NPFL099 Statistical Dialogue Systems **7. Dialogue Management (2)** Action Selection/Policy

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner <u>http://ufal.cz/npfl099</u>

14.11.2022

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Action selection: Recap

- Action selection: deciding what to do (or say) next
 - based on dialogue state (i.e. uses tracking output)
 - follows a **policy** towards an end goal
- FSM, frames, rule-based
- trained policies: typically with RL
 - explore more different paths than supervised
 - plan ahead optimize for the whole dialogue, not just 1 turn
- RL: MDP formalism agent in an environment, state-action-reward
 - POMDP = MDP with continuous states
 - trained with user simulator

rt

(from Milica Gašić's slides)

St+1

St

Reinforcement learning: Definition

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

state transition is stochastic → maximize expected return

State-value Function

- Using return, we define the **value of a state** s under policy $\pi: V^{\pi}(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$prob. of choosing a from s under \pi probs.$$

$$expected immediate reward$$

$$reward$$

• $V^{\pi}(s)$ defines a **greedy policy**:

actions that look best for the next step

$$\pi(s, a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^{\pi}(s')) \\ 0 \text{ otherwise} \end{cases}$$

Action-value (Q-)Function

- $Q^{\pi}(s, a)$ return of taking action a in state s, under policy π
 - Same principle as value $V^{\pi}(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s, a_{0} = a\right] = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left(r(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s',a') \pi(s',a')\right)$$

• $Q^{\pi}(s, a)$ also defines a greedy policy:

again, "actions that look best for the next step"

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} Q^{\pi}(s,a) & \quad \text{simpler: no need to enumerate } s', \\ 0 \text{ otherwise} & \quad \text{on need to know } p(s'|s,a) \text{ and } r(s,a,s') \\ \text{but } Q \text{ function itself tends to be more complex than } V \end{cases}$$

Optimal Policy in terms of *V* **and** *Q*

- optimal policy π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
 - $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \rightarrow$ use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \ge V^{\pi'}(s) \ \forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) \coloneqq \max_{\pi} Q^{\pi}(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^* , $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages

RL Agents Taxonomy

- Quantity to optimize:
 - value function **critic** <
 - either Q or V, typically Q in practice
 - policy **actor**
 - both actor-critic
- Environment model:
 - model-based (assume known p(s'|s, a), r(s, a, s))

next week

- nice but typically not satisfied in practice
- model-free (don't assume anything, sample)
 - this is the usual real-world case
 - this is where using Q instead of V comes handy

(from David Silver's slides)

Reinforcement Learning Approaches

- How to optimize:
 - dynamic programming find the exact solution from Bellman equation
 - iterative algorithms, refining estimates
 - expensive, assumes known environment → not practical for real-world use
 - Monte Carlo learning learn from experience
 - sample, then update based on experience
 - **Temporal difference learning** like MC but look ahead (bootstrap)
 - sample, refine estimates as you go
- Sampling & updates:
 - **on-policy** improve the policy while you're using it for decisions
 - can't use that with batch learning (decision policy is changing constantly)
 - **off-policy** decide according to a different policy

both used in practice

Deep Reinforcement Learning

- Exactly the same as "plain" RL
 - agent & environment, actions & rewards
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- function approximation approach
 - Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 - enumerating in a table would take up too much space, be too sparse
 - the parameters θ are optimized
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states
- needs tricks to make it stable

(Sutton & Barto, 2018)

Q-Learning

- temporal difference update Q as you go
- off-policy directly estimates best Q^*
 - regardless of policy used for sampling
- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ε-greedy policy based on Q
 - take action *a*, observe observe reward *r* and state *s*'
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a')\right)$
 - $s \leftarrow s'$

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge

State: S Action taken: North Action with max Q value at S': East

State: S' Action taken: North (any action)

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

TD: moving estimates

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Deep Q-Networks

- Q-learning, where Q function is represented by a neural net
- "Usual" Q-learning doesn't converge well with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using *Q* in computing updates to *Q*)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- \rightarrow DQN adds fixes:
 - a) minibatches (updates by averaged *n* samples, not just one)

cool!

- b) experience replay
- c) freezing target Q function
- d) clipping rewards 🔶

- common NN tricks

11

DQN tricks ~ making it more like supervised learning

- Experience replay break correlated samples
 - run through some episodes (dialogues, games...) •
 - store all tuples (*s*, *a*, *r*', *s*') in a buffer —
 - for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

$$\operatorname{loss} \coloneqq \mathbb{E}_{(s,a,r',s')\in \operatorname{buf}}\left[\left(r' + \gamma \max_{a'} Q\left(s',a';\overline{\theta}\right) - Q(s,a;\theta)\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

"generate your own

'supervised' training data"

DQN algorithm

- initialize **\theta** randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state *s*
 - for all timesteps $t = 1 \dots T$ in the episode:
 - select action a_t from ϵ -greedy policy based on $Q(\theta)$
 - take a_t , observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D

- storing experience
- (1 step of Q-learning exploration)

- sample a batch B of random (s, a, r', s')'s from D
- sample a batch *B* of random (*s*, *a*, *r*', *s*') show *D* update $\boldsymbol{\theta}$ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r' + \gamma \max_{a'} Q(s',a'; \overline{\boldsymbol{\theta}}) Q(s,a; \boldsymbol{\theta})\right)^2\right]$ a. k. a. training (1 update)
- once every λ steps (rarely):
 - $\overline{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta}$

DQN for Dialogue Systems

(Li et al., 2017) <u>https://arxiv.org/abs/1703.01008</u> <u>https://github.com/MiuLab/TC-Bot</u>

(Lipton et al., 2018) https://arxiv.org/abs/1608.05081

1.0

8.0 9.0 Rate

seo 0.4

0.2

0.36

p=4.44E-06 0.78

- DQN can drive dialogue action selection/policy
- warm start needed to make the training actually work:
 - pretrain the network using supervised learning
 - replay buffer spiking initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

Policy Gradients

- Instead of value functions, train a network to represent the policy
 - allows better action sampling according to actual stochastic policy
 - no need for ϵ -greedy (which is partially random, suboptimal)
- To optimize, we need a **performance metric**: $J(\theta) = V^{\pi_{\theta}}(s_0)$
 - expected return in starting state when following π_{θ}
 - we want to directly optimize this using gradient ascent

• Policy Gradient Theorem:

• expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s,\theta)$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) = E_{\pi} \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) \right]$$

 $\mu(s)$ is state probability under π – this is the same as expected value E_{π}

REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot \mid \cdot, \theta)$
 - for each $t = 0, 1 \dots T$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \boldsymbol{\theta})$

returns
$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

this will guarantee
the right state
distribution/frequency μ(s)

this is stochastic $\nabla J(\boldsymbol{\theta})$:

- from policy gradient theorem
- using single action sample a_t
- expressing Q^{π} as R_t (under E_{π})

• using
$$\nabla \ln x = \frac{\nabla x}{x}$$

variant – **advantage** instead of returns: discounting a **baseline** b(s) (predicted by any model) $A_t = R_t - b(s_t)$ instead of R_t gives better performance V(s) is actually a good b(s)

NPFL099 L7 2022

Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^{θ} , α^{w}
- loop forever:
 - set initial state *s* for the episode
 - for each step *t* of the episode:
 - sample action a from $\pi(\cdot | s, \theta)$, take a and observe reward r and new state s'
 - compute **advantage** $A \leftarrow r + \gamma \hat{V}(s', w) \hat{V}(s, w)$

same as REINFORCE, except:

• we use $\hat{V}(s, w)$ as baseline

 $\rightarrow \bullet \text{ update } \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^{t} A \nabla \ln \pi(a|s, \boldsymbol{\theta}), \boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha^{\boldsymbol{w}} \cdot A \nabla \widehat{V}(s, \boldsymbol{w})$

• r is used instead of R_t (TD instead of MC)

•
$$s \leftarrow s'$$

actor (policy update)

TD: update after each step

critic (value function update)

ACER: Actor-Critic with Experience Replay

- off-policy actor-critic using **experience replay** buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using "old" $\tilde{\theta}$), it's considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 - sampling behaviour from $\pi_{\widetilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias **importance sampling**: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled
 - new objective/performance metric: $\hat{E}_t \begin{bmatrix} \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t \end{bmatrix}$

using advantage instead of returns

batch average over timesteps *t*

importance sampled

Proximal Policy Optimization

- ACER is prone to very large updates, unstable
 - to avoid going "off a cliff", it needs very low LR, trains slowly
 - \rightarrow change the objective to produce more stable updates
- Basically clipping the ACER objective

 - define $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)}$ ratio to old params starting from $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta) \hat{A}_t]$ (see ACER)
 - using $\hat{E}_t \left[\min(r_t(\theta)\hat{A}_t, \operatorname{clip}[r_t(\theta)]_{1-\epsilon}^{1+\epsilon}\hat{A}_t) \right]$ original clipped to stay close to 1

minimum – lower bound on the unclipped objective

advantages

Rewards in RL

- Reward function is critical for successful learning
- Handcrafting is not ideal
 - domain knowledge typically needed to detect dialogue success
 - need simulated or paid users, can't learn from users without knowing their task
 - paid users often fail to follow pre-set goals
- Having users provide feedback is costly & inconsistent
 - real users don't have much incentive to be cooperative
- Learning/optimizing the rewards is desirable

Turn-level rewards

Interaction quality

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019; Ultes & Maier, 2021) https://doi.org/10.1016/j.specom.2015.06.003 https://doi.org/10.21437/Interspeech.2017-1032 https://aclweb.org/anthology/W19-5902/ https://aclanthology.org/2021.sigdial-1.42

(Takanobu et al., 2019) <u>http://arxiv.org/abs/1908.10719</u>

- hand-annotated turns for ~200 dialogues
- SVM/RNN on low-level domain-independent features (ASR confidence, # reprompts etc.)

Discriminator

- policy vs. human-human (iterative, adversarial learning)
- reward for appearing human-like at each turn

Information gain

- reward system asking ≈ changes in belief state distributions (Jensen-Shannon divergence ≥ threshold)
- combined with task success (Feudal RL, see \rightarrow)

(Geishauser et al., 2021) http://arxiv.org/abs/2109.07129

Alternating supervised & RL

- we can do better than just supervised pretraining
- alternate regularly
 - start with supervised more frequently
 - alleviate sparse rewards, but don't completely avoid exploring
 - later do more RL
 - but don't forget what you learned by supervised learning
- options:
 - schedule supervised every *N* updates
 - same + increase *N* gradually
 - use supervised after RL does poorly (worse than baseline)
 - baseline = moving average over history + λ · std. error of the average
 - agent is less likely to be worse than baseline in later stages of learning

Deep Dyna-Q: learning from humans & simulator

- humans are costly, simulators are inaccurate
- \Rightarrow learn from both, improve simulator as you go
 - direct RL = learn from users
 - world model learning = improve internal simulator
 - supervised, based on previous dialogues with users
 - planning = learn from simulator
- DQN, feed-forward policy
- simulator: feed-forward multi-task net
 - draw a goal uniformly at the start
 - predict actions, rewards, termination
 - use *K* simulated ("planning") dialogues per 1 real
- discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

internal simulator = world model

movie booking: name, date, # tickets etc.

Hierarchical RL

- good for multiple subtasks
 - e.g. book a flight to London and a hotel for the same day, close to the airport
- top-level policy: select subtask g_i
- low-level policy: actions a_{j,g_i} to complete subtask g_i
 - given initiation/termination conditions
 - keeps on track until terminal state is reached
 - shared by all subtasks (subtask=parameter)
 - internal critic (=prob. that subtask is solved)
- global state tracker

NPFL099 L7 2019

• integrates information from subtasks

- spatial (slot-based) split instead of temporal
 - doesn't need defined subtasks & sub-rewards
- belief state representation features
 - master ϕ_m , slot-independent ϕ_i , per-slot ϕ_{s_k}
 - handcrafted (could be neural nets)
 - supports sharing parameters across domains
- two-step action selection:
 - 1) master action: "slot-dependent or not"?
 - master policy
 - 2) primitive action
 - a) slot-independent policy
 - b) slot-specific policies (with shared parameters, distinguished only by belief state)
 - chooses max. Q for all slot-action pairs involves choosing the slot
 - everything is trained using the same global reward signal

Summary

- **RL** for action selection / dialogue policy
 - MDP / agent in an environment, taking actions, getting rewards
 - dynamic programming, Monte Carlo, Temporal Difference
 - optimizing value function *V*/*Q* (critic), policy (actor), or both (actor-critic)
 - learning **on-policy** or **off-policy** (act by the policy you learn/not)
- **DQN** representing & optimizing *Q* function with a network
 - minibatches, target function freezing, experience replay
- **Policy gradients** policy network & direct policy optimization
 - **REINFORCE** (MC policy gradients) + advantage
 - Actor-critic (REINFORCE + TD + V estimates) + extensions (ACER, PPO)
- rewards can be learned/estimated (supervised/GAN-style)
- learning multiple tasks: hierarchical, feudal RL

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek,kasner}@ufal.mff.cuni.cz Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.) <u>http://incompleteideas.net/book/the-book.html</u>
- Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
- Filip Jurčíček's slides (Charles University): <u>https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/</u>
- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: <u>https://christian-igel.github.io/paper/RLiaN.pdf</u>
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: <u>http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf</u>

No labs today Next Monday: NLG & HW4