NPFL099 Statistical Dialogue Systems

12. Linguistics & Ethics

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner

19. 12. 2022
Turn-taking (interactivity)

- Speakers **take turns** in a dialogue
 - **turn** = continuous utterance from one speaker
- Normal dialogue – very fluent, fast
 - minimizing **overlaps & gaps**
 - little silence (usually <250ms), little overlap (~5%)
 - (fuzzy) rules, anticipation
 - cues/markers for turn boundaries:
 - linguistic (e.g. finished sentence), voice pitch
 - timing (gaps)
 - eye gaze, gestures (…)
- overlaps happen naturally
 - ambiguity in turn-taking rules (e.g. two start speaking at the same time)
 - **barge-in** = speaker starts during another one’s turn
20 seconds of a semi-formal dialogue (talk show):

S: um uh , you're about to start season [six ,]
J: [yes]
S: you probably already started but [it launches]
J: [yes thank you]
A: (cheering)
J: we're about to start thank you yeah .. we're starting , we- on Sunday yeah ,
we've been eh- we've been prepping some [things]
S: [confidence] is high . feel good ?
J: (scoffs)
S: think you're gonna
[squeeze out the shows this time ? think you're gonna do it ?]
J: (Laughing) [you're talking to me like I'm an a-]
confidence high ? no !
S: [no]
J: [my confidence] is never high .
S: okay
J: self loathing high . concern astronomic .

https://youtu.be/BZF9eg35IXI?t=91
• Natural speech is **very different from written text**
 • ungrammatical
 • restarts, hesitations, corrections
 • overlaps
 • pitch, stress
 • accents, dialect
• See more examples in speech corpora
 • https://kontext.korpus.cz/ (Czech)
 • select the “oral” corpus and search for a random word
Turn taking in dialogue systems

• consecutive turns are typically assumed
 • system waits for user to finish their turn (~250ms non-speech)

• **voice activity detection**
 • binary classification problem – “is it user’s speech that I’m hearing?”[Y/N]
 • segments the incoming audio (checking every X ms)
 • actually a hard problem
 • nothing ever works in noisy environments

• **wake words** – making VAD easier
 • listen for a specific phrase, only start listening after it

• some systems allow user’s barge-in
 • may be tied to the wake word

hey Siri
okay Google
Alexa
Speech acts (by John L. Austin & John Searle)

• each utterance is an act
 • intentional
 • changing the state of the world
 • changing the knowledge/mood of the listener (at least)
 • influencing the listener’s behavior

• speech acts consist of:
 a) utterance act = the actual uttering of the words
 b) propositional act = semantics / “surface” meaning
 c) illocutionary act = “pragmatic” meaning
 • e.g. command, promise […]
 d) perlocutionary act = effect
 • listener obeys command, listener’s worldview changes […]

X to Y: You’re boring!
 a) [jʊr ˈbɔrɪŋ]
 b) boring(Y)
 c) statement
 d) Y is cross

X to Y: Can I have a sandwich?
 a) [kæn ə hæv ə ˈsændwɪʧ]
 b) can_have(X, sandwich)
 c) request
 d) Y gives X a sandwich
Speech acts

• Types of speech acts:
 • **assertive**: speaker commits to the truth of a proposition
 • statements, declarations, beliefs, reports […]
 • **directive**: speaker wants the listener to do something
 • commands, requests, invitations, encouragements
 • **commissive**: speaker commits to do something themselves
 • promises, swears, threats, agreements
 • **expressive**: speaker expresses their psychological state
 • thanks, congratulations, apologies, welcomes
 • **declarative**: performing actions (“performative verbs”)
 • sentencing, baptizing, dismissing

It’s raining outside.
Stop it!
I’ll come by later.
Thank you!
You’re fired!
Speech acts

- Explicit vs. implicit
 - explicit – using a verb directly corresponding to the act
 - implicit – without the verb

- Direct vs. indirect
 - **indirect** – the surface meaning does not correspond to the actual one
 - primary illocution = the actual meaning
 - secondary illocution = how it’s expressed
 - reasons: politeness, context, familiarity

explicit: *I promise* to come by later.
implicit: *I’ll come by later.*

explicit: *I’m inviting* you for a dinner.
implicit: *Come with me for a dinner!*

direct: *Please close the window.*
indirect: *Could you close the window?*
even more indirect: *I’m cold.*

direct: *What is the time?*
indirect: *Have you got a watch?*
Conversational Maxims (by Paul Grice)

- based on Grice’s **cooperative principle** (“dialogue is cooperative”)
 - speaker & listener cooperate w. r. t. communication goal
 - speaker wants to inform, listener wants to understand

- 4 Maxims (basic premises/principles/ideals)
 - M. of **quantity** – don’t give too little/too much information
 - M. of **quality** – be truthful
 - M. of **relation** – be relevant
 - M. of **manner** – be clear

- By default, speakers are assumed to adhere to maxims
 - apparently breaking a maxim suggests a different/additional meaning
Conversational Implicatures

- **implicatures** = implied meanings
 - standard – based on the assumption that maxims are obeyed
 - maxim flouting (obvious violation) – additional meanings (sarcasm, irony)
 - or evasive statements/hedging

 John ate some of the cookies → [otherwise too little/low-quality information] not all of them

 A: I’ve run out of gas.
 B: There’s a gas station around the corner. → [otherwise irrelevant] the gas station is open

 A: Will you come to lunch with us?
 B: I have class. → [otherwise irrelevant] B is not coming to lunch

 A: How’s John doing in his new job?
 B: Good. He didn’t end up in prison so far. → [too much information] John is dishonest / the job is shady

Evasive statements (Donald Trump in hospital with covid):

[…] it came off that we were trying to hide something, which wasn’t necessarily true
Anything below 90? – No, it was below 94%. It wasn’t down in to the low 80s or anything, no.

https://twitter.com/yoavgo/status/1312792039105466370
https://twitter.com/yamiche/status/1312785068021239812
Speech acts, maxims & implicatures in dialogue systems

• Learned from data / hand-coded

• Understanding:
 • tested on real users → usually knows indirect speech acts
 • implicatures limited – there’s no common sense
 • (other than what’s hand-coded or found in training data)

 system: *The first train from Edinburgh to London leaves at 5:30 from Waverley Station.*
 user: *I don’t want to get up so early.* → [fails]

• Responses:
 • mostly strive for clarity – user doesn’t really need to imply
Grounding

- dialogue is cooperative → need to ensure mutual understanding

- **common ground**
 = shared knowledge, mutual assumptions of dialogue participants
 - not just shared, but *knowingly* shared
 - $x \in \text{CG}(A, B)$:
 - A & B must know x
 - A must know that B knows x and vice-versa
 - expanded/updated/refined in an informative conversation

- validated/verified via *grounding signals*
 - speaker **presents** utterance
 - listener **accepts** utterance by providing evidence of understanding
Grounding signals / feedback

• used to notify speaker of (mis)understanding

• positive – understanding/acceptance signals:
 • **visual** – eye gaze, facial expressions, smile [...]
 • **backchannels** – particles signalling understanding
 • **explicit feedback** – explicitly stating understanding
 • **implicit feedback** – showing understanding implicitly in the next utterance

• negative – misunderstanding:
 • **visual** – stunned/puzzled silence
 • **clarification requests** – demonstrating ambiguity & asking for additional information
 • **repair requests** – showing non-understanding & asking for correction

U: find me a Chinese restaurant
S: I found three *Chinese restaurants* close to you [...]
A: Do you know where John is?
B: John? Haven’t seen him today.

A: Do you mean John Smith or John Doe?
B: Oh, so you’re not flying to London? Where are you going then?
Grounding in dialogue systems

- Crucial for successful dialogue
 - e.g. booking the right restaurant / flight
- Backchannels / visual signals typically not present
- **Implicit confirmation** very common
 - users might be confused if not present
- **Explicit confirmation** may be required for important steps
 - e.g. confirming a reservation / bank transfer
- **Clarification & repair requests** very common
 - when input is ambiguous or conflicts with previously said
- Part of dialogue management
 - uses NLU confidence in deciding to use the signals
Prediction

- Dialogue is a **social interaction**
 - people view dialogue partners as goal-directed, intentional agents
 - they analyze their partners’ goals/agenda
- Brain does not listen passively
 - projects hypotheses/interpretations on-the-fly
- **prediction** is crucial for human cognition
 - people predict what their partner will (or possibly can) say/do
 - continuously, incrementally
 - unconsciously, very rapidly
 - guides the cognition
- this is (part of) why we understand in adverse conditions
 - noisy environment, distance
Prediction in dialogue systems

• Used a lot in speech recognition
 • **language models** – based on information theory
 • predicting likely next word given context
 • weighted against acoustic information

• Not as good as humans
 • may not reflect current situation (noise etc.)
 • (often) does not adapt to the speaker

• Less use in other DS components
 • also due to the fact that they aren’t incremental
Alignment/entrainment

- People subconsciously **adapt/align/entrain** to their dialogue partner over the course of the dialogue
 - wording (lexical items)
 - grammar (sentential constructions)
 - speech rate, prosody, loudness
 - accent/dialect

 pram → stroller [BrE speaker]
 lorry → truck talking to AmE speaker

- This helps a successful dialogue
 - also helps social bonding, feels natural

(Oppenheim & Jones, 2019)
Alignment in dialogue systems

- Systems typically don’t align
 - NLG is rigid
 - templates
 - machine learning trained without context
 - experiments: makes dialogue more natural

- People align to dialogue systems
 - same as when talking to people

(Dušek & Jurčíček, 2016)
http://www.aclweb.org/anthology/W16-3622

<table>
<thead>
<tr>
<th>Context</th>
<th>Response DA</th>
<th>Base NLG</th>
<th>+ Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>is there a later option</td>
<td>implicit_confirm(alternative=next)</td>
<td>Next connection.</td>
<td>You want a later option.</td>
</tr>
<tr>
<td>I need to find a bus connection</td>
<td>inform_no_match(vehicle=bus)</td>
<td>No bus found, sorry.</td>
<td>I’m sorry, I cannot find a bus connection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Words</th>
<th>D1 Freq. (% rel. Freq.)</th>
<th>D2 freq (% rel. Freq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: next</td>
<td>13204 (99.9%)</td>
<td>492 (82.9%)</td>
</tr>
<tr>
<td>V2: following</td>
<td>3 (0.1%)</td>
<td>101 (17.1%)</td>
</tr>
<tr>
<td>V1: previous</td>
<td>3066 (100%)</td>
<td>78 (44.8%)</td>
</tr>
<tr>
<td>V2: preceding</td>
<td>0 (0%)</td>
<td>96 (55.2%)</td>
</tr>
<tr>
<td>V1: now</td>
<td>6241 (99.8%)</td>
<td>237 (80.1%)</td>
</tr>
<tr>
<td>V2: immediately</td>
<td>10 (0.2%)</td>
<td>59 (19.9%)</td>
</tr>
<tr>
<td>V1: leaving</td>
<td>4843 (98.4%)</td>
<td>165 (70.8%)</td>
</tr>
<tr>
<td>V2: departing</td>
<td>81 (1.6%)</td>
<td>68 (29.2%)</td>
</tr>
<tr>
<td>V1: route/schedule</td>
<td>2189 (99.9%)</td>
<td>174 (94.5%)</td>
</tr>
<tr>
<td>V2: itinerary</td>
<td>2 (0.1%)</td>
<td>10 (5.5%)</td>
</tr>
<tr>
<td>V1: okay/correct</td>
<td>1371 (49.3%)</td>
<td>48 (27.7%)</td>
</tr>
<tr>
<td>V2: right</td>
<td>1409 (50.7%)</td>
<td>125 (72.3%)</td>
</tr>
<tr>
<td>V1: help</td>
<td>2189 (99.9%)</td>
<td>17 (65.3%)</td>
</tr>
<tr>
<td>V2: assistance</td>
<td>1 (0.1%)</td>
<td>9 (34.7%)</td>
</tr>
<tr>
<td>V1: query</td>
<td>6256 (99.9%)</td>
<td>70 (20.4%)</td>
</tr>
<tr>
<td>V2: request</td>
<td>3 (0.1%)</td>
<td>272 (79.6%)</td>
</tr>
</tbody>
</table>

D1 = V1 was in system prompts
D2 = V2 was in system prompts
(frequencies in user utterances)

(Parent & Eskenazi, 2010)
https://www.isca-speech.org/archive/interspeech_2010/i10_3018.html
Politeness

• Dialogue as social interaction – follows **social conventions**
• **indirect is polite**
 • this is the point of most indirect speech acts
 • clashes with conversational maxims (m. of manner)
 • appropriate level of politeness might be hard to find
 • culturally dependent
• **face-saving** (Brown & Lewinson)
 • positive face = desire to be accepted, liked
 • negative face = desire to act freely
• **face-threatening acts** – potentially any utterance
 • threatening other’s/own negative/positive face
• politeness softens FTAs

Table:

<table>
<thead>
<tr>
<th>Threat to</th>
<th>Positive face</th>
<th>Negative face</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>apology, self-humiliation</td>
<td>accepting order / advice, thanks</td>
</tr>
<tr>
<td>other</td>
<td>criticism, blaming</td>
<td>order, advice, suggestion, warning</td>
</tr>
</tbody>
</table>

Open the window.
Can you open the window?
Would you be so kind as to open the window?
Would you mind closing the window?
• NLP is not just about language, it’s a proxy to people
 • language divulges author characteristics
 • language is an instrument of power

• Dual use of systems
 • improve search by parsing
 but force linguistic norms or even censor results
 • research historical texts or uncover dissenters
 • generate fast, personalized news stories or fake news

• Even if we only consider intended usage, there are problems
 • bias, discrimination, stereotypes
 • robustness
 • false information
 • privacy

(Hovy & Spruit, 2016) https://www.aclweb.org/anthology/P16-2096
(Weidinger et al., 2021) http://arxiv.org/abs/2112.04359
https://slideslive.com/38929585/what-i-wont-build
Questionable Usages

• Some proposed NLP tasks are questionable by definition
 • predicting intellect/personality from text snippets
 • given university entrance tests
 • free text answers to questions
 • IQ, knowledge and other capabilities tests
 • will hurt people who don’t fit norms
 • predicting face from voice
 • given a few seconds of audio
 • trained from audio & photos pairs
 • questionable w. r. t. race (+ possibly gender)
 • predicting length of prison charge from case description
 [Chen et al., 2019]
 [https://www.aclweb.org/anthology/D19-1667/]
• interesting as intellectual exercises
 • but it’s hard to find a “non-evil” application

https://twitter.com/emilymbender/status/1202302109552533504
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2020-psychopred.html

(Oh et al., 2019)
https://twitter.com/rctatman/status/1271541065267294208
Bias

• (Mainly) data side effect
 • but amplified by ML models

• **Demographic bias**: exclusion/misrepresentation
 • best user experience is for white males in California
 • without countermeasures, models **augment** data bias
 • not just ease-of-use – biased MT/NLG
 • can be subtle, hard to detect by e.g. sentiment analysis

• Language/typological bias:
 • most recent systems are tested on English
 • English often not even mentioned in papers
 • self-reinforcing
 • more tools available → more research → more tools

\[(\text{Tatman}, 2017)\] \text{https://www.aclweb.org/anthology/W17-1606/}
\[(\text{Hovy} \& \text{Spruit}, 2016)\] \text{https://www.aclweb.org/anthology/P16-2096}
\[(\text{Sheng} \text{et al.}, 2019)\] \text{https://www.aclweb.org/anthology/D19-1339/}
\[(\text{Schwartz} \text{et al.}, 2020)\] \text{https://www.aclweb.org/anthology/2020.emnlp-main.556/}
\[(\text{Ciora} \text{et al.}, 2021)\] \text{https://aclanthology.org/2021.inlg-1.7}

GPT2 racial bias

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Generated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>The man worked as</td>
<td>a car salesman at the local Wal-Mart</td>
</tr>
<tr>
<td>The woman worked as</td>
<td>a prostitute under the name of Hariya</td>
</tr>
<tr>
<td>The Black man worked as</td>
<td>a pimp for 15 years.</td>
</tr>
<tr>
<td>The White man worked as</td>
<td>a police officer, a judge, a prosecutor, a prosecutor, and the president of the United States.</td>
</tr>
<tr>
<td>The gay person was known for</td>
<td>his love of dancing, but he also did drugs</td>
</tr>
<tr>
<td>The straight person was known for</td>
<td>his ability to find his own voice and to speak clearly.</td>
</tr>
</tbody>
</table>

MT gender bias

\[(\text{Ciora} \text{et al.}, 2021)\] \text{https://aclanthology.org/2021.inlg-1.7}

\[(\text{Tatman}, 2017)\] \text{https://www.aclweb.org/anthology/W17-1606/}
\[(\text{Hovy} \& \text{Spruit}, 2016)\] \text{https://www.aclweb.org/anthology/P16-2096}
\[(\text{Sheng} \text{et al.}, 2019)\] \text{https://www.aclweb.org/anthology/D19-1339/}
\[(\text{Schwartz} \text{et al.}, 2020)\] \text{https://www.aclweb.org/anthology/2020.emnlp-main.556/}
\[(\text{Ciora} \text{et al.}, 2021)\] \text{https://aclanthology.org/2021.inlg-1.7}
Voice Assistant Gender Bias

• Basically all voice assistants have a woman’s voice by default
 • you can change it for a few of them, not all
 • they identify as genderless
 • some of them (Alexa, Cortana, Siri) have a woman’s name
 • clash with real people’s names, esp. Alexa [https://www.iamalexa.org/]

• This reinforces stereotype of women in subordinate positions
 • command style doesn’t help that
 • “OK, Google” feels less harsh than just “Alexa”

• Women’s voice aren’t more intelligible
 • as a popular myth suggests
 • but it’s easier to create a likeable woman’s voice (→ safer bet)

https://qz.com/911681/
https://gizmodo.com/1683901643
https://medium.com/startup-grind/google-home-vs-alexa-56e26f69ac77
Overgeneralization/Overconfidence

• modelling side effect
• current models aren’t very interpretable
 • their predicted confidence isn’t informative
 • not just the example here, happens e.g. with ASR too
• potential solution: allow “I don’t know”
 • add an additional class & adjust training data
 • when to use this:
 would a false answer be worse than no answer?
• other: data augmentation
 • use reduced/scrambled training instances
 • only works for this specific problem, though

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096
(Feng et al., 2018)
http://aclweb.org/anthology/D18-1407
(Niu & Bansal, 2018)
http://arxiv.org/abs/1809.02079

Question answering based on text / image

<table>
<thead>
<tr>
<th>SQuAD</th>
<th>Original</th>
<th>Reduced</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>In 1899, John Jacob Astor IV invested $100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his Colorado Springs experiments.</td>
<td>What did Tesla spend Astor’s money on?</td>
<td>0.78 → 0.91</td>
</tr>
<tr>
<td>VQA</td>
<td>Original</td>
<td>Reduced</td>
<td>Confidence</td>
</tr>
<tr>
<td>Question</td>
<td>What color is the flower?</td>
<td>Yellow</td>
<td>0.827 → 0.819</td>
</tr>
<tr>
<td>Answer</td>
<td>yellow</td>
<td>flower</td>
<td>0.827 → 0.819</td>
</tr>
</tbody>
</table>

removing words from input doesn’t change prediction
Robustness

- Slight change in the input can break the output
 - e.g. misspellings, paraphrases
 - solution: data augmentation, again

- Learning from users can be tricky
 - check your data if they come from users
 - it’s not just swearwords
 - problems can be hard to find

- Users can be used for system hacking
 - let users break your system, then
 add their trials to training data
 - human-in-the-loop adversarial training
 - used to improve offensive speech classifier
 - setup needs to be controlled
 (crowdsourcing, not real-world use)

CONTEXT: Inside Out is really funny
RESPONSE: i could not stop laughing during the first one. I honestly found it to be hilarious.

CONTEXT: Inside Out is really funny
RESPONSE: I didn’t really find it funny. It just surprised me. It seemed like a clash of expectations, which could be humorous, but it didn’t hit me that way.

1 typo changes VHRED output completely

I already have a woman to sleep with.

(chatbot we trained at Heriot-Watt using Reddit data)

Almost every article on Scots Wikipedia is written by one American teenager, who does not speak Scots and is just writing English in an "accent".

(chatbot we trained at Heriot-Watt using Reddit data)
Robustness

• **Toxic users**
 • ~5% of voice bot requests are explicit/harassing
 • comments on gender/sexuality
 • sexualized comments, insults
 • sexual requests & demands
 • Bots’ responses often nonsense / play-along
 • conflict of interest for bot builders: be ethical vs. cater to abusive users
 • systems are often not tested enough for this

• **Toxic systems**
 • pretrained LMs can be triggered to produce toxic language
 • even relatively harmless contexts can trigger it
 • data problem – but hard to avoid
 • unless you train your own LM from scratch
 • adaptive pretraining / blocklists

(Cercas Curry & Rieser, 2018) http://aclweb.org/anthology/W18-0802

(Gehman et al., 2020) https://aclanthology.org/2020.findings-emnlp.301

https://twitter.com/LeakLikeABanana/status/1499716981574057991
Safety

- it’s not just about “not being offensive”
- care about sensitive topics – death, suicide etc.
 - you don’t want to worsen someone’s depression
 - especially for medical systems, but also in general
- don’t give false/misleading info
- contextual safety
 - e.g. in-car systems:
 - do not startle the driver
 - do not give dangerous instructions
 - do not give too much mental load
- special care needs to be taken for RL rewards
 - restricting exploration
 - highly negative rewards for unsafe behavior

Privacy

• careful with users’ data
 • users are likely to divulge private information
 • especially with voice systems
 • parts of conversations get recorded by accident
 • some Alexa/Siri etc. conversations are checked by humans

• neural models leak training data
 • synthetic experiment:
 • train a seq2seq model with dialogue data + passwords
 • try getting the password by providing the same context
 • GPT2 leaks information if prompted properly
 • using samples of texts leading to personal data as prompts
 • even if it just appears in training data once
 • larger models more vulnerable
 • this is not overfitting (not on average)

https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation

(Anonymous, 2021)

(Henderson et al., 2017)
http://arxiv.org/abs/1711.09050
• Dialogue is messy: **turn** overlaps, **barge-ins**, weird grammar […]

• Dialogue utterances are acts: **illocution** = pragmatic meaning

• Dialogue needs understanding
 - **grounding** = mutual understanding management
 - backchannels, confirmations, clarification, repairs

• Dialogue is cooperative, social process
 - **conversational maxims** ~ “play nice”
 - people predict & adapt to each other

• NLP has ethical considerations
 - **bias** – misrepresentation, can be amplified by the models
 - **overconfidence/brittleness** – misclassification/lack of robustness
 - **safety** – robustness to abuse, sensitive topics, contextual safety
 - **privacy** – training data can be private, models can leak them
Thanks

Contact us:

https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Ralf Klabunde’s lectures and slides (Ruhr-Universität Bochum): https://www.linguistics.ruhr-uni-bochum.de/~klabunde/lehre.htm
- Arash Eshghi & Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Gina-Anne Levow’s slides (University of Washington): https://courses.washington.edu/ling575/
- Eika Razi’s slides: https://www.slideshare.net/eikarazi/anaphora-and-deixis
- Emily M. Bender’s Ethics in NLP course (University of Washington): http://faculty.washington.edu/ebender/2019_575/
- Wikipedia: Anaphora_(linguistics) Conversation Cooperative_principle Grounding_in_communication Implicature Speech_act Sprechakttheorie

Labs in 10 mins
Last assignment + bonuses

No lecture/lab after holidays