NPFL099 Statistical Dialogue Systems
4. Training Neural Nets

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner

24. 10. 2022
Recap: Neural Nets

• complex functions, composed of simple functions (=layers)
 • linear, ReLU, tanh, sigmoid, softmax

• fully differentiable

• different arrangements:
 • feed forward / multi-layer perceptron
 • CNNs
 • RNNs (LSTM/GRU)
 • attention
 • Transformer

• input: binary, float, embedding

• tasks/problems: classification, regression, structured (sequences/ranking)
Supervised Training: Gradient Descent

• supervised training—**gradient descent** methods
 • minimizing a **cost/loss function**
 (notion of error – given system output, how far off are we?)
 • calculus: derivative = steepness/slope
 • follow the slope to find the minimum – derivative gives the direction
 • **learning rate** = how fast we go (needs to be tuned)

• gradient typically computed (=averaged) over **mini-batches**
 • random bunches of a few training instances
 • not as erratic as using just 1 instance,
 not as slow as computing over whole data

• **stochastic gradient descent**
 • batches may be **accumulated** to fit into memory
 • e.g. your GPU only fits one instance
 → compute gradients multiple times, then do 1 update

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
Cost/Loss Functions

- differ based on what we’re trying to predict
- **logistic / log loss** (“cross entropy”)
 - for classification / softmax – including **word prediction**
 - classes from the whole dictionary
 - pretty stupid for sequences, but works
 - sequence shifted by 1 ⇒ everything wrong
- **squared error loss** – for regression
 - forcing the predicted float value to be close to actual one
- **hinge loss** – for binary classification (SVMs), ranking
 - forcing the correct sign
- many others, variants

https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
Backpropagation

- network ~ computational graph
 - reflects function/layer composition
- composed function derivatives – simple rules
 - basically summing over different paths
 - factoring ~ merging paths at every node
- **backpropagation** = reverse-mode differentiation
 - going back from output to input
 - ~ how every node affects the output
 - your graph **output = cost function**
 - \(\rightarrow\) derivatives of all parameters w. r. t. cost
 - one pass through the network only \(\rightarrow\) easy & fast
 - NN frameworks do this automatically

<table>
<thead>
<tr>
<th>Rules</th>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication by constant</td>
<td>cf</td>
<td>cf'</td>
</tr>
<tr>
<td>Power Rule</td>
<td>(x^n)</td>
<td>(nx^{n-1})</td>
</tr>
<tr>
<td>Sum Rule</td>
<td>(f + g)</td>
<td>(f' + g')</td>
</tr>
<tr>
<td>Difference Rule</td>
<td>(f - g)</td>
<td>(f' - g')</td>
</tr>
<tr>
<td>Product Rule</td>
<td>(fg)</td>
<td>(fg' + f'g)</td>
</tr>
<tr>
<td>Quotient Rule</td>
<td>(\frac{f}{g})</td>
<td>(\frac{f'g - fg'}{g^2})</td>
</tr>
<tr>
<td>Reciprocal Rule</td>
<td>(\frac{1}{f})</td>
<td>(-f'f^2)</td>
</tr>
<tr>
<td>Chain Rule</td>
<td>(f \circ g)</td>
<td>((f \circ g)' \times g')</td>
</tr>
</tbody>
</table>

https://www.mathsisfun.com/calculus/derivatives-rules.html

http://colah.github.io/posts/2015-08-Backprop/
Learning Rate (α) & Momentum

- **α: most important parameter** in (stochastic) gradient descent
- tricky to tune:
 - too high α = may not find optimum
 - too low α = may take forever

- **Learning rate decay**: start high, lower α gradually
 - make bigger steps (to speed learning)
 - slow down when you’re almost there (to avoid overshooting)
 - linear, stepwise, exponential
 - **reduce-on-plateau** – check every now and then if we’re still improving, reduce LR if not

- **Momentum**: moving average of gradients
 - make learning less erratic
 - $m = \beta \cdot m + (1 - \beta) \cdot \Delta$, update by m instead of Δ

https://ruder.io/optimizing-gradient-descent/
Optimizers

• Better LR management
 • change LR based on gradients, less sensitive to settings

• **AdaGrad** – all history
 • remember sum of total gradients squared: \(\sum_t \Delta_t^2 \)
 • divide LR by \(\sqrt{\sum \Delta_t^2} \)
 • variants: **Adadelta**, **RMSProp** – slower LR drop

• **Adam** – per-parameter momentum
 • moving averages for \(\Delta \) & \(\Delta^2 \):
 \[m = \beta_1 \cdot m + (1 - \beta_1) \Delta, \quad v = \beta_2 \cdot v + (1 - \beta_2) \Delta^2 \]
 • use \(m \) instead of \(\Delta \), divide LR by \(\sqrt{v} \)
 • used as default in most applications
 • variant: **AdamW** – better regularization
 • not much difference though

http://kaeken.hatenablog.com/entry/2016/11/10/203151

http://ruder.io/optimizing-gradient-descent/

Kingma & Ba, 2015)
https://arxiv.org/abs/1412.6980

(Loshchilov & Hutter, 2019)
https://arxiv.org/abs/1711.05101
• **LAMB** – Layer-wise Adaptive Moments for Batches
 • for larger batches & allowing to use larger LR (~unstable otherwise)

• **LARS** layer-wise adaptive rate scaling
 • layer-wise LRs, always multiplied by a trust ratio:
 \[\alpha^l = \alpha \cdot \frac{|w^l|}{||\Delta^l||} \] = norm of weights/ norm of gradients
 • higher trust ratio = faster updates
 • start of training: low \(w \), high \(\Delta \) → slow **warm up**
 • towards convergence: higher \(w \), low \(\Delta \) → faster training

• LAMB \(\approx \) LARS + AdamW

(You et al., 2020)

https://towardsdatascience.com/an-intuitive-understanding-of-the-lamb-optimizer-46f8c0ae4866
Schedulers

• more fiddling with LR – **warm-ups**
 • start learning slowly, then increase LR, then reduce again
 • may be repeated (**warm restarts**), with lowered maximum LR
 • allow to diverge slightly – work around local minima

• multiple options:
 • cyclical (=warm restarts) – linear, cosine annealing
 • **one cycle** – same, just don’t restart
 • **Noam scheduler** – linear warm-up, decay by $\sqrt{\text{steps}}$

• combine with base SGD or Adam/Adadelta etc.
 • momentum updated inversely to LR
 • may have less effect with optimizers
 • trade-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html
When to stop training

• generally, when cost stops going down
 • despite all the LR fiddling

• problem: overfitting
 • cost low on training set, high on validation set
 • network essentially memorized the training set
 • → check on validation set after each epoch (pass through data)
 • stop when cost goes up on validation set
 • regularization (see →) helps delay overfitting

• bias-variance trade-off:
 • smaller models may underfit (high bias, low variance = not flexible enough)
 • larger models likely to overfit (too flexible, memorize data)
 • XXL models: overfit soo much they actually interpolate data → good (🤔 😂)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355
Regularization: Dropout

- regularization: preventing overfitting
 - making it harder for the network to learn, adding noise
- **Dropout** – simple regularization technique
 - more effective than e.g. weight decay (L2)
 - **zero out some neurons/connections** in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only – full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there’s fewer nodes
 - done by libraries automatically
 - may need larger networks to compensate

(Srivastava et al., 2014)
http://jmlr.org/papers/v15/srivastava14a.html
Regularization: Multi-task Learning

- achieve better generalization by **learning more things at once**
 - a form of regularization
 - implicit data augmentation
 - biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training – alternating between tasks
 - so the network doesn’t “forget”

(Ruder, 2017)
http://arxiv.org/abs/1706.05098
(Fan et al., 2017)
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114
Self-supervised training

• train supervised, but **don’t provide labels**
 • use naturally occurring labels
 • create labels automatically somehow
 • corrupt data & learn to fix them
 • learn from rule-based annotation (not ideal!)
 • use specific tasks that don’t require manual labels

• good to train on huge amounts of data
 • language modelling
 • next-word prediction
 • MLM – masked word prediction (~like word2vec)
 • **autoencoding**: predict your own input (see \(\rightarrow \))

• good to **pretrain** the network for a final task
• unsupervised, but with supervised approaches

http://jalammar.github.io/illustrated-bert/
Autoencoders

- Using NNs as **generative models**
 - more than just classification – modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data

- **Autoencoder**: input → encoding → input
 - encoding ~ “embedding” in latent space (i.e. some vector)
 - trained by reconstruction loss
 - problem: can’t easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused – will generate weird stuff
 - no easy interpretation of embeddings – no idea what the model will generate

- extension – **denoising autoencoder**:
 - add noise to inputs, train to generate clean outputs
 - use in multi-task learning, representations for use in downstream tasks

[Image: MNIST digits autoencoder latent space]
Variational Autoencoders

• Making the encoding latent space more useful
 • using **Gaussians** – continuous space by design
 • encoding input into vectors of means μ & std. deviations σ
 • sampling encodings from $N(\mu, \sigma)$ for generation
 • samples vary a bit even for the same input
 • decoder learns to be more robust
 • model can degenerate into normal AE ($\sigma \to 0$)
 • we need to encourage some σ, smoothness, overlap ($\mu \sim 0$)
 • add **2nd loss: KL divergence** from $N(0,1)$
 • VAE learns a trade-off between using unit Gaussians & reconstructing inputs

• Problem: still not too much control of the embeddings
 • we can only guess what kind of output the model will generate

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1be67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/
VAE details

- VAE objective:

 "AE" • **reconstruction loss** (maximizing $p(x|z)$ in the decoder), MLE as per usual

 "V" • **latent loss** (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

 $$\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]$$

- This is equivalent to maximizing true $\log p(x)$ with some error

 • i.e. maximizing **evidence lower bound** (ELBO) / variational lower bound:

 $$\mathbb{E}_q[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)]$$

- Sidestepping sampling – **reparameterization trick**

 • $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ

 • differentiating w. r. t. μ & σ still works, no hard sampling on that path

 https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
Discrete VAE: Gumbel-Softmax

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144

• “reparameterization trick for discrete distributions”
 • same idea, just with a discrete/categorical distribution
 • this makes the latent space better interpretable

• **Gumbel-max trick:**
 • categorial distribution π with probabilities π_i
 • sampling from π: $z = \text{onehot}(\arg\max_i (\log \pi_i + g_i))$

• Swap argmax for softmax with temperature τ
 • differs from π if $\tau > 0$, but may be close
 • approx. sample of the true distribution
 • fully differentiable
 • g_i bypassed in differentiation, same as $\mathcal{N}(0,1)$ in Gaussian sampling

Gumbel noise:
$$g_i = -\log(-\log(\text{Uniform}(0,1)))$$

$$y_i = \frac{\exp\left(\frac{\log(\pi_i) + g_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{\log(\pi_j) + g_j}{\tau}\right)}$$

$\tau \to 0$: more like one-hot
$\tau \to \infty$: more like uniform

https://anotherdatum.com/gumbel-gan.html
Conditional Variational Autoencoders

- Direct control over types of things to generate
- Additional conditioning on a given label/type/class c
 - c can be anything (discrete, continuous…)
 - image class: MNIST digit
 - sentiment
 - “is this a good reply?”
 - coherence level
 - just concatenate to input
 - given to both encoder & decoder at training time
- Generation – need to provide c
 - CVAE will generate a sample of type c
 - Latent space is partitioned by c
 - same latent input with different c will give different results

https://ijdykeman.github.io/ml/2016/12/21/cvae.html
Pretraining & Finetuning

• 2-step training:
 1. **Pretrain** a model on a huge dataset (**self-supervised**, language-based tasks)
 2. **Fine-tune** for your own task on your smaller data (**supervised**)

• ~pretrained embeddings, many variants
 • mostly Transformer architecture
 • pretraining tasks vary and make a difference

• typical tasks:
 • masked language modelling (masked words/spans)
 • next-word prediction
 • denoising scrambled texts

(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/
Pretrained Language Models

- **BERT + RoBERTa** (optimized): Transformer encoder
 - masked word prediction, sentence order
- **GPT(-2/-3)**: Transformer decoder only
 - next-word prediction (=language modeling)
- **BART** – encoder-decoder \approx Transformer denoising autoencoder
 - masking, word removal… \rightarrow generate original sentence
- **T5**: generalization of ↑ (multi-task)
 - prompts for different tasks
- **multilingual**: XLM-RoBERTa, mBART, mT5
- **ByT5**: byte-level (larger encoder)
- a lot of pretrained models released plug-and-play
 - you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Liu et al., 2019)
http://arxiv.org/abs/1907.11692

(Rogers et al., 2020)

(Radford et al., 2019)
https://openai.com/blog/better-language-models/

(Brown et al., 2020)

(Lewis et al., 2020)
https://aclanthology.org/2020.acl-main.703/

(Raffel et al., 2019)

(Conneau et al., 2020)

(Liu et al., 2020)

(Xue et al., 2021)
https://aclanthology.org/2021.naacl-main.41

(Xue et al., 2022)
https://arxiv.org/abs/2105.13626

https://github.com/huggingface/transformers
Generative Adversarial Nets

- Training generative models to generate **believable** outputs
 - to do so, they necessarily get a better grasp on the distribution
- Getting loss from a 2nd model:
 - **discriminator** D – “adversary” classifying real vs. generated samples
 - **generator** G – trained to fool the discriminator
 - the best chance to fool the discriminator is to generate likely outputs
- Training iteratively (EM style)
 - generate some outputs
 - classify + update discriminator
 - update generator based on classification
 - this will reach a stable point

(Goodfellow et al, 2014)
Clustering

- Unsupervised, finding similarities in data
- basic algorithms
 - **k-means**: assign into k clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
 - **Gaussian mixture**: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
 - **hierarchical** (bottom up):
 start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have k clusters / distance is too big
 - **hierarchical top-down** (reversed \rightarrow)
- distance metrics & features decide what ends up together

https://www.displayr.com/what-is-hierarchical-clustering/
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://www.youtube.com/watch?v=9YA2t78Ha68
Reinforcement Learning

• Learning from **weaker supervision**
 • only get feedback once in a while, not for every output
 • good for globally optimizing sequence generation
 • you know if the whole sequence is good
 • you don’t know if step X is good
 • sequence = e.g. sentence, dialogue

• Framing the problem as **states & actions & rewards**
 • “robot moving in space”, but works for dialogue too
 • state = generation so far (sentence, dialogue state)
 • action = one generation output (word, system dialogue act)
 • defining rewards might be an issue

• Training: **maximizing long-term reward**
 • via state/action values (Q function)
 • directly – optimizing policy

(Sutton & Barto, 2018)
• Supervised training
 • cost function
 • stochastic **gradient descent** – minibatches
 • backpropagation
 • **learning rate** tricks – optimizers (Adam), schedulers
 • regularization: dropout, multi-task training

• Self-supervised learning (~kinda unsupervised)
 • autoencoders, denoising, variational autoencoders
 • (masked) language models

• Unsupervised
 • generative adversarial nets
 • clustering

• Reinforcement learning (more to come later)
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Zoom/Skype/Troja

Get the slides here:
http://ufal.cz/npfl099

References/Further:
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/