NFPL099 Statistical Dialogue Systems

10. Chatbots (non-task-oriented)

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner

5.12.2022
Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue – **chitchat**

• **non-task-oriented**
 • main goal: keep the user entertained
 • standard evaluation: conversation length, user engagement

• (**more or less**) different architecture
 • may have the same structure as task oriented (NLU → DM → NLG)
 • often simpler, integrated – somewhat like end-to-end DS
 • it’s hard to have explicit NLU for open domain
 • no task to guide a meaning formalism
 • some of them don’t need a DB connection (but some use it)

• beware: *anything* can be called a “chatbot” nowadays
 • here: only chatterbots / non-task-oriented systems
Chatbot tests

• **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts \(\rightarrow \) can be (and is!) gamed

• **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – creates hype but no real progress

• **Amazon Alexa Prize** (2017+)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)
• 1st chatbot: Eliza (1966)
 • rule-based, simulates a therapist
• Parry (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test
• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems
• 1990’s/2000’s – retrieval-based systems
• 2015+ – huge surge of generative models
Notable/hyped chatbots

- **Pandorabots/AIML** – framework for rule-based chatbots
 - A.L.I.C.E. bot – basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) – multiple times Loebner Prize winner

- **Jabberwacky/Cleverbot** (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times

- **Xiaolce** (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with “her”

References:
- Pandorabots: https://home.pandorabots.com/home.html
- Cleverbot: https://www.cleverbot.com/
Chatbot basic architectures

- **Rule-based**
 - human-scripted, react to keywords/phrases in user input
 - very time-consuming to make, but still popular
 - chitchat by conversational assistants is typically rule-based

- **Data-driven**
 - retrieval – remember a corpus & get replies from there
 - “nearest neighbour” approaches
 - corpus can contain past conversations with users (Jaberwacky/Xiaolce)
 - chatbots differ in the sophistication of reply selection
 - generative – (typically) seq2seq-based models
 - trained typically on static corpora
 - (theoretically) able to handle unseen inputs, produce original replies
 - basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

• very basic pattern-matching rules
 • minimal context (typically just the last utterance)
 • keyword-match rules & precedence
 • e.g. alike → what is the connection
 • fallbacks
 • I see. <next question>
 • Please go on
 • refer & respond to some previous utterance

• signalling understanding
 • repeating & reformulating user’s phrasing

• it’s all about the framing
 • it’s easier to appear human as a therapist (or paranoid schizophrenic)
AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 😏
- main concepts:
 - **category** – basic unit of knowledge
 - groups patterns & templates
 - **pattern** – user input pattern (with wildcards)
 - **set** – lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** – response specification
 - allows multiple options
 - **srai** – symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - **variable** – can be set/retrieved in templates
 - e.g. remember user name
Retrieval-based chatbots

• remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

• needs 2 steps
 1) rough retrieval
 • needs to be fast to search the whole corpus (e.g. TF-IDF)
 2) more accurate reranking for candidates
 • most research focuses on this step

• problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

• solution (Xiaolce, Cleverbot):
 • use postprocessing, combine with rules

(Wang et al., 2013)
https://aclweb.org/anthology/D13-1096
Ranking responses

- Machine learning – **learning to rank**
 - **pointwise**: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - **pairwise**: just learn to rank good > bad
 - incur loss for inversions
 - architecture – anything possible
 - typical neural: dual encoder / Siamese network
 - 2 RNNs, for context & response + fully connected

- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
DialogRPT: Ranking with pretrained LMs

- GPT-2-based model (DialoGPT →)

- contrastive learning: feed 1 context + 2 responses, classify which is better
 - binary classification layer on top of last token
 - better than classify good/bad in isolation

- self-supervised data for ranking from Reddit
 - width = # of direct replies
 - depth = max. dialog length in subtree
 - updown = 👍 - 👎 votes
Generative chatbots: RNNs

- Generic LSTM-based **Seq2seq** model
 - encode context / input, decode response
 - examples in paper look great, but… (→)

(U: *who is skywalker?*
S: *he is a hero.*

U: *who is bill clinton?*
S: *he’s a billionaire.*

U: *what is the purpose of life?*
S: *to serve the greater good.*

U: *what is moral?*
S: *what empowered humanity, what intellectual the essence is.*

C[S]: *nothin much, and how’s the book?!*
U: *its good but i’m only like halfway through cuz i don’t feel like reading. i’m so bored…*
S: *that’s good! i have the book but i’m bored too.*

C[S]: *thanks. yeah i am good thanks! good, but angry!*
U: *sorry you’re angry, been there, i hope it dies down.*
S: *i hope so too, i’m not angry!!*
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

(U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?)

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

(U: How old are you?
S: 16 and you?
U: What’s your age?
S: 18.)

(Wei et al., 2019)
https://arxiv.org/abs/1712.02250

(Jiang & De Rijke, 2018)
https://www.aclweb.org/anthology/W18-5712

NPFL099 L10 2022
• **Reranking**: MMI
 - avoid dull replies that work anywhere
 - instead of maximizing $P(\text{Resp}|\text{Context})$, **maximize mutual information**
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

• **Longer context**: HRED (Hierarchical Recurrent Encoder-Decoder)
 - 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698

(Li et al., 2016)
https://www.aclweb.org/anthology/N16-1014

\[
\text{MI} = \log \frac{P(R, C)}{P(R)P(C)}
\]
• joining **next turn generation** & **autoencoding**
 • LSTM VAE-like model, shared latent space
 • multi-task learning (see last lecture)
 • shared decoder
 • additional “fusion loss” enforcing the same encoding for both tasks
• inference: adding a little noise to encodings
 • to produce different outputs

(Gao et al., 2019)
http://arxiv.org/abs/1902.11205
Consistency/Personality (Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

- improving consistency by modelling chatbot’s personality

- **Persona embeddings**
 - train speaker embeddings
 - use speaker + word embeddings in the decoder
 - needs lots of data

- **Persona copy-net**
 - add & attend to personal bio in context
 - chunks of text
 - copy-net or pretrained LMs

(Yavuz et al., 2019)
https://www.aclweb.org/anthology/W19-5917/
Coherence: Additional Objectives

- **Transformer-based architectures**
- **Denoising** (autoencoder): additional decoders
 - shuffled word order
 - masked words
 - masked utterance (mid-dialogue)
 - utterance order (GRU decoding order)

- **Unlikelihood** – demoting unlikely tokens
 - penalize set of tokens selected at each time step
 - repeating n-grams, too much high-freq. vocab...
 - weighted combination with regular MLE loss

(Zhao et al., 2020) https://www.aclweb.org/anthology/2020.emnlp-main.279/

(Li et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.428
Chat-Specific Pretrained Language Models

- **DialoGPT** – GPT-2 finetuned on Reddit (147M dialogues)
 - no hierarchy, whole chat as a long text – next-word prediction
 - works better than seq2seq-based ones

- **Meena**
 - “Evolved Transformer” architecture (Transformer + small changes automatically tuned)
 - encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
 - rule-based postprocessing
 - evaluation: “making sense” & “being specific” – better on both

- **BlenderBot** (sorta SotA now)
 - again, huge Transformers (but has a smaller version)
 - retrieval & generative versions
 - pretrained on Reddit, finetuned on a combination of specific dialogue datasets
 - constrained beam search (avoid too short replies), better than sampling

(Zhang et al., 2020) https://www.aclweb.org/anthology/2020.acl-demos.30
(Roller et al., 2021) https://aclanthology.org/2021.eacl-main.24/
Chat-specific PLMs (2)

- **LaMDA**: LM + retrieval + “calculator”
 - pretrained on dialogue
 - finetuned on corrections of its own outputs
 - usage of retrieval & calculator annotated
 - generate multiple, filter (safety) & rerank
 - 2B/137B params versions

- **InstructGPT/ChatGPT**: GPT3 + feedback
 - multi-step training (from GPT3/code model)
 1) GPT3 supervised finetuning
 2) evaluation/ranker model
 3) RL with proximal policy optimization
 - more truthful, can be made safer (via feedback)
 - 1.3B params InstructGPT > 175B GPT3

https://openai.com/blog/chatgpt/
https://www.youtube.com/watch?v=0A8ljAkdfTg
Retrieval-augmented bots

• Combination of generation & retrieval
 1) **Retrieve** a candidate,
 2) **Edit** it using a seq2seq model to better match context

• Knowledge grounding
 • candidate = knowledge to be used in response
 • Wizard-of-Wikipedia

• Problem: right amount of copying
 • Don’t ignore the retrieved
 • Don’t copy it verbatim
 • Question of parameters, tradeoff, various hacks to achieve this
 • α-blending: replace retrieved with target with some probability, to promote copying

(Pandey et al., 2018) https://aclanthology.org/P18-1123/
(Weston et al., 2018) https://aclanthology.org/W18-5713/
(Xu et al., 2021) http://arxiv.org/abs/2107.07567
(Roller et al., 2021) https://aclanthology.org/2021.eacl-main.24
State-of-the-art today: **combining all methods**

- rule-based for sensitive/frequent/important questions
- retrieval for jokes, trivia etc.
- task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all

- NLU is typically shared, with advanced NLP pipelines
 - NER is very important – can get relevant news & trivia

- Decision among bots
 - based on NLU topic detection
 - ranking multiple answers
 - profanity detection – censoring outputs
Alana (Heriot-Watt University, 2017 & 2018 3rd)

- **Bots:**
 - Rule-based chit-chat
 - Ontologies – knowledge graph walk
 - movies, music, sports, books
 - Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
 - Specific services
- **Bots compete for reply**
 - priority list
 - bots can “lock”

http://arxiv.org/abs/1712.07558
Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?

User: Vanilla Sky –> I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What’s a band that you would like to see? [...]

User: any news about him –> any news about Kendrick Lamar [Coreference resolution]
Alana Example dialogue

User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading [...]

User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?

User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia]

User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
- tracking user sentiment
 - change topic if user doesn’t like the current one
- attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself – conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

<table>
<thead>
<tr>
<th>Turn</th>
<th>User</th>
<th>Sounding Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Let's chat.</td>
<td>Hi! This is an Alexa Prize socialbot. How's your day?</td>
</tr>
<tr>
<td>2</td>
<td>I'm fine.</td>
<td>Glad to hear it! We could talk about robots, Batman, or Superman. Say "next", to chat about other things.</td>
</tr>
<tr>
<td>3</td>
<td>Superman.</td>
<td>It looks like you want to chat about Superman. I was high up in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?</td>
</tr>
<tr>
<td>4</td>
<td>I guess so.</td>
<td>Did you know that Henry Cavill almost missed the call for the role of Superman because he was playing "World of Warcraft"?</td>
</tr>
<tr>
<td>5</td>
<td>Really, I didn’t know that.</td>
<td>Weird, right? Speaking of Superman, did you see Superman? It was released in 1978. It’s a comedy.</td>
</tr>
<tr>
<td>6</td>
<td>Yes, it was hilarious.</td>
<td>I’m glad you find this hilarious. Which part do you like best about this movie?</td>
</tr>
<tr>
<td>7</td>
<td>The part when he met Lewis Utah</td>
<td>Interesting. McQuarrie and Refn co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good! Do you like the movie’s director?</td>
</tr>
</tbody>
</table>

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction – KB fuzzy matching (allow for “typos”)
 - sentence segmentation (RNN-based)
- NLU – keyphrase extraction
 - focus on noun phrases
- Dialog manager – stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel…

Alquist (Czech Technical University, 2017 & 2018 2nd)

- full NLU pipeline (similar to Alana)
- 2017 – handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 – adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

http://alquistai.com/

https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb
https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f
Alquist (Czech Technical University, 19/20 3rd, 20/21 1st)

- Knowledge graph: Wikidata + User + Bot model
 - RDF triples, partially delexicalized
 - allows building user profile + referencing it
- NLU – BERT-based segmenting (multiple intents)
 - produce responses to all, then select
- DM/NLG – response based on “adjacency pairs”
 - predefined input-response pairs/sub-graphs
 - transition depends on KG search
 - adding prompts (questions, fun facts etc.)
- Out-of-domain: detection & DialoGPT response
 - DialogRPT reranker
- Exploration vs. exploitation
 - first get to know user, then use this information

(Konrád et al., 2021) https://arxiv.org/abs/2109.07968
Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem

• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)

• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work

• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)

• brutal variance in the evaluation – very subjective
Summary

- chatbots = **non-task oriented** systems
 - targets: **conversation length** & **user engagement**
 - impersonating a human – Turing test

- approaches:
 - **rule-based** – keyword spotting, scripting
 - **retrieval** – copy & paste from large databases
 - **generative** – seq2seq/transformer trained on corpora of dialogues
 - too many possible responses don’t go well with MLE → safe, short, dull
 - many extensions: personality, coherence, diversity, retrieval-augmented… still not ideal
 - **hybrid** – combining all of the above
 - typically mainly rule-based + retrieval, machine learning in NLU only

- open-domain NLU is still an unsolved problem
 - despite that, many people enjoy conversations with chatbots
 - interesting content is crucial
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:

• Mainly individual papers referenced directly on slides
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test Xiaoice Zo_(bot)