NPFL099 Statistical Dialogue Systems

1. Introduction

https://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Zdeněk Kasner

3. 10. 2022
Organizational: 2/1 Z+ZK – 4 Credits

- Lecture (Mon 12:20) + labs (Mon 14:00, bi-weekly, starts next week)
 - S8 + Zoom + https://ufaldsg.slack.com/
 - Lecture: theory
 - Labs: practical projects: training a neural system & how-tos for experiments

- To pass the course:
 - 60%+ written exam – 10 freeform questions (covered by the lectures)
 - general ideas, not specifics of a random system we show for 5 minutes
 - question pool online, might be slightly updated during the semester
 - min. 40 pts. lab homework assignment (typically 2-3 weeks’ deadline)
 - 6 assignments (10 pts. each), bonuses, half/no points for late
 - note that assignments depend on each other

- Slides, news etc. at http://ufal.cz/npfl099

- vs. NPFL123: no ASR/TTS, more advanced (focus: neural nets)
 - but also covering the basics, i.e. there’s some overlap
About Us

Ondřej Dušek: lectures, course guarantor
- PhD at ÚFAL, ’17–’19 at Heriot-Watt Uni Edinburgh
- worked mostly on language generation
- also chatbots (HWU Alexa Prize team)

Vojtěch Hudeček: labs, some lectures
- PhD student at ÚFAL (6th year)
- working on dialogue management & language understanding
- internships at Uber AI, UC Davis, Amazon on dialogue systems

Zdeněk Kasner: labs, some lectures
- PhD student at ÚFAL (4th year)
- working on language generation
- internship at Heriot-Watt Uni
Course Syllabus

1. Introduction (today) ***
2. Evaluating dialogue systems **
3. Machine learning basics (2 parts) *
4. Natural language understanding *
5. Dialogue state tracking *
6. Dialogue management *
7. Natural language generation *
8. End-to-end dialogue models
9. Chatbots **
10. Multimodal/visual dialogue
11. Ethics & Linguistics & Problems **

*/**/*** = little/some/lot of overlap with NPFL123
Recommended Reading

Primary:

• Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2021, Chap. 24 & 26
 (https://web.stanford.edu/~jurafsky/slp3/) – basic, brief intro

 (https://doi.org/10.2200/S01060ED1V01Y202010HLT048) – bit more advanced, new

• Gao et al.: Neural Approaches to Conversational AI, 2019
 (http://arxiv.org/abs/1809.08267) – more advanced, slightly older

Other (see also website):

• recent papers from the field (will be linked on slides)
What’s a dialogue system?

Definition:

• A *(spoken)* dialogue system is a **computer system designed to interact** with users in *(spoken)* **natural language**

• Wide definition – covers lots of different cases
 • “smart speakers” / phone OS assistants
 • phone hotline systems (even tone-dial ones)
 • in-car systems
 • assistive technologies: therapy, elderly care, companions
 • entertainment: video game NPCs, chatbots
Where are we now?

- Lots of talk about AI now
- Hype around Siri/Alexa/Google
- Sci-fi expectations – AI-complete
 - Star Trek – know-it-all
 - 2001 Space Oddysssey – mutiny
 - Her – personality
- We’re not there – probably for long
 - main bottleneck: understanding (not speech comprehension, meaning!)
 - … more like the Red Dwarf talkie toaster
Example – Smart Speakers

- Google, Amazon, Apple & others, Mycroft: open-source
- Really good microphones
 - and not much else – they work online only
- Huge knowledge bases
 - Google: combined with web search
- Lots of domains programmed in, but all by hand
 - integration with a lot of services
 (calendar, music, shopping, weather, news…)
 - you can add your own (with limitations)
- Can keep some context
- Conversational capabilities limited
Why take interest in Dialogue Systems?

- It’s the ultimate natural interface for computers
- Exciting & active research topic
 - some stuff works, but there’s a long way to go
 - potential in many domains
 - integrates many different technologies
 - lots of difficult AI problems – dialogue is hard!
 - Turing test by dialogue – “proof” of general AI

- Commercially viable
 - interest & investment from major IT companies
Basic Dialogue System Types

Task-oriented

- focused on completing a certain task/tasks
 - booking restaurants/flights, finding bus schedules, smart home…
- most actual DS in the wild
 - also our main focus in this course
- “backend access” vs. “agent/assistant”

Non-task-oriented

- chitchat – social conversation, entertainment
 - getting to know the user, specific persona
- gaming the Turing test
Communication Domains

• “domain” = conversation topic / area of interest

• traditional: **single/closed-domain**
 • one well-defined area, small set of specific tasks
 • e.g. banking system on a specific phone number

• **multi-domain**
 • basically joining several single-domain systems (Google/Alexa/Siri)

• **open-domain**
 • “responds to anything” – the goal, but now mostly chitchat-only
Modes of Communication

- **text**
 - most basic/oldest
 - easiest to implement, most robust
 - not completely natural

- **voice**
 - more difficult, but can be more natural
 - emotions, tone, personality
 - easy to deploy over the phone
 - hands-free

- **multimodal**
 - voice/text + graphics
 - additional modalities: video – gestures, mimics; touch
 - most complex

(Johnston et al., ACL 2002)
https://www.aclweb.org/anthology/P02-1048/

(Al Moubayed et al., 2012)
https://dl.acm.org/doi/10.1007/978-3-642-34584-5_9
https://www.eitdigital.eu/typo3temp/assets/_processed_/a/6/csm_FURHAT_ea50ba2bf9.jpg
Dialogue Initiative

• **system-initiative**
 - “form-filling” ("Hello. Please tell me your date of birth.")
 - system asks questions, user must reply in order to progress
 - traditional, most robust, but least natural

• **user-initiative**
 - user asks, machine responds ("Alexa, set the timer for two minutes")

• **mixed-initiative**
 - system and user both can ask & react to queries
 - most natural, but most complex

S: Hello. How may I help you?
U: I’m looking for a restaurant.
S: What price do you have in mind?
U: Something in the city center please.
S: OK, city center. What price are you looking for?
• traditional main DS pipeline:
 • voice → text
 • text → meaning
 • meaning → reaction
 • reaction → text
 • text → voice
• access to backend
 • for anything better than basic chit-chat
• multimodal systems need additional components

Dialogue Systems Architecture
Automatic Speech Recognition (ASR)

• Converting **speech signal** (acoustic waves) **into text**
• Typically produces several possible hypotheses with confidence scores
 • **n-best list**
 • lattice
 • confusion network
• Very good in ideal conditions
• **Problems:**
 • noise, accents, longer distance, echo cancellation, channel (phone)…

0.8 I’m looking for a restaurant
0.4 uhm looking for a restaurant
0.2 looking for a rest tour rant

(Kazemian et al., ICMR 2008)
https://doi.org/10.1145/1460096.1460112
Speech Recognition

• Also: voice activity detection
 • detect when the user started & finished speaking
 • wake words ("OK, Google")

• ASR implementation: mostly neural networks
 • take acoustic features (frequency spectrum)
 • compare with previous
 • emit phonemes/letters

• Limited domain: use of language models
 • some words/phrases more likely than others
 • previous context can be used
 • this can improve the experience a lot!

• problem: out-of-vocabulary
• **Extracting the meaning** from the (now textual) user utterance
 • Converting into a structured semantic representation
 • **dialogue acts:**
 • act type/intent (*inform, request, confirm*)
 • slot/attribute (*price, time...*)
 • value (*11:34, cheap, city center...*)
 • typically intent detection + slot-value tagging
 • other, more complex – e.g. syntax trees, predicate logic
 • **Specific steps:**
 • **named entity resolution** (NER)
 • identifying task-relevant names (*London, Saturday*)
 • **coreference resolution**
 • (“it” -> “the restaurant”)

Natural/Spoken Language understanding (NLU/SLU)
Language Understanding

• Implementation varies
 • (partial) **handcrafting** viable for limited domains
 • keyword spotting
 • regular expressions
 • handcrafted grammars
 • **machine learning** – various methods
 • intent classifiers + slot/value extraction

• Can also provide n-best outputs

• Problems:
 • recovering from bad ASR
 • ambiguities
 • variation

S: Leaving Baltimore. What is the arrival city?
U: fine Portland [ASR error]
S: Arriving in Portland. On what date?
U: No not Portland Frankfurt Germany

[On a Tuesday]
U: I’d like to book a flight from London to New York for next Friday

U: Chinese city center
U: uhm I’ve been wondering if you could find me a restaurant that has Chinese food close to the city center please
Dialogue Manager (DM)

- Given NLU input & dialogue so far, responsible for **deciding on next action**
 - keeps track of what has been said in the dialogue
 - keeps track of user profile
 - interacts with backend (database, internet services)

- Dialogue so far = **dialogue history**, modelled by **dialogue state**
 - managed by **dialogue state tracker**

- System actions decided by **dialogue policy**
Dialogue state / State tracking

• Stores (a summary of) dialogue history
 • User requests + information they provided so far
 • Information requested & provided by the system
 • User preferences

• Implementation
 • handcrafted – e.g. replace value per slot with last-mentioned
 • good enough in some circumstances
 • probabilistic – keep an estimate of per-slot preferences based on SLU output
 • more robust, more complex

price: cheap
food: Chinese
area: riverside

price: 0.8 cheap
 0.1 moderate
 0.1 <null>
food: 0.7 Chinese
 0.3 Vietnamese
area: 0.5 riverside
 0.3 <null>
 0.2 city center
Dialogue Policy

- Decision on next system action, given dialogue state
- Involves backend queries
- Result represented as system dialogue act
- Handcrafted:
 - if-then-else clauses
 - flowcharts (e.g. VoiceXML)
- Machine learning
 - often trained with reinforcement learning
 - POMDP (Partially Observable Markov Decision Process)
 - recurrent neural networks

confirm(food=Chinese)

inform(name=Golden Dragon, food=Chinese, price=cheap)
Natural Language Generation (NLG) / Response Generation

- Representing system dialogue act in natural language (text)
 - reverse NLU
- How to express things might depend on context
 - Goals: fluency, naturalness, avoid repetition (...)
- Traditional approach: templates
 - Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 - Works well for limited domains

```
inform(name=Golden Dragon, food=Chinese, price=cheap)
+ 
<name> is a <price>-ly priced restaurant serving <food> food
= 
Golden Dragon is a cheaply priced restaurant serving Chinese food.
```
Natural Language Generation

- Grammar-based approaches
 - grammar/semantic structures instead of templates
 - NLG realizes them (=converts to linear text) by applying syntactic transformation rules

- Statistical approaches
 - most prominent: neural networks (RNN/Transformer)
 - generating word-by-word
 - input: encoded semantics + previous words

(Wen et al., 2015)
http://aclweb.org/anthology/W15-4639

(Kozlowski, 2002)

(White, 2011)
https://www.aclweb.org/anthology/W11-2827/
Text-to-speech (TTS) / Speech Synthesis

• Generate a speech signal corresponding to NLG output
 • text \rightarrow sequence of **phonemes**
 • minimal distinguishing units of sound (e.g. [p], [t], [ŋ] “ng”, [ə] “eh/uh”, [i:] “ee”)
 • + pitch/intonation, speed, pauses, volume/accents

• Standard pipeline:
 • text normalization
 • abbreviations
 • punctuation
 • numbers, dates, times
 • pronunciation analysis (**grapheme \rightarrow phoneme conversion**)
 • intonation/stress generation
 • waveform synthesis

```
take bus number 3 at 5:04 am
take bus number three at five o four a m
tei k bʌs nʌmbər ə t i: æ t fəuə r ə m
```
Speech Synthesis

• TTS Methods:
 • **Formant-based**: phoneme-specific frequencies ❆ http://www.festvox.org/history/klatt.html (example 35)
 • oldest, not very natural, but works on limited hardware
 • **Concatenative** ❆ https://en.wikipedia.org/wiki/MBROLA
 • record a single person, cut into phoneme transitions (diphones), glue them together
 • **Hidden Markov Models** ❆ http://homepages.inf.ed.ac.uk/jyamagis/
 • phonemes in context modelled as hidden Markov models
 • Model parameters estimated from data (machine learning)
 • **Neural networks** ❆ https://google.github.io/tacotron/
 • HMMs swapped for a recurrent neural network
 • also can go directly from text, no need for phoneme conversion
Organizing the Components

• Basic: pipeline
 • ASR → NLU → DM → NLG → TTS
 • components oblivious of each other

• Interconnected
 • read/write changes to dialogue state
 • more reactive (e.g. incremental processing), but more complex

• Joining the modules (experimental)
 • ASR + NLU
 • NLU + state tracking
 • NLU & DM & NLG
End-to-End Systems

• now typical for non-task-oriented
 • single network, trained e.g. on movie subtitles
• task oriented – very experimental
• the whole system (NLU/DM/NLG) is a single neural network
 • joint training (“end-to-end”)
 • more elegant
 • potentially easily retrainable
• typically still needs annotation
 • same as individual modules
 • can be less predictable
• connecting the database is a problem

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042/
- adding other modalities
- specific components
 - parallel to NLU
 - vision – image classification networks
 - face identification/tracking
 - parallel to NLG
 - mimics/gesture generation
 - gaze
 - image retrieval
 - vision – typically CNN
 - often off-the-shelf stuff
 - specific classifiers/rules

(Agarwal et al., 2018)
http://aclweb.org/anthology/W18-6514
https://youtu.be/5fhjuGu3d0I?t=137
https://vimeo.com/248025147

Multimodal/Visual Dialogue

http://demo.visualdialog.org/
Further Research Areas

• Multi/open domains
 • reusability, domain transfer
 • training from little data
 • pretraining with “generic” data
 • connecting task-oriented systems and chatbots

• Context dependency
 • understand/reply in context (grounding, speaker alignment)

• Incrementality
 • don’t wait for the whole sentence to start processing
 • not much stuff going on at the moment, but would help

• Evaluation
 • checking if the system does well is actually non-trivial
Summary

• We’re far from AI sci-fi dreams, but it still works a bit
 • dialogue is hard

• DSs have many forms & usage areas
 • task-oriented vs. non-task-oriented
 • closed vs. open domain
 • system vs. user initiative

• Main components: **ASR → NLU → DM → NLG → TTS**
 • implementation varies
 • sometimes things are joined together

• It’s an active and interesting research topic!
• Next week: evaluation methods
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Zoom/Slack/Troja (by agreement)

Next Monday:
lecture 12:20
lab 14:00

Get the slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on slides and syllabi by:

• Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
• Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
• Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/