NPFL099 Statistical Dialogue Systems
5. Language Understanding

http://ufal.cz/npfl099

Ondřej Dušek, Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

31. 10. 2023
Natural Language Understanding

• words → meaning
 • whatever “meaning” is – can be different tasks
 • typically structured, explicit representation

• alternative names/close tasks:
 • spoken language understanding
 • semantic decoding/parsing

• integral part of dialogue systems, also explored elsewhere
 • stand-alone semantic parsers

• other applications:
 • human-robot interaction
 • question answering
 • machine translation (not so much nowadays)
NLU Challenges

- **non-grammaticality**
 - find something cheap for kids should be allowed

- **disfluencies**
 - hesitations – pauses, fillers, repetitions
 - uhm I want something in the west the west part of town
 - fragments
 - uhm I’m looking for a cheap
 - self-repairs (~6%!)
 - uhm find something uhm something cheap no I mean moderate

- **ASR errors**
 - I’m looking for a for a chip Chinese rest or rant

- **synonymy**
 - Chinese city centre
 - I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please

- **out-of-domain utterances**
 - oh yeah I’ve heard about that place my son was there last month
Semantic representations

- **syntax/semantic trees**
 - typical for standalone semantic parsing
 - different variations

- **frames**
 - technically also trees, but smaller, more abstract
 - (mostly older) DSs, some standalone parsers

- **graphs (AMR)**
 - trees + co-reference
 - (e.g. pronouns referring to the same object)

- **dialogue acts = intent + slots & values**
 - flat – no hierarchy
 - most DSs nowadays

 inform(date=Friday, stay="2 nights")

 oui l’hôtel don’t le prix ne dépasse pas cent dix euros

 (Bonneau-Maynard et al., 2005)
 https://www.isca-speech.org/archive/interspeech_2005/i05_3457.html

 http://cohort.inf.ed.ac.uk/amreager.html
Handling ASR noise

- ASR produces **multiple hypotheses**
- Combine & get resulting NLU hypotheses
 - NLU: \(p(DA|text) \)
 - ASR: \(p(text|audio) \)
 - we want \(p(DA|audio) \)
- Easiest: **sum it up**

\[
p(DA|audio) = \sum_{texts} P(DA|text)P(text|audio)
\]

- Alternative: **joint models**
 - in-domain ASR & NLU trained jointly
 - dual encoders, pretrained representations & combination

\[0.33 - I\; am\; looking\; for\; a\; bar\]
\[0.26 - I\; am\; looking\; for\; the\; bar\]
\[0.11 - I\; am\; looking\; for\; a\; car\]
\[0.09 - I\; am\; looking\; for\; the\; car\]
\[0.59 - \text{inform(task=find, venue=bar)}\]
\[0.20 - \text{null()}
\]

(from Filip Jurčiček’s slides)

(Si et al., 2023) http://arxiv.org/abs/2305.13040
Handling out-of-domain queries

- Handcrafted: **no pattern matches** → out-of-domain
- Datasets – rarely taken into account!
- **Low confidence** on any intent → out-of-domain?
 - might work, but likely to fail (no explicit training for this)
- Out-of-domain data + **specific OOD intent**
 - adding OOD from a different dataset
 - problem: “out-of-domain” should be broad, not just some different domain
 - collecting out-of-domain data specifically
 - worker errors for in-domain
 - replies to specifically chosen irrelevant queries
 - always need to ensure that they don’t match any intent randomly
 - not so many instances needed (expected to be rare)

(Larson et al., 2019)
NLU as classification

• using DAs – treating them as a set of semantic concepts
 • concepts:
 • intent
 • slot-value pair
 • binary classification: is concept Y contained in utterance X?
 • independent for each concept

• consistency problems
 • conflicting intents (e.g. affirm + negate)
 • conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 • need to be solved externally, e.g. based on classifier confidence
NER + delexicalization

1) **identify** slot values/named entities
2) **delexicalize** = replace them with placeholders (indicating entity type)
 • or add the NE tags as more features for classification
 • generally needed for NLU as classification
 • otherwise in-domain data is too sparse
 • this can vastly reduce the number of concepts to classify & classifiers

• NER is a problem on its own
 • but general-domain NER tools may need to be adapted
 • in-domain gazetteers, in-domain training data

What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.

I need to leave after 12:00.
I need to leave after <time>.
leave_at -> **leave_at**
arrive_by -> **none**

Both can be <time>
NLU Classifier models

- note that data is usually scarce!

- **handcrafted / rules**
 - simple mapping: word/n-gram/regex match → concept
 - can work really well for a limited domain
 - no training data, no retraining needed (tweaking on the go)

- **linear classifiers**
 - logistic regression, SVM…
 - need handcrafted features

- **neural nets** (=our main focus today)
NN neural classifiers

- **intent** = **multi-class** (softmax)
- **slot** tagging = set of **binary classifiers** (logistic loss)
- using word embeddings (task-specific or pretrained)
 - no need for handcrafted features
 - still needs delexicalization (otherwise data too sparse)
- different architectures possible
 - bag-of-words feed-forward NN
 - RNN / CNN encoders + classification layers
 - attention-based

(Raffel & Ellis, 2016)
Slot filling as sequence tagging

• get slot values directly – no need for delexicalization
 • each word classified
 • classes = slots & **IOB format** (inside-outside-beginning)
 • slot values taken from the text (where a slot is tagged)
• NER-like approach

• rules + classifiers still work
 • keywords/regexes found at specific position
 • apply classifier to each word in the sentence left-to-right

• linear classifiers are still an option

I need a flight from Boston to New York tomorrow

I O O O O B-dept O B-arr I-arr B-date
Neural sequence tagging

• Basic neural architecture: RNN (LSTM/GRU) → softmax over hidden states
 • + some different model for intents (such as classification)

• Sequence tagging problem: overall consistency
 • slots found elsewhere in the sentence might influence what’s classified now
 • may suffer from **label bias**
 • trained on gold data – single RNN step only
 • during inference, cell state is influenced by previous steps – danger of cascading errors

• solution: **structured/sequence prediction**
 – conditional random fields (CRF)
 • can run CRF over NN outputs

Joint Intent & Slots Model

(Liu & Lane, 2016)
http://arxiv.org/abs/1609.01454

• Same network for both tasks
• Bidirectional encoder
 • 2 encoders: left-to-right, right-to-left
 • “see everything before you start tagging”
• Decoder – tag word-by-word, inputs:
 • attention
 • input encoder hidden states (“aligned inputs”)
 • both
• Intent classification:
 softmax over last encoder state
 • + specific intent context vector c_{intent}(attention)
NN for Joint Intent & Slots

- Extended version: **use slot tagging results in intent classification**
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder
 - attention over slots decoder states
- Training for both intent & slot detection improves results on ATIS flights data
 - this is multi-task training 😊
 - intent error lower (2% → 1.5%)
 - slot filling slightly better (F1 95.7% → 95.9%)
- Variant: treat **intent detection as slot tagging**
 - append <EOS> token & tag it with intent

(Liu & Lane, 2016)
http://arxiv.org/abs/1609.01454

(Hakkani-Tür et al, 2016)
https://doi.org/10.21437/Interspeech.2016-402
Seq2seq-based NLU

copy mechanism = pointer-generator net
- normal seq2seq with attention – generate output tokens (softmax over vocabulary)
- pointer net: select tokens from input (attention over input tokens)
- prediction = weighted combination of

 - can work with out-of-vocabulary
 - e.g. previously unseen restaurant names
 - (but IOB tagging can, too)

 - generating slots/values + intent
 - it’s not slot tagging (doesn’t need alignment)
 - works for slots expressed implicitly or not as consecutive phrases
 - treats intent as another slot to generate

Can I bring my kids along to this restaurant?
I want a Chinese place with a takeaway option.

confirm(kids_friendly=yes)
inform(food=Chinese_takeaway)
BERT-based NLU

- slot tagging on top of pretrained BERT
- standard **IOB approach**
 - just feed final hidden layers to **softmax over tags**
 - classify only at 1st subword in case of split words (don’t want tag changes mid-word)
- special start token tagged with intent
- optional CRF on top of the tagger
 - for global sequence optimization

<table>
<thead>
<tr>
<th>Models</th>
<th>Intent</th>
<th>Snips Slot</th>
<th>Sent</th>
<th>Intent</th>
<th>Slot</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN-LSTM (Hakkani-Tür et al., 2016)</td>
<td>96.9</td>
<td>87.3</td>
<td>73.2</td>
<td>92.6</td>
<td>94.3</td>
<td>80.7</td>
</tr>
<tr>
<td>Atten-BiRNN (Liu and Lane, 2016)</td>
<td>96.7</td>
<td>87.8</td>
<td>74.1</td>
<td>91.1</td>
<td>94.2</td>
<td>78.9</td>
</tr>
<tr>
<td>Slot-Gated (Goo et al., 2018)</td>
<td>97.0</td>
<td>88.8</td>
<td>75.5</td>
<td>94.1</td>
<td>95.2</td>
<td>82.6</td>
</tr>
<tr>
<td>Joint BERT</td>
<td>98.6</td>
<td>97.0</td>
<td>92.8</td>
<td>97.5</td>
<td>96.1</td>
<td>88.2</td>
</tr>
<tr>
<td>Joint BERT + CRF</td>
<td>98.4</td>
<td>96.7</td>
<td>92.6</td>
<td>97.9</td>
<td>96.0</td>
<td>88.6</td>
</tr>
</tbody>
</table>

 rozpoczęcie od różnic w liczbach, najprawdopodobniej implementacja recenzji

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909
• Pretraining on dialogue tasks can do better (& smaller) than BERT
 • ConveRT: Transformer-based **dual encoder**
 • 2 Transformer encoders: context + response
 • optionally 3rd encoder with more context (concatenated turns)
 • feed forward + cosine similarity on top
 • training objective: **response selection**
 • response that actually happened = 1
 • random response from another dialogue = 0
 • trained on a large dialogue dataset (Reddit)
• can be used as a base to train models for:
 • **slot tagging** (top self-attention layer \rightarrow CNN \rightarrow CRF)
 • **intent classification** (top feed-forward \rightarrow more feed-forward \rightarrow softmax)
 • Transformer layers are fixed, not fine-tuned
 • works well for little training data (**few-shot**)

(Henderson et al., 2020)
http://arxiv.org/abs/1911.03688

(Coope et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.11

(Casanueva et al., 2020)
https://www.aclweb.org/anthology/2020.nlp4convai-1.5
TOD-BERT

• pre-finetuning BERT on vast *task-oriented* dialogue data
 • basically combination of 2 previous

• BERT + add user/sys tokens + train for:
 • masked language modelling
 • response selection (dual encoder style)
 • over [CLS] tokens from whole batch
 • other examples in batch = negative

• result: “better dialogue BERT”
 • can be finetuned for various dialogue tasks
 • intent classification
 • slot tagging

 • good performance even “few-shot”
 • just 1 or 10 examples per class
 • bigger difference w. r. t. BERT

(Wu et al., 2020)
https://www.aclanthology.org/2020.emnlp-main.66
SETFIT: Sentence BERT + contrastive pre-finetuning

- Sentence Transformer (ST) = Transformer dual encoder
 - general, based on RoBERTa, produces sentence-level representations
 - trained for semantic similarity (NLI data)

 ![Diagram showing ST fine-tuning and classification head training](image)

- Contrastive pre-finetuning:
 - 2 examples from same intent class = 1
 - 2 examples from random different intent classes = 0

- Intent classifier trained on top of the pre-finetuned model

- Good for low-data situations

(Reimers & Gurevych, 2019)
https://aclanthology.org/D19-1410/

(Tunstall et al., 2022)
http://arxiv.org/abs/2209.11055
Incremental NLU

- Aim: low latency, real-time performance
- Parsing incomplete sentences
 - guessing during parsing: create a full parse from incomplete sentences
 - predicting user input: use LM to finish utterance
 - both reduce latency
- Specific architecture
 - more like unidirectional encoders (so you don’t need to recompute)
 - but retain bidirectional at higher layers
 - optionally, based on a specific classifier

(Zhou et al., 2022) https://aclanthology.org/2022.acl-long.110
(Kaushal et al., 2023) https://aclanthology.org/2023.eacl-main.31
Regular Expressions & NNs for NLU

(Luo et al., 2018) http://arxiv.org/abs/1805.05588

- Regexes as manually specified features
 - **binary**: any matching sentence (for intents) + any word in a matching phrase (for slots)
 - **regexes meant to represent an intent/slot**
 - combination at different levels
 1) “input”: aggregate word/sent + regex embeddings (at sentence level for intent, word level for slots)
 2) “network”: per-label supervised attentions (log loss for regex matches)
 3) “output”: alter final softmax (add weighted regex value)

- Good for limited amounts of data (few-shot)
 - works with 10-20 training examples per slot/intent
Unsupervised NLU

- **Clustering** intents & slots
- Features:
 - word embeddings
 - POS
 - word classes
 - topic modelling (biterm)
- Autoencoder to normalize # of dimensions for features
- Dynamic hierarchical clustering
 - decides # of clusters – stops if cluster distance exceeds threshold
- Slot clustering – word-level
 - over nouns, using intent clustering results

(Shi et al., 2018)
https://www.aclweb.org/anthology/D18-1072/
Weak Supervision from Semantic Frames

- Finding relevant **slots** based on **generic (frame) parser output**
 - filter irrelevant candidates, merge similar ones & generalize better
- Iterative merging & selection
 - frequency, coherence, TextRank
 - w. r. t. to head verbs
- Training an LSTM tagger
 - standalone, based on merged annotation
 - 2nd option threshold to improve recall
- Promising, but not perfect
 - DB connection, interpretation of slots

(Hudeček et al., 2021)
https://aclanthology.org/2021.acl-long.189
Weak supervision: QA-style NLU

• Zero-shot – just needs some slot descriptions
 • no in-domain training data needed
• Use a “question answering” BERT to do slot detection
 • generate questions from slot description – specifically ask for slots (rule-based)
• QA model output = slot values
• pretrained on other datasets (generate questions from ontology)
• generalizes to unseen slots (though still far from perfect)

<table>
<thead>
<tr>
<th>Slot</th>
<th>Raw Description</th>
<th>Our Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>playlist_owner</td>
<td>owner</td>
<td>who’s the owner?</td>
</tr>
<tr>
<td>object_select</td>
<td>object select</td>
<td>which object to select?</td>
</tr>
<tr>
<td>best_rating</td>
<td>points in total</td>
<td>how many points in total?</td>
</tr>
<tr>
<td>num_book_people</td>
<td>number of people for booking</td>
<td>how many people for booking?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>train: SNIPS, test: TOP</th>
<th>Zero-shot</th>
<th>Few-shot (20)</th>
<th>Few-shot (50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random NE</td>
<td>1.34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BERT seq tagging</td>
<td>8.82</td>
<td>37.60</td>
<td>42.73</td>
</tr>
<tr>
<td>BERT QA style</td>
<td>10.27</td>
<td>36.86</td>
<td>46.49</td>
</tr>
<tr>
<td>+ pretraining on other sets</td>
<td>12.35</td>
<td>39.78</td>
<td>47.91</td>
</tr>
</tbody>
</table>

(Du et al., 2021)
https://aclanthology.org/2021.acl-short.83
LLMs for (open-domain) NLU

• LLM prompts asking questions to:
 • classify sentences into a fixed schema
 • classify specific properties

• Prompt engineering
 • simple prompts
 • asking 1 question at a time
 • asking for reasoning
 • examples/not: depends

(Ostyakova et al., 2023) https://aclanthology.org/2023.sigdial-1.23
(Finch et al., 2023) https://aclanthology.org/2023.sigdial-1.20
Universal Intents

- Typically DAs are domain-dependent

- **ISO 24617-2 DA tagging standard**
 - Pretty complex: **multiple dimensions**
 - Task, Social, Feedback…
 - DA types (intents) under each dimension

- **Simpler approach** – non-hierarchical
 - **Union** looking at different datasets
 - Mapping from datasets – manual/semi-automatic
 - Mapping tuned on classifier performance
 - Intent tagging improved using multiple datasets/domains
 - Generic intents only
 - Slots stay domain-specific

[Mezza et al, 2018](https://www.aclweb.org/anthology/C18-1300)

[Paul et al, 2019](http://arxiv.org/abs/1907.03020)
Summary

• NLU is mostly **intent classification** + **slot tagging**
• **Rules + simple methods work well** with limited domains
• Neural NLU:
 • **shapes**: CNN, LSTM, attention, seq2seq + pointer nets
 • **tasks**: classification, sequence tagging, sequence prediction, span selection
 • it helps to do joint intent + slots
 • pretrained LMs help (models are large though)
 • BERT, specific pretrained dialogue models
 • NNs can be combined with regexes/handcrafted features
 • helps with limited data
• Less/no supervision: pretrained LMs & prompting, generic parsers, clustering
 • helps with domain generalization
Thanks

Contact us:
https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• mostly papers referenced from slides
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
• Gokhan Tur & Renato De Mori (2011): Spoken Language Understanding

No labs today
Next week: lecture & labs
We start at 9:50am