NPFL099 Statistical Dialogue Systems
7. Dialogue Management (2)
Action Selection/Policy

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner
http://ufal.cz/npfl099
14. 11. 2022
Action selection: Recap

• Action selection: deciding what to do (or say) next
 • based on dialogue state (i.e. uses tracking output)
 • follows a policy towards an end goal
• FSM, frames, rule-based
• trained policies: typically with RL
 • explore more different paths than supervised
 • plan ahead – optimize for the whole dialogue, not just 1 turn
• RL: MDP formalism – agent in an environment, state-action-reward
 • POMDP = MDP with continuous states
 • trained with user simulator

(from Milica Gašić's slides)

(Sutton & Barto, 2018)
Reinforcement learning: Definition

• RL = finding a **policy that maximizes long-term reward**
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

\[
R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}
\]

- accumulated long-term reward

- \(\gamma \in [0,1] = \text{discount factor}\)
 - (immediate vs. future reward trade-off)
 - \(\gamma < 1: R_t \text{ is finite (if } r_t \text{ is finite)}\)
 - \(\gamma = 0: \text{greedy approach (ignore future rewards)}\)

• state transition is stochastic \(\rightarrow\) maximize **expected return**

\[
\mathbb{E}[R_t | \pi, s_0]
\]

- expected \(R_t\) if we start from state \(s_0\) and follow policy \(\pi\)
Using return, we define the **value of a state** s under policy π: $V^\pi(s)$

- Expected return for starting in state s and following policy π

Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$

This gives us a recursive equation (**Bellman Equation**):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))$$

$V^\pi(s)$ defines a **greedy policy**:

$$\pi(s, a) := \begin{cases} \frac{1}{\text{# of } a' \text{'s}} & \text{for } a = \arg \max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\ 0 & \text{otherwise} \end{cases}$$
Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of taking action a in state s, under policy π
 - Same principle as value $V^\pi(s)$, just \textbf{considers the current action, too}
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s' | s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

- $Q^\pi(s, a)$ also defines a greedy policy:
 \[
 \pi(s, a) := \begin{cases}
 \frac{1}{\# \text{ of } a' \text{'s}} & \text{for } a = \arg \max_a Q^\pi(s, a) \\
 0 & \text{otherwise}
 \end{cases}
 \]
 again, “actions that look best for the next step”
 simpler: no need to enumerate s', no need to know $p(s' | s, a)$ and $r(s, a, s')$
 but Q function itself tends to be more complex than V
Optimal Policy in terms of \(V\) and \(Q\)

- **optimal policy** \(\pi^*\) – one that maximizes expected return \(\mathbb{E}[R_t | \pi]\)
 - \(V^\pi(s)\) expresses \(\mathbb{E}[R_t | \pi] \rightarrow\) use it to define \(\pi^*\)

- \(\pi^*\) is a policy such that \(V^{\pi^*}(s) \geq V^{\pi'}(s) \ \forall \pi', \forall s \in S\)
 - \(\pi^*\) always exists in an MDP (need not be unique)
 - \(\pi^*\) has the **optimal state-value function** \(V^*(s) := \max_{\pi} V^\pi(s)\)
 - \(\pi^*\) also has the **optimal action-value function** \(Q^*(s, a) := \max_{\pi} Q^\pi(s, a)\)

- greedy policies with \(V^*(s)\) and \(Q^*(s, a)\) are optimal
 - we can search for either \(\pi^*, V^*(s)\) or \(Q^*(s, a)\) and get the same result
 - each has their advantages and disadvantages
RL Agents Taxonomy

• Quantity to optimize:
 • value function – **critic**
 • either Q or V, typically Q in practice
 • policy – **actor**
 • both – **actor-critic**

• Environment model:
 • **model-based** (assume known $p(s'|s, a), r(s, a, s)$)
 • nice but typically not satisfied in practice
 • **model-free** (don’t assume anything, sample)
 • this is the usual real-world case
 • this is where using Q instead of V comes handy

(main focus today)

(next week)

(from David Silver’s slides)
Reinforcement Learning Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment → not practical for real-world use
 • **Monte Carlo learning** – learn from experience
 • sample, then update based on experience
 • **Temporal difference learning** – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • can’t use that with batch learning (decision policy is changing constantly)
 • **off-policy** – decide according to a different policy

both used in practice
Deep Reinforcement Learning

• Exactly the same as “plain” RL
 • agent & environment, actions & rewards

• “deep” = part of the agent is handled by a NN
 • value function (typically \(Q \))
 • policy

• function approximation approach
 • \(Q \) values / policy are represented as a parameterized function \(Q(s, a; \theta) / \pi(s; \theta) \)
 • enumerating in a table would take up too much space, be too sparse
 • the parameters \(\theta \) are optimized

• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states

• needs tricks to make it stable

(Sutton & Barto, 2018)
Q-Learning

• temporal difference – update Q as you go
• off-policy – directly estimates best Q^*
 • regardless of policy used for sampling
• choose learning rate α, initialize Q arbitrarily
• for each episode:
 • choose initial s
 • for each step:
 • choose a from s according to ϵ-greedy policy based on Q
 • take action a, observe observe reward r and state s'
 • $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 • $s \leftarrow s'$

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
Deep Q-Networks

• Q-learning, where Q function is represented by a neural net
• “Usual” Q-learning doesn’t converge well with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability
• \rightarrow DQN adds fixes:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]
\]
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \ldots T$ in the episode:
 - select action a_t from ϵ-greedy policy based on $Q(\theta)$
 - take a_t, observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \theta) - Q(s, a; \theta))^2 \right]$
- once every λ steps (rarely):
 - $\overline{\theta} \leftarrow \theta$

update the frozen target function

storing experience
(1 step of Q-learning exploration)

“replay”
a. k. a. training
(1 update)
DQN for Dialogue Systems

- DQN can drive dialogue action selection/policy
- **Warm start** needed to make the training actually work:
 - **Pretrain** the network using supervised learning
 - **Replay buffer spiking** – initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

Error Model Controller (simulating ASR/NLU noise)

Movie ticket booking: better than rule-based

Replay memory initialized using a simple handcrafted policy

Rule-based simulator with agenda running on DA level

DQN – feed-forward, 1 hidden ReLU layer

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

(Lipton et al., 2018)
Policy Gradients

- Instead of value functions, train a **network to represent the policy**
 - allows better action sampling – according to actual stochastic policy
 - no need for ϵ-greedy (which is partially random, suboptimal)
- To optimize, we need a **performance metric:** $J(\theta) = V^{\pi_\theta}(s_0)$
 - expected return in starting state when following π_θ
 - we want to directly optimize this using gradient ascent
- **Policy Gradient Theorem:**
 - expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s, \theta)$

\[
\nabla J(\theta) \propto \sum_s \mu(s) \sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) = E_\pi \left[\sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) \right]
\]

$\mu(s)$ is state probability under π – this is the same as expected value E_π

(Sutton & Barto, 2018; p. 324ff)
REINFORCE: Monte Carlo Policy Gradients

• direct search for policy parameters by stochastic gradient ascent
 • looking to maximize performance $J(\theta) = V^{\pi_\theta}(s_0)$
• choose learning rate α, initialize θ arbitrarily
• loop forever:
 • generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 • for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta)$

variant – **advantage** instead of returns:
 discounting a **baseline**
 $b(s)$ (predicted by any model)
 $A_t = R_t - b(s_t)$ instead of R_t
 gives better performance

$V(s)$ is actually a good $b(s)$

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

this will guarantee the right state distribution/frequency $\mu(s)$

this is stochastic $\nabla J(\theta)$:
 • from policy gradient theorem
 • using single action sample a_t
 • expressing Q^π as R_t (under E_π)
 • using $\nabla \ln x = \frac{v_x}{x}$

(Sutton & Barto, 2018; p. 327f)
Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates – better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^θ, α^w

- loop forever:
 - set initial state s for the episode
 - for each step t of the episode:
 - sample action a from $\pi(\cdot|s, \theta)$, take a and observe reward r and new state s'
 - compute advantage $A \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w)$
 - update $\theta \leftarrow \theta + \alpha^\theta \gamma^t A \nabla \ln \pi(a|s, \theta)$, $w \leftarrow w + \alpha^w \cdot A \nabla \hat{V}(s, w)$
 - $s \leftarrow s'$

actor (policy update)
same as REINFORCE, except:
- we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)

critic (value function update)

(Su et al., 2017)
http://arxiv.org/abs/1707.00130
ACER: Actor-Critic with Experience Replay

- off-policy actor-critic – using **experience replay** buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using “old” $\tilde{\theta}$), it’s considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 - sampling behaviour from $\pi_{\tilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias – **importance sampling**: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled
 - new objective/performance metric: $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t \right]$
 - batch average over timesteps t
 - using advantage instead of returns

Proximal Policy Optimization

- ACER is prone to very large updates, unstable
 - to avoid going “off a cliff”, it needs very low LR, trains slowly
 - change the objective to produce more stable updates
- Basically clipping the ACER objective
 - define $r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta'}(a_t|s_t)}$ - ratio to old params
 - starting from $\hat{E}_t \left[\frac{\pi_\theta(a_t|s_t)}{\pi_{\theta'}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t \left[r_t(\theta) \hat{A}_t \right]$ (see ACER)
 - using $\hat{E}_t \left[\min(r_t(\theta)\hat{A}_t, \text{clip}[r_t(\theta)]_{1-\epsilon}^{1+\epsilon} \hat{A}_t) \right]$

 minimum – lower bound on the unclipped objective

Rewards in RL

• Reward function is critical for successful learning
• Handcrafting is not ideal
 • domain knowledge typically needed to detect dialogue success
 • need simulated or paid users, can’t learn from users without knowing their task
 • paid users often fail to follow pre-set goals
• Having users provide feedback is costly & inconsistent
 • real users don’t have much incentive to be cooperative
• Learning/optimizing the rewards is desirable
• **Interaction quality**
 - hand-annotated turns for ~200 dialogues
 - SVM/RNN on low-level domain-independent features (ASR confidence, # reprompts etc.)

• **Discriminator**
 - policy vs. human-human (iterative, adversarial learning)
 - reward for appearing human-like at each turn

• **Information gain**
 - reward system asking \(\approx \) changes in belief state distributions (Jensen-Shannon divergence \(\geq \) threshold)
 - combined with task success (Feudal RL, see \(\rightarrow \))
Alternating supervised & RL

• we can do better than just supervised pretraining
• alternate regularly
 • start with supervised more frequently
 • alleviate sparse rewards, but don’t completely avoid exploring
 • later do more RL
 • but don’t forget what you learned by supervised learning
• options:
 • schedule supervised every N updates
 • same + increase N gradually
 • use supervised after RL does poorly (worse than baseline)
 • baseline = moving average over history + $\lambda \cdot$ std. error of the average
 • agent is less likely to be worse than baseline in later stages of learning

(Xiong et al., 2018)
Deep Dyna-Q: learning from humans & simulator

- humans are costly, simulators are inaccurate
- ⇒ learn from both, improve simulator as you go
 - direct RL = learn from users
 - world model learning = improve internal simulator
 - supervised, based on previous dialogues with users
 - planning = learn from simulator
- DQN, feed-forward policy
- simulator: feed-forward multi-task net
 - draw a goal uniformly at the start
 - predict actions, rewards, termination
 - use K simulated (“planning”) dialogues per 1 real
- discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416
Hierarchical RL

• good for multiple subtasks
 • e.g. book a flight to London and a hotel for the same day, close to the airport
• top-level policy: select subtask g_i
• low-level policy: actions a_j, g_i to complete subtask g_i
 • given initiation/termination conditions
 • keeps on track until terminal state is reached
 • shared by all subtasks (subtask=parameter)
 • internal critic (=prob. that subtask is solved)
• global state tracker
 • integrates information from subtasks

(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237
• spatial (slot-based) split instead of temporal
 • doesn’t need defined subtasks & sub-rewards
• belief state representation – features
 • master ϕ_m, slot-independent ϕ_i, per-slot ϕ_{s_k}
 • handcrafted (could be neural nets)
 • supports sharing parameters across domains
• two-step action selection:
 1) master action: “slot-dependent or not”?
 • master policy
 2) primitive action
 a) slot-independent policy
 b) slot-specific policies (with shared parameters, distinguished only by belief state)
 • chooses max. Q for all slot-action pairs – involves choosing the slot
• everything is trained using the same global reward signal

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232
Summary

• **RL** for action selection / dialogue policy
 • MDP / agent in an environment, taking actions, getting rewards
 • dynamic programming, **Monte Carlo, Temporal Difference**
 • optimizing **value function** V/Q (*critic*), **policy** (*actor*), or both (*actor-critic*)
 • learning **on-policy** or **off-policy** (act by the policy you learn/not)

• **DQN** – representing & optimizing Q function with a network
 • minibatches, target function freezing, experience replay

• **Policy gradients** – policy network & direct policy optimization
 • **REINFORCE** (MC policy gradients) + advantage
 • **Actor-critic** (REINFORCE + TD + V estimates) + extensions (ACER, PPO)

• rewards can be learned/estimated (supervised/GAN-style)
• learning multiple tasks: hierarchical, feudal RL
Contact us:

https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

No labs today
Next Monday: NLG & HW4