NPFL099 Statistical Dialogue Systems 2. Data & Evaluation

http://ufal.cz/npfl099

Ondřej Dušek, **Simone Balloccu**, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová 10. 10. 2023



Before you build a dialogue system

Two significant questions, regardless of system architecture:

1) What data to base it on?

- even if you handcraft, you need data
 - people behave differently
 - you can't enumerate all possible inputs off the top of your head
- ASR can't be handcrafted always needs data

2) How to evaluate it?

- is my system actually helpful?
- did recent changes improve/worsen it?
- actually the same problem as data
 - you can't think of all possible ways to talk to your system

Dialogue Data Collection

- Typical options:
- in-house collection using experts (or students)
 - safe, high-quality, but very expensive & time-consuming
 - scripting whole dialogues / Wizard-of-Oz

web crawling

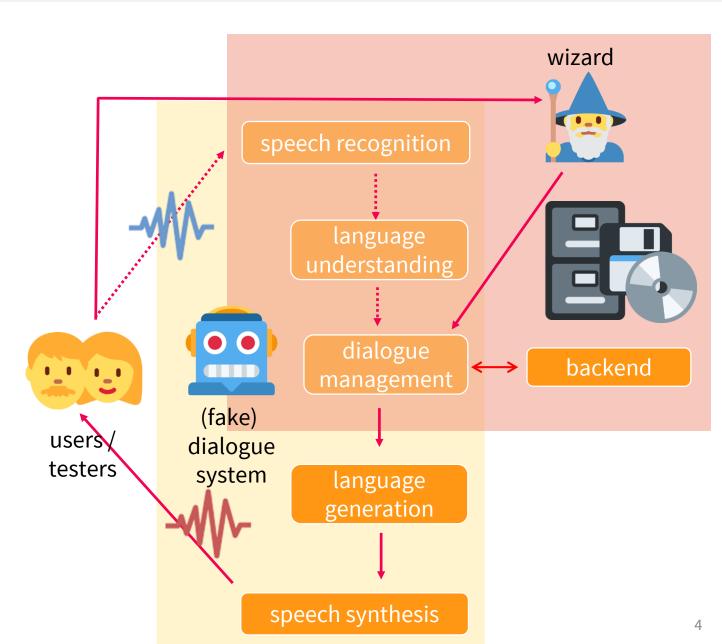
- fast & cheap, but typically not real dialogues
 - may not be fit for purpose
- potentially unsafe (offensive stuff)
- need to be careful about the licensing

crowdsourcing

• compromise: employing (potentially untrained) people over the web

Wizard-of-Oz (WoZ)

- for in-house data collection
 - also: to prototype/evaluate a system before implementing it!
- users believe they're talking to a system
 - different behaviour than when talking to a human
 - typically simpler
- system in fact controlled
 by a human "wizard" (=you)
 - typically selecting options (free typing too slow)



hire people over the web

- create a webpage with your task
 - data collection / evaluation
- no need for people to come to your lab
- faster, larger scale, cheaper
- platforms/marketplaces
 - Amazon Mechanical Turk
 - Appen (previously CrowdFlower/FigureEight)
 - Prolific.co
- problems
 - can't be used in some situations (physical robots, high quality audio...)
 - crowd workers tend to game the system → noise/lower quality data, needs checks
 - mainly English speakers, forget about e.g. Czechs

Using the following information:

from=Penn Station, to=Central Park

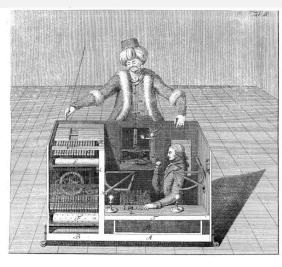
Please confirm that you understand this user request: yes i need a ride from Penn Station to Central Park

Operator (your) reaction:

Your reply is missing the following information: Central Park

Alright, a ride from Penn Station, let me see.

Respond in a natural and fitting English sentence.



- more than recordings/texts typically needed
 - transcripts (for ASR&TTS)
 - semantics, dialogue state (NLU, DM, end-to-end)
 - named entities (NLU)
- getting annotation: similar to getting data itself
- annotation is inherently ambiguous
 - need to test if it's reasonably reliable
 measure inter-annotator agreement (IAA)
 - 2 or more people annotate/transcribe the same thing
 - need to account for agreement by chance
- typical measure: **Cohen's Kappa** $(0 < \kappa < 1)$
 - for categorial annotation
 - 0.4 ~ fair, >0.7 ~ great

$$\kappa = \frac{\text{agreement - chance}}{1 - \text{chance}}$$

Available Dialogue Datasets

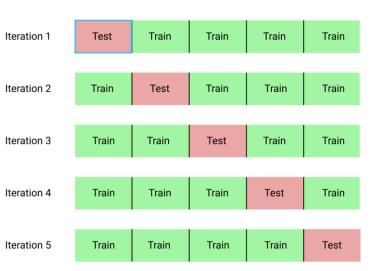
- Many sets available, typically from various research projects (see labs)
 - license: some of them research-only, some free
 - Various types:
 - human-human, human-machine, Wizard-of-Oz
 - task-oriented or non-task-oriented
 - text-based, multimodal, (audio + text rare)
- Common drawbacks:
 - domain choice is rather limited
 - but it's getting better
 - non-task-oriented are still not ideal (mostly discussion forums, subtitles)
 - **size** is very often not enough big AI firms have much more
 - this is also improving
 - annotation level & quality varies
 - vast majority is **English only** (some non-English ones exist)

Dataset Splits

Never evaluate on data you used for training

- memorizing training data would give you 100% accuracy
- you want to know how well your model works on new, unseen data
- Typical dataset split:
 - training set = to train your model

- nt 📁
- **development/validation set** = for evaluation during system development
 - this influences your design decisions, model parameter settings, etc.
- test/evaluation set = only use for final evaluation
- need sufficient sizes for all portions
- Cross-validation when data is scarce:
 - split data into 5/10 equal portions, run 5/10x & test on different part each time



Dialogue System Evaluation

- Depends on dialogue system type / specific component
- Types:
 - extrinsic = how the system/component works in its intended purpose (ideal)
 - effect of the system on something outside itself, in the real world (i.e. user)
 - **intrinsic** = checks properties of systems/components in isolation, self-contained
 - **subjective** = asking users' opinions, e.g. questionnaires (~**manual/human**)
 - × should be more people, so overall not so subjective ☺
 - objective = measuring properties directly from data (~automatic)
 - might or might not correlate with users' perception
- Evaluation discussed here is mostly quantitative
 - i.e. measuring & processing numeric values
 - (qualitative ~ e.g. in-depth interviews, more used in social science)

Significance Testing

- Higher score is not enough to prove your model is better
 - Could it be just an accident?

- Need significance tests to actually prove it
 - Statistical tests, H_0 (null hypothesis) = "both models performed the same"
 - H_0 rejected with >95% confidence \rightarrow pretty sure it's not just an accident
 - more test data = more independent results → can get higher confidence (99+%)
- Various tests with various sensitivity and pre-conditions
 - Student's t-test– assumes normal distribution of values
 - Mann-Whitney U test any ordinal, same distribution
 - Bootstrap resampling doesn't assume anything
 - randomly re-draw your test set (same size, some items 2x/more, some omitted)
 - recompute scores on re-draw, repeat 1000x → obtain range of scores
 - check if range overlap is less than 5% (1%...)

Subjective Evaluation: Getting Subjects

- Can't do without people
 - **simulated user** = another (simple) dialogue system
 - can help & give guidance sometimes, but it's not the real thing more for intrinsic
- In-house = ask people to come to your lab (or access your website)
 - students, friends/colleagues, hired people
 - expensive, time-consuming, doesn't scale (difficult to get subjects)
- Crowdsourcing = hire people over the web
 - much cheaper, faster, scales (unless you want e.g. Czech)
 - not real users mainly want to get their reward
- **Real users** = deploy your system and wait
 - best, but needs time & advertising & motivation
 - you can't ask too many questions
 - Ethics and privacy implications (see recent OpenAI disputes)

Subjective Evaluation (Questionnaires)

- Questionnaires for users/testers
 - based on what information you need (overall satisfaction, individual components)
- Question types
 - Open-ended qualitative
 - Yes/No questions
 - **Likert scales** agree ... disagree (typically 3-7 points)
 - with a middle point (odd number) or forced choice (even number)
 - "Continuous" scales e.g. 0-100 (or no numbers shown, just a slider)
- Question guidelines:
 - easy to understand
 - not too many
 - neutral: not favouring/suggesting any of the replies
 - refer to existing conventions to avoid confusion

Question Examples

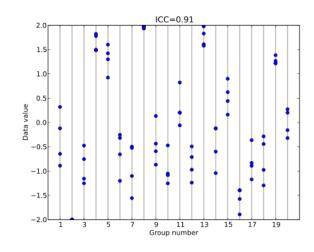
- Success rate (task-oriented):
 Did you get all the information you wanted?
 - typically different from objective measures!
- Future use: Would you use the system again?
- Likeability/engagement: Did you enjoy the conversation?
- **ASR/NLU**: Do you think the system understood you well?
- NLG: Were the system replies fluent/well-phrased?
- TTS: Was the system's speech natural?

System	# calls	Subjective Success Rate	Objective Success Rate
HDC	627	$82.30\% \ (\pm 2.99)$	$62.36\%~(\pm 3.81)$
NBC	573	$84.47\%~(\pm 2.97)$	$63.53\%~(\pm 3.95)$
NAC	588	$89.63\%~(\pm 2.46)$	$66.84\% \ (\pm 3.79)$
NABC	566	$90.28\%~(\pm 2.44)$	$65.55\%~(\pm 3.91)$

(Jurčíček et al., 2012) https://doi.org/10.1016/j.csl.2011.09.004

Question Types

- Aiming at rater consistency (multiple people rating the same)
 - high intraclass correlation coefficient (or other measure of agreement)
- Likert vs. continuous
 - Continuous scales seem to increase consistency
- alternatives: mainly for individual system outputs
 - too hard to do for whole dialogue
 - also work better than Likert
 - Relative ranking / Best-worst scaling
 - sort outputs from best to worst
 - variants: ties allowed / not
 - Magnitude estimation: continuous + reference value
 - rank-based: ask to assign values to multiple outputs at once
 - indirectly ranking



https://en.wikipedia.org/wiki/Intraclass correlation

Intrinsic Objective Evaluation: NLU

• Slot Precision & Recall & F-measure (F1)

(F1 is evenly balanced & default, other F variants favor P or R)

precision
$$P = \frac{\# correct \ slots}{\# detected \ slots}$$
 how much of the identified stuff is identified correctly $R = \frac{\# correct \ slots}{\# true \ slots}$ how much of the true stuff is identified at all

F-measure
$$F = \frac{2PR}{P+R}$$
 harmonic mean – you want both P and R to be high (if one of them is low, the mean is low)

true: inform(name=Golden Dragon, food=Chinese) P = 1/3NLU: inform(name=Golden Dragon, food=Czech, price=high) R = 1/2F = 0.2

NPFL099 L2 2023 15

Intrinsic Objective Evaluation: NLU

- Accuracy (% correct) used for intent/act type
 - intent detection is multi-class classification (1 utterance → 1 intent)
- alternatively also exact matches on the whole semantic structure
 - easier, but ignores partial matches
- Assumes one true answer, which might not be accurate
 - there's ambiguity in some user inputs
 - it's still used since it's too hard to account for multiple correct options
- NLU on ASR outputs vs. human transcriptions
 - both options make sense, but measure different things!
 - intrinsic NLU errors vs. robustness to ASR noise

Extrinsic / Intrinsic Objective Evaluation: Dialogue Manager

- Objective measures (task success rate, duration) can be measured with a user simulator
 - works on dialogue act level
 - responds to system actions
- Simulator implementation
 - handcrafted (rules + a bit of randomness)
 - n-gram models over DA/dialogue turns + sampling from distribution
 - agenda-based (goal: constraints, agenda: stack of pending DAs)
 - reinforcement learning policy
- Problems:
 - cost: the simulator is basically another dialogue system
 - might not be fair (depending on the simulation accuracy)
 - typically your system would work better with a simulator than with humans

Extrinsic / Intrinsic Objective Evaluation: NLG

- No single correct answer here
 - many ways to say the same thing
- Word-overlap with reference text(s): BLEU score

range [0,1] (percentage)
$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{4} \frac{1}{4} \log{(p_n)}\right) \qquad \qquad \text{n-$gram precision:} \\ p_n = \frac{\sum_u \# \text{ matching } n - \text{grams in } u}{\sum_u \# n - \text{grams in } u}$$

- n-gram = span of adjacent n tokens
 - 1-gram (one word) = unigram, 2-gram (2 words) = bigram, 3-gram = trigram

• Example:

```
output: The Richmond's address is 615 Balboa Street. The phone number is 4153798988.
```

<u>ref1</u>: The number for Richmond is 4153798988, the address is 615 Balboa.

ref2: The Richmond is located at 615 Balboa Street and their number is 4153798988.

matching unigrams: the (2x), Richmond, address, is (2x), 615, Balboa, . (only 1x!), number, 4153798988 $p_1 = 11/15$

matching bigrams: The Richmond, address is, is 615, 615 Balboa, Balboa Street, number is, is 4153798988, 4153798988.

$$p_2 = 8 / 14$$

 $p_3 = 5 / 13$, $p_4 = 2 / 12$, BP = 1, BLEU = 0.4048

- BLEU is not very reliable (known for 20 years → people still use it anyway)
 - correlation with humans is questionable
 - never use for a single sentence, only over whole datasets

(Reiter, 2018) https://aclanthology.org/J18-3002/

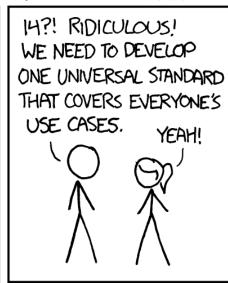
Ext./Int. Objective Evaluation: NLG

Alternatives (not that great):

- Other word-overlap metrics (NIST, METEOR, ROUGE, ChrF ...)
 - there are many more
 - often more complex, but frankly not much better performance

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.



SOON: SITUATION: THERE ARE 15 COMPETING STANDARDS.

https://xkcd.com/927

- Slot error rate only for delexicalized NLG in task-oriented systems
 - delexicalized → generates placeholders for slot values
 - compare placeholders with slots in the input DA: #missed+added+wrong_value slots #total slots
- Diversity mainly for non-task-oriented

$$D = \frac{\text{#distinct } x}{\text{#total } x}, \text{ where } x = \text{unigrams, bigrams, sentences}$$

• can our system produce different replies? (if it can't, it's boring)

Extrinsic / Intrinsic Objective Evaluation: NLG

Entropy / perplexity

- intrinsic for language modelling / word prediction
 - fitting the test set / reference outputs: lower is better
 - actually cross-entropy $-\frac{1}{N}\sum_{i=1}^{N}\log q\left(x_{i}\right)$
- extrinsic model output diversity (Shannon entropy)

$$H(p) = -\sum_{x} p(x) \log p(x)$$

- looking at model outputs per se, no references
- higher is better, more diverse
- Variant: n-gram conditional entropy
 - entropy with known previous context

Extrinsic Objective Evaluation

- Analyzing the logs of people/testers/simulator interacting with the system
 - multi-turn evaluation can work out differently from single-turn
- Metrics:

(Takanobu et al., 2020) https://www.aclweb.org/anthology/2020.sigdial-1.37/

- Task success (task-oriented): did the user get what they wanted?
 - testers with agenda → check if they found what they were supposed to
 - [warning] sometimes people go off script
 - basic check: did we provide any information at all? (any bus/restaurant)
- **Duration**: number of turns
 - task oriented: fewer is better, non-task-oriented: more is better
- Other (not so standard):
 - % returning users
 - % turns with null semantics (task-oriented)
 - % swearing / thanking

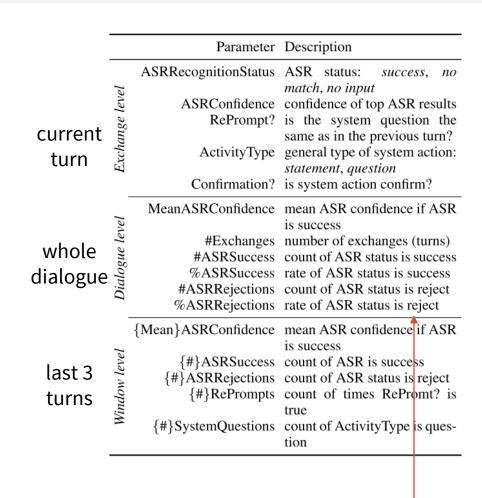
Retrieval metrics

- For retrieval/ranking systems
- Recall: $R_N@k$
 - assuming N candidates, 1 relevant response
 - % of time the relevant one is among top-k rated
 - e.g. $R_{100}@1$ only the 1st out of 100 candidates
- $R_N@1$ given context = **next utterance classification** (NUC)
- precision possible in theory, but not used very much
 - "% of top-k rated that are relevant"
 - actually $P_N@1 = R_N@1$, assuming 1 relevant response
 - $R_N@k$ grows with higher $k, P_N@k \to 0$ with higher k
 - not many datasets have multiple outputs tagged as relevant

Turn-level Quality Estimation

Interaction Quality

- turns annotated by experts (Likert 1-5)
- trained model (SVM/RNN)
 - very low-level features
 - mostly ASR-related
 - multi-class classification
- result is domain-independent
 - trained on a very small corpus (~200 dialogues)
 - same model applicable to different datasets
- can be used in a RL reward signal
 - works better than task success

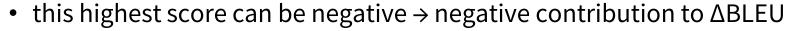


"reject" = ASR output doesn't match in-domain LM

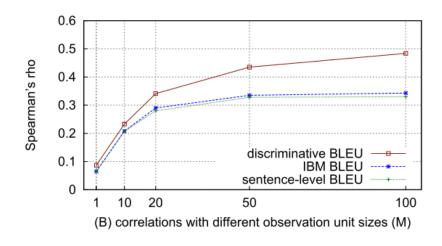
(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019) https://doi.org/10.1016/j.specom.2015.06.003 https://doi.org/10.21437/Interspeech.2017-1032 https://aclweb.org/anthology/W19-5902/

ABLEU

- BLEU problem for dialogue: multiple answers are OK
 - but most dialogue datasets only have 1 reference
- ΔBLEU: "discriminative" BLEU
 - get multiple references
 - have them rated (~crowdsourcing)
 - for appropriateness $\in [-1,1]$
 - weigh each n-gram match by highest-scoring reference in which it is found



- identical to multi-ref BLEU if all weights = 1
- better correlation with humans



Trained Dialogue Metrics (works as intrinsic for NLG too)

- Train a supervised machine learning model / prompt a LLM
- (Mendonça et al., 2023) https://aclanthology.org/2023.dstc-1.16

(Tao et al., 2018)

http://arxiv.org/abs/1701.03079

https://aclanthology.org/2020.sigdial-1.28/

(Bruni & Fernandez, 2017)

http://aclanthology.org/W17-5534

(Mehri & Eskenazi, 2020)

(Dušek et al., 2017; 2019)

https://arxiv.org/abs/1708.01759

https://arxiv.org/abs/1910.04731

- predict a score of "goodness" of each response
- Inputs may vary:
 - dialogue context + reference response (RUBER, USR)
 - works similar to BLEU
 - predict if the response fits the context
 - alternative (adversarial evaluation): is the response human-written or not?
 - context + training human ratings = quality estimation
 - can be used at system runtime e.g. select best reply candidate
 - just context (FED)
 - using a pretrained language model
 - how likely the sentence is (~ fluency)

(Mehri & Eskenazi, 2020)

https://aclanthology.org/2020.acl-main.64/ how likely it is that something positive/negative comes afterwards

NPFL099 L2 2023

Better correlation with people than BLEU, but still not great (~0.4-0.5)

Chatbots: Self-play

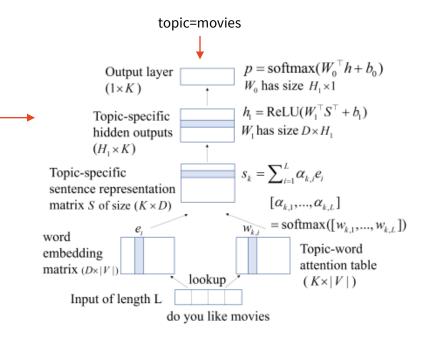
- Let the system be its own user simulator
- Have it talk to itself + measure some dialogue properties

(Ghandeharioun et al., 2019) http://arxiv.org/abs/1906.09308

- sentiment: sentiment classification + changes over dialogue
- semantics/embedding: coherence ~ embedding similarity
- engagement: # words + # ?'s in responses
- Result = linear combination of ↑, on 10-turn generated dialogues
 - seems to work pretty good (correlation ~0.7)
 - better than individual metrics, better than measuring individual turns

Chatbots: Topic-based Evaluation

- automatic evaluation for chatbots
- based on a topic classifier
 - "attentional deep averaging networks"
 - using topic-specific saliency ∀ word
 per-topic attentions
 - few fully connected layers + final classification
 - given a turn, assign topic
 - two levels: coarse / fine (e.g. entertainment / movies)
- conversation topic breadth & depth
 - breadth: average number of distinct topics in each dialogue
 - depth: average **length of sub-dialogue** (consecutive turns on the same topic)
- correlates well with human overall dialogue ratings



(Guo et al, 2017) http://arxiv.org/abs/1801.03622

Summary

- You need data (corpus) to build your systems
 - various sources: human-human, human-machine, generated
 - various domains
 - size matters
- Evaluation needs to be done on an unseen test set
 - intrinsic (component per se) / extrinsic (in application)
 - objective (measurements) / subjective (asking humans)
 - don't forget to check significance
- Evaluation is non-trivial
 - there is no ideal metric humans, BLEU, recall... all have their problems
 - you can try training a model for evaluation might work better
- Next week: Machine learning

Thanks

Contact us:

https://ufaldsg.slack.com/
odusek@ufal.mff.cuni.cz
Zoom/Slack/Troja (by agreement)

Get the slides here:

http://ufal.cz/npfl099

References/Further:

- Deriu et al. (2019): Survey on Evaluation Methods for Dialogue Systems: http://arxiv.org/abs/1905.04071
- Santhanam & Shaikh (2019): Towards Best Experiment Design for Evaluating Dialogue System Output https://www.aclweb.org/anthology/W19-8610/
- Takanobu et al. (2020): Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation https://www.aclweb.org/anthology/2020.sigdial-1.37/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Oliver Lemon & Arash Eshghi's slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Helen Hastie's slides (Heriot-Watt University): http://letsdiscussnips2016.weebly.com/schedule.html

Lab in 10 mins 1st homework assignment

Next Lecture Tuesday 10:40 (no lab)