NPFL099 Statistical Dialogue Systems

6. Dialogue Management (1)
mostly Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner

7. 11. 2022
Dialogue Management & State

• Dialogue management consists of:
 • **State update** ← we need to track dialogue state over time
 • Action selection (discussed later)

• **Dialogue state** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.
 ❌ S: What part of town do you have in mind?
 ❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.
Dialogue State Contents

• “All that is used when the system decides what to say next”
 (Henderson, 2015)

• User goal/preferences ~ NLU output
 • slots & values provided (search constraints)
 • information requested

• Past system actions
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested

• Other semantic context
 • user/system utterance: bye, thank you, repeat, restart etc.

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?
S: OK, Chinese food. […]
S: What time would you like to leave?
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
Belief State

• Assume we don’t know the true current dialogue state s_t
 • states (what the user wants) influence observations o_t (what the system hears)
 • based on observations o_t & system actions a_t, we can estimate a probability distribution $b(s)$ over all possible states – belief state

• More robust than using dialogue state directly
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
 • but not only them – rule-based, too
Belief State

I want a Danish place in the center
inform(area=center) 0.6
inform(food=Danish) 0.4

What food would you like?
area=center

Danish
inform(food=Spanish) 0.5
inform(food=Danish) 0.4
food=Spanish

Which area do you prefer?
area=center
food=Spanish

Did you say Spanish or Danish?
area:
center
food:
Spanish 0.5
Danish 0.44

Found 3 Spanish places in the center...
area:
center
food:
Spanish 0.6
Danish 0.4

What food would you like?
-area-

this is what we want

Based on Milica Gašić’s slides
Basic Discriminative Belief Tracker (= what we used on the previous slide)

• **Partition the state** by assuming conditional independence
 • simplify – assume each slot is independent:
 • state \(s = [s_1, \ldots, s^N] \), belief \(b(s_t) = \prod_i b(s^i_t) \)

• **Always trust the NLU**
 • this makes the model parameter-free
 • ...and basically rule-based
 • but very fast, with reasonable performance

update rule
\[
 b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})
\]

substitution
\[
 b(s^i_t) = \begin{cases}
 p(s^i_t = \circ) p(o^i_t = \circ) & \text{if } s^i_t = \circ \\
 p(o^i_t = s^i_t) + p(o^i_t = \circ) p(s^i_t = s^i_{t-1}) & \text{otherwise}
 \end{cases}
\]

the belief state update rule is deterministic

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070
Basic Feed-forward Neural Tracker

• a simple feed-forward (fully connected) network
 • input – features (w.r.t. slot-value v & time t)
 • NLU score of v
 • n-best rank of v
 • user & system intent (inform/request)
 • … – other domain-independent, low-level NLU features
 • 3 tanh layers
 • output – softmax (= probability distribution over values)
• static – does not model dialogue as a sequence
 • uses a sliding window:
 current time t + few steps back + \sumprevious

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
 - turn-level LSTM would work similarly

- does not need NLU
 - turn features = lexicalized + delexicalized n-grams from ASR n-best list, weighted by confidence

- delexicalization is very harsh: <slot> <value>
 - you don’t even know which slot it is
 - this apparently somewhat helps the system generalize across domains

- **dynamic** – explicitly models dialogue as sequence
 - using the network recurrence

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190
Incremental Recurrent Tracker

• Simple: LSTM over words + classification on hidden states
 • runs over the whole dialogue history (user utterances + system actions)
 • classification can occur after each word, right as it comes in from ASR

• **Dynamic**/sequential

• Doesn’t use any NLU
 • infrequent values are delexicalized (otherwise it can’t learn them)

• Slightly worse performance – possible causes:
 • only uses ASR 1-best
 • very long recurrences (no hierarchy)
Candidate Ranking

- Previous systems consider all values for each slot
 - this is a problem for open-ended slots (e.g. restaurant name)
 - enumerating over all takes ages, some are previously unseen
- Alternative: always consider just K candidates
 - use last K candidates from system actions and NLU output
 - NB: only way history is incorporated here (~static)
 - select from them using a per-slot softmax

Representations of i-th candidate:
- utterance/slot/candidate features
- 2 sigmoid layers
- additional values to consider (even if not mentioned in NLU)
- padding (not enough values mentioned)

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224
Candidate Ranking – representation

- Using BiGRU over lexicalized & delexicalized utterance
 - Features:
 - **utterance** – last GRU state + NLU indicators for non-slot DAs (user & prev. system)
 - **slot** – NLU indicators for DAs with this slot (user & prev. system) + last turn scores for *null* & *dontcare*
 - **candidate** – GRU states over matched value words + NLU indicators for DAs with this slot & value (user & prev. system)

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

RNN + FC | rank

bye(), affirm()

inform(slot=)*, *request(slot)*

inform(slot=value)
Candidate Ranking Extensions

- What if multiple values are true?
 - previous approach picks one (softmax)
 - use set of binary classifiers (log loss) instead

- Making it dynamic
 - embedding previous states, system actions, text of the whole dialogue

- Hybrid classify/rank
 - ranking is faster & more flexible vs. classification can be more accurate for some slots
 - generally ranking better with many values, classification with fewer values
 - check for performance on development data & decide which model to use

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883
BERT & Span Selection
a.k.a. Span Tagging
(~question answering/reading comprehension)

- BERT over previous system & current user utterance
- from 1st token’s representation, get a decision: none/dontcare/span
 - per-slot (BERT is shared, but the final decision is slot-specific)
- span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes over tokens
- rule-based update (static):
 - if none is predicted, keep previous value

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040
Span Selection with Modelled Update

- Also uses BERT, but not necessarily
 - works slightly worse with random-initialized word embeddings

- sequence of 3 decisions
 - do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 - if span: predict span’s start and end

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/
Span Selection & Better Copying

• “triple-copy” – gets the value from 3 sources:
 • user utterance (same as previous span tagging models)
 • system informs (last value the system mentioned)
 • another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

• rule-based update (static)

Boolean slots are handled separately (classification)

Coreference – distribution over slots to copy from

Same decision as previously, just different options: none/dontcare/span/inform/refer

For each slot

Slot informed already?

Slot filled already?

Rule-based update

Pre-LM Span select

(Heck et al., 2020)
https://aclweb.org/anthology/2020.sigdial-1.4/
Multi-domain Span Selection

• encode domain & slot names w. static pretrained word-embeddings (GloVe)
 • adding **new unseen domains & slots** is easy (no retraining)

• otherwise similar as previous, BERT-based:
 • decide if domain changed (BERT: yes/no/chitchat)
 • if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)
 • for each domain, find values (BERT + GloVe span selection)

(Dey & Desarkar, 2021)
https://aclanthology.org/2021.sigdial-1.23
Generator-based Tracker

- Similar to span selection: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: “use generated”/don’t care/none
 - same as the decisions done in span tagging, just applied after getting the value
Generator + Pretrained LMs

• Same as previous, but use a pretrained model (T5) + make it simpler
 • generate any value, including *none*
 • no explicit copying (T5 can copy itself)
• Finetune T5 with specific inputs (prompts)
 • dialogue history
 • domain + slot
 • (optional) slot description, may include list of possible values
• Generate just the slot value
 • may be multi-word
• T5 learns to use descriptions
• Potential for unseen domains
 • though not explored in the paper

[Diagram of dialogue history and slot values passed through T5]
Action Selection / Policy

- Dialogue management:
 - State tracking (↑)
 - Action selection/Policy (↓)

- Action selection – deciding what to do next
 - based on the current belief state – under uncertainty
 - following a policy (strategy) towards an end goal (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic

- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

- follow convention, don’t be repetitive
- e.g. ask for all information you require
Action Selection Approaches

- **Finite-state machines**
 - simplest possible
 - dialogue state is machine state

- **Frame-based (VoiceXML)**
 - slot-filling + providing information – basic agenda
 - rule-based in essence

- **Rule-based**
 - any kind of rules (e.g. Python code)

- **Statistical**
 - typically using reinforcement learning
Why Reinforcement Learning

- **Action selection ~ classification** → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features

- Yes, but…
 - You’d need sufficiently large **human-human data** – hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there’s **no single correct next action** – multiple options may be equally good
 - but datasets will only have one next action
 - **some paths will be unexplored** in data, but you may encounter them
 - DSs won’t behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - **DSs should behave differently** – make the best of what they have
 - supervised classification **doesn’t plan ahead**!
 - RL optimizes for the whole dialogue, not just the immediate action
RL World Model: Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an **environment**:
 - has internal **state** \(s_t \in S \) (~ dialogue state)
 - takes **actions** \(a_t \in A \) (~ system dialogue acts)
 - actions chosen according to **policy** \(\pi : S \rightarrow A \)
 - gets **rewards** \(r_t \in \mathbb{R} \) & state changes from the environment
 - rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
 - Markov property – state defines everything
 - no other temporal dependency
 - **policy** may be **deterministic** or **stochastic**
 - stochastic: prob. dist. of actions, sampling

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)
Partially-observable MDPs

- POMDPs – **belief** states instead of dialogue states
 - true states (“what the user wants”) are not observable
 - observations (“what the system hears”) depend on states
 - belief – probability distribution over states
 - can be viewed as MDPs with continuous-space states
 - just represent 1 slot as set of binary floats 😊

- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex

- Deep RL typically works out of the box
 - function approximation approach, allows continuous states
Simulated Users

- Static datasets aren’t enough for RL
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k’s dialogues used for training, depending on method
- solution: **user simulation**
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE/supervised policy from data
 - combination (best!)

(from Milica Gašić’s slides)
Summary Space

• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = summary space
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = summary actions
 • e.g. just DA types (inform, confirm, reject)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates
Reinforcement learning: Definition

• RL = finding a **policy that maximizes long-term reward**
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

\[
R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}
\]

accumulated long-term reward

\[\gamma \in [0,1] = \text{discount factor}\]
(immediate vs. future reward trade-off)

\[\gamma < 1 : R_t \text{ is finite (if } r_t \text{ is finite)}\]
\[\gamma = 0 : \text{greedy approach (ignore future rewards)}\]

• state transition is stochastic → maximize **expected return**

\[\mathbb{E}[R_t | \pi, s_0]\]
expected \(R_t\) if we start from state \(s_0\) and follow policy \(\pi\)
Summary

• **State tracking**: track user goal over multiple turns (probabilistic – belief state)
 - good NLU + rules – works well (and is used frequently)
 - **static** (sliding-window/rule-based update) vs. **dynamic** (explicit modelling)
 - with vs. without NLU
• **classification** vs. candidate ranking vs. span selection vs. generation
 - classifiers are more accurate than rankers but slower, limited to seen values
 - span selection or generation are the SotA approaches, work nicely but relatively slow
 - many architectures (FC/RNN), newest mostly based on pretrained LMs

• **Action selection**: deciding what to do next (following a policy)
 - FSM, frames, rule-based, supervised, reinforcement learning
 - **RL** – agent in an environment, taking actions, getting rewards
 - MDP formalism (+POMDP can be converted to it)
 - summary states might be needed
 - trained often with user simulators
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
- Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Labs in 10 minutes
DB handling

Next Mon 12:20
rest of Dialogue Policy