answering
 - machine translation (not so much nowadays)

NLU Challenges

- non-grammaticality find something cheap for kids should be allowed
- disfluencies
 - hesitations pauses, fillers, repetitions uhm I want something in the west the west part of town
 - fragments uhm I'm looking for a cheap
 - self-repairs (~6%!) uhm find something uhm something cheap no I mean moderate
- ASR errors I'm looking for a for a chip Chinese rest or rant
- synonymy Chinese city centre I've been wondering if you could find me a restaurant that has Chinese food close to the city centre please
- out-of-domain utterances oh yeah I've heard about that place my son was there last month

Semantic representations

- syntax/semantic trees
 - typical for standalone semantic parsing
 - different variations

frames

- technically also trees, but smaller, more abstract
- (mostly older) DSs, some standalone parsers
- graphs (AMR)
 - trees + co-reference (e.g. pronouns referring to the same object)
- dialogue acts = intent + slots & values
 - flat no hierarchy
 - most DSs nowadays

inform(date=Friday, stay="2 nights")

oui l'hôtel don't le prix ne dépasse pas cent dix euros

(Bonneau-Maynard et al., 2005) https://www.isca-speech.org/

archive/interspeech_2005/i05_3457.html

I want to stay 2 nights from Friday

Handling ASR noise

- ASR produces multiple hypotheses
- Combine & get resulting NLU hypotheses
 - NLU: p(DA|text)
 - ASR: p(text|audio)
 - we want p(DA|audio)
- Easiest: sum it up

$$p(DA|audio) = \sum_{\text{texts}} P(DA|\text{text})P(\text{text}|\text{audio})$$

- Alternative: joint models
 - in-domain ASR & NLU trained jointly
 - dual encoders, pretrained representations
 & combination

```
0.33 - I am looking for a bar

0.26 - I am looking for the bar

0.11 - I am looking for a car

0.09 - I am looking for the car

0.59 - inform(task=find, venue=bar)

0.20 - null() (from Filip Jurčíček's slides)
```


Handling out-of-domain queries

- Handcrafted: no pattern matches → out-of-domain
- Datasets rarely taken into account!
- **Low confidence** on any intent → out-of-domain?
 - might work, but likely to fail (no explicit training for this)
- Out-of-domain data + specific OOD intent
 - adding OOD from a different dataset
 - problem: "out-of-domain" should be broad, not just some different domain
 - collecting out-of-domain data specifically
 - worker errors for in-domain
 - replies to specifically chosen irrelevant queries
 - always need to ensure that they don't match any intent randomly
 - not so many instances needed (expected to be rare)

(Larson et al., 2019) http://arxiv.org/abs/1909.02027

NLU as classification

- using DAs treating them as a set of semantic concepts
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept
- consistency problems
 - conflicting intents (e.g. *affirm* + *negate*)
 - conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 - need to be solved externally, e.g. based on classifier confidence

NER + delexicalization

- Approach:
- 1) identify slot values/named entities
- 2) delexicalize = replace them i'm with placeholders (indicating entity type)
 - or add the NE tags as more features for classification
- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers
- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - in-domain gazetteers, in-domain training data

What is the phone number for Golden Dragon? What is the phone number for <restaurant-name>?

I'm looking for a Japanese restaurant in Notting Hill. I'm looking for a <food> restaurant in <area>.

I need to leave after 12:00.
I need to leave after <time>.
leave_at -> leave_at
arrive by -> none

Both can be <time>

NLU Classifier models

- note that data is usually scarce!
- handcrafted / rules
 - simple mapping: word/n-gram/regex match → concept
 - can work really well for a limited domain
 - no training data, no retraining needed (tweaking on the go)
- linear classifiers
 - logistic regression, SVM...
 - need handcrafted features
- neural nets (=our main focus today)

NN neural classifiers

- intent = multi-class (softmax)
- slot tagging = set of binary classifiers (logistic loss)
- using word embeddings (task-specific or pretrained)
 - no need for handcrafted features
 - still needs delexicalization (otherwise data too sparse)
- different architectures possible
 - bag-of-words feed-forward NN
 - RNN / CNN encoders + classification layers
 - attention-based

Slot filling as sequence tagging

- get slot values directly no need for delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach

I need a flight from Boston to New York tomorrowO O O O B-dept O B-arr I-arr B-date

- rules + classifiers still work
 - keywords/regexes found at specific position
 - apply classifier to each word in the sentence left-to-right
- linear classifiers are still an option

Neural sequence tagging

- Basic neural architecture:
 RNN (LSTM/GRU) → softmax over hidden states
 - + some different model for intents (such as classification)
- Sequence tagging problem: overall consistency
 - slots found elsewhere in the sentence might influence what's classified now
 - may suffer from label bias
 - trained on gold data single RNN step only
 - during inference, cell state is influenced by previous steps danger of cascading errors
 - solution: structured/sequence prediction
 - conditional random fields (CRF)
 - can run CRF over NN outputs

- Same network for both tasks
- Bidirectional encoder
 - 2 encoders: left-to-right, right-to-left
 - "see everything before you start tagging"
- Decoder tag word-by-word, inputs:
 - attention
 - input encoder hidden states ("aligned inputs")
 - both
- Intent classification: softmax over last encoder state
 - + specific intent context vector c_{intent} (attention)

http://arxiv.org/abs/1609.01454

NN for Joint Intent & Slots

- Extended version:
 use slot tagging results in intent classification
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder
 - attention over slots decoder states
- Training for both intent & slot detection improves results on ATIS flights data
 - this is multi-task training ©
 - intent error lower $(2\% \rightarrow 1.5\%)$
 - slot filling slightly better (F1 95.7% → 95.9%)
- Variant: treat intent detection as slot tagging
 - append <EOS> token & tag it with intent

(Intent) Flight this is new

(Liu & Lane, 2016)

same as (c) on previous slide

5k instances

17 intents ~100 slots

- seq2seq with copy mechanism = pointer-generator net
 - normal **seq2seq** with attention generate output tokens (softmax over vocabulary)
 - **pointer net**: select tokens from input (attention over input tokens)
 - prediction = weighted combination of →
- can work with out-of-vocabulary
 - e.g. previously unseen restaurant names
 - (but IOB tagging can, too)
- generating slots/values + intent
 - it's not slot tagging (doesn't need alignment)
 - works for slots expressed implicitly
 or not as consecutive phrases
 - treats intent as another slot to generate

Can I bring my kids along to this restaurant?
I want a Chinese place with a takeaway option.

confirm(kids_friendly=yes)
inform(food=Chinese_takeaway)

DSTC2 results

Our model

89.0 **82.8 85.8**

BERT-based NLU

slightly different numbers, most probably a — reimplementation

- slot tagging on top of pretrained BERT
 - standard IOB approach
 - just feed final hidden layers to softmax over tags
 - classify only at 1st subword in case of split words (don't want tag changes mid-word)
- special start token tagged with intent
- optional CRF on top of the tagger
 - for global sequence optimization

Models	Snips			ATIS		
	Intent	Slot	Sent	Intent	Slot	Sent
RNN-LSTM (Hakkani-Tür et al., 2016)	96.9	87.3	73.2	92.6	94.3	80.7
AttenBiRNN (Liu and Lane, 2016)	96.7	87.8	74.1	91.1	94.2	78.9
Slot-Gated (Goo et al., 2018)	97.0	88.8	75.5	94.1	95.2	82.6
Joint BERT	98.6	97.0	92.8	97.5	96.1	88.2
Joint BERT + CRF	98.4	96.7	92.6	97.9	96.0	88.6
	1	1				
accura	асу	F	1			

(Chen et al., 2019) http://arxiv.org/abs/1902.10909

% completely correct sentences

- Pretraining on dialogue tasks can do better (& smaller) than BERT
 - ConveRT: Transformer-based dual encoder
 - 2 Transformer encoders: context + response
 - optionally 3rd encoder with more context (concatenated turns)
 - feed forward + cosine similarity on top
 - training objective: response selection
 - response that actually happened = 1
 - random response from another dialogue = 0
 - trained on a large dialogue dataset (Reddit)
- can be used as a base to train models for:
 - **slot tagging** (top self-attention layer → CNN → CRF)
 - intent classification (top feed-forward → more feed-forward → softmax)
 - Transformer layers are fixed, not fine-tuned
 - works well for little training data (few-shot)

(Coope et al., 2020)

https://www.aclweb.org/anthology/2020.acl-main.11

(Casanueva et al., 2020)

https://www.aclweb.org/anthology/2020.nlp4convai-1.5

TOD-BERT

- pre-finetuning BERT on vast task-oriented dialogue data
 - basically combination of 2 previous
- BERT + add user/sys tokens + train for:
 - masked language modelling
 - response selection (dual encoder style)
 - over [CLS] tokens from whole batch
 - other examples in batch = negative
- result: "better dialogue BERT"
 - can be finetuned for various dialogue tasks
 - intent classification
 - slot tagging
 - good performance even "few-shot"
 - just 1 or 10 examples per class
 - bigger difference w. r. t. BERT

SETFIT: Sentence BERT + contrastive pre-finetuning

Sentence Transformer (ST) = Transformer dual encoder

(Reimers & Gurevych, 2019) https://aclanthology.org/D19-1410/

- general, based on RoBERTa, produces sentence-level representations
- trained for semantic similarity (NLI data)

(Tunstall et al., 2022) http://arxiv.org/abs/2209.11055

- Contrastive pre-finetuning:
 - 2 examples from same intent class = 1
 - 2 examples from random different intent classes = 0
- Intent classifier trained on top of the pre-finetuned model
- Good for low-data situations

Incremental NLU

- Aim: low latency, real-time performance
- Parsing incomplete sentences
 - guessing during parsing: create a full parse from incomplete sentences
 - predicting user input: use LM to finish utterance
 - both reduce latency
- Specific architecture
 - more like unidirectional encoders (so you don't need to recompute)
 - but retain bidirectional at higher layers
 - optionally, based on a specific classifier

bidi used here

Regular Expressions & NNs for NLU

(Luo et al., 2018) http://arxiv.org/abs/1805.05588

- Regexes as manually specified features
 - **binary**: any matching sentence (for intents)
 - + any word in a matching phrase (for slots)
 - regexes meant to represent an intent/slot
 - combination at different levels
 - "input": aggregate word/sent + regex embeddings (at sentence level for intent, word level for slots)
 - "network": per-label supervised attentions (log loss for regex matches)
 - 3) "output": alter final softmax (add weighted regex value)
- Good for limited amounts of data (few-shot)
 - works with 10-20 training examples per slot/intent

Unsupervised NLU

- Clustering intents & slots
- Features:
 - word embeddings
 - POS
 - word classes
 - topic modelling (biterm)

feature choice + AE seem to work quite well

Allo				
Models	Intent Labeling Acc (%)			
topic model	25.4			
CDSSM vector	20.7			
glove embedding	25.6			
auto-dialabel	84.1			

22

ΔTIS

- Autoencoder to normalize # of dimensions for features
- Dynamic hierarchical clustering
 - decides # of clusters stops if cluster distance exceeds threshold
- Slot clustering word-level
 - over nouns, using intent clustering results

(Shi et al., 2018) https://www.aclweb.org/anthology/D18-1072/

Weak Supervision from Semantic Frames

- Finding relevant slots based on generic (frame) parser output
 - filter irrelevant candidates, merge similar ones & generalize better
- Iterative merging & selection
 - frequency, coherence, TextRank
 - w. r. t. to head verbs
- Training an LSTM tagger
 - standalone, based on merged annotation
 - 2nd option threshold to improve recall
- Promising, but not perfect
 - DB connection, interpretation of slots

Weak supervision: QA-style NLU

- Zero-shot just needs some slot descriptions
 - no in-domain training data needed
- Use a "question answering" BERT to do slot detection
 - generate questions from slot description
 specifically ask for slots (rule-based)
 - QA model output = slot values
 - pretrained on other datasets (generate questions from ontology)
 - generalizes to unseen slots (though still far from perfect)

train: SNIPS, test: TOP	Zero-shot	Few-shot (20)	Few-shot (50)
Random NE	1.34	-	-
BERT seq tagging	8.82	37.60	42.73
BERT QA style	10.27	36.86	46.49
+ pretraining on other s	ets 12.35	39.78	47.91

Slot	Raw Description	Our Question
playlist_owner	owner	who's the owner?
object_select	object select	which object to select?
best_rating	points in total	how many points in total?
num_book_people	number of people for booking	how many people for booking?

(Du et al., 2021) https://aclanthology.org/2021.acl-short.83

LLMs for (open-domain) NLU

- LLM prompts asking questions to:
 - classify sentences into a fixed schema
 - classify specific properties
- Prompt engineering
 - simple prompts
 - asking 1 question at a time
 - asking for reasoning
 - examples/not: depends

Universal Intents

- typically DAs are domain-dependent
- ISO 24617-2 DA tagging standard
 - pretty complex: multiple dimensions
 - Task, Social, Feedback…
 - DA types (intents) under each dimension
- Simpler approach non-hierarchical
 - union looking at different datasets
 - Mapping from datasets manual/semi-automatic
 - mapping tuned on classifier performance
 - Intent tagging improved using multiple datasets/domains
 - generic intents only
 - Slots stay domain-specific

(Mezza et al, 2018) https://www.aclweb.org/anthology/C18-1300

ack, affirm, bye, deny, inform, repeat, requist, restart, thank-you, user-confirm, sys-impl-confirm, sys-expl-confirm, sys-hi, user-hi, sys-negate, user-negate, sys-notify-failure, sys-notify-success, sys-offer

(Paul et al, 2019) http://arxiv.org/abs/1907.03020

Summary

- NLU is mostly intent classification + slot tagging
- Rules + simple methods work well with limited domains
- Neural NLU:
 - **shapes**: CNN, LSTM, attention, seq2seq + pointer nets
 - tasks: classification, sequence tagging, sequence prediction, span selection
 - it helps to do joint intent + slots
 - pretrained LMs help (models are large though)
 - BERT, specific pretrained dialogue models
 - NNs can be combined with regexes/handcrafted features
 - helps with limited data
- Less/no supervision: pretrained LMs & prompting, generic parsers, clustering
 - helps with domain generalization

Thanks

Contact us:

https://ufaldsg.slack.com/ odusek@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement) No labs today
Next week: lecture & labs
We start at 9:50am

Get the slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- mostly papers referenced from slides
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Raymond Mooney's slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596 spr2018/syllabus.html
- Gokhan Tur & Renato De Mori (2011): Spoken Language Understanding

NPFL099 L5 2023 28