NPFL099 Statistical Dialogue Systems

11. Linguistics & Ethics

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

13. 12. 2021
Turn-taking (interactivity)

• Speakers **take turns** in a dialogue
 • **turn** = continuous utterance from one speaker

• Normal dialogue – very fluent, fast
 • minimizing **overlaps & gaps**
 • little silence (usually <250ms), little overlap (~5%)
 • (fuzzy) rules, anticipation

• cues/markers for turn boundaries:
 • linguistic (e.g. finished sentence), voice pitch
 • timing (gaps)
 • eye gaze, gestures (…)

• overlaps happen naturally
 • ambiguity in turn-taking rules (e.g. two start speaking at the same time)
 • **barge-in** = speaker starts during another one’s turn
20 seconds of a semi-formal dialogue (talk show):

S: um uh , you're about to start season [six ,]
J: [yes]
S: you probably already started but [it launches]
J: [yes thank you]
A: (cheering)
J: we're about to start thank you yeah .. we're starting , we- on Sunday yeah , we've been eh- we've been prepping some [things]
S: [confidence] is high . feel good ?
J: (scoffs)
S: think you're gonna
 [squeeze out the shows this time ? think you're gonna do it ?]
J: (laughing) [you're talking to me like I'm an a-]
 confidence high ? no !
S: [no]
J: [my confidence] is never high .
S: okay
J: self loathing high . concern astronomic .
Speech vs. text

• Natural speech is **very different from written text**
 • ungrammatical
 • restarts, hesitations, corrections
 • overlaps
 • pitch, stress
 • accents, dialect

• See more examples in speech corpora
 • https://kontext.korpus.cz/ (Czech)
 • select the “oral” corpus and search for a random word
Turn taking in dialogue systems

• consecutive turns are typically assumed
 • system waits for user to finish their turn (~250ms non-speech)

• **voice activity detection**
 • binary classification problem – “is it user’s speech that I’m hearing?”[Y/N]
 • segments the incoming audio (checking every X ms)
 • actually a hard problem
 • nothing ever works in noisy environments

• **wake words** – making VAD easier
 • listen for a specific phrase, only start listening after it

• some systems allow user’s barge-in
 • may be tied to the wake word

hey Siri
okay Google
Alexa
Speech acts (by John L. Austin & John Searle)

• each utterance is an **act**
 - intentional
 - changing the state of the world
 - changing the knowledge/mood of the listener (at least)
 - influencing the listener’s behavior

• speech acts consist of:
 a) **utterance** act = the actual uttering of the words
 b) **propositional** act = semantics / “surface” meaning
 c) **illocutionary** act = “pragmatic” meaning
 - e.g. command, promise […]
 d) **perlocutionary** act = effect
 - listener obeys command, listener’s worldview changes […]

X to Y: *You’re boring!*
 a) [juːr ˈbɔrɪŋ]
 b) boring(Y)
 c) statement
 d) Y is cross

X to Y: *Can I have a sandwich?*
 a) [kæn ə hæv ə ˈsændwɪʧ]
 b) can_have(X, sandwich)
 c) request
 d) Y gives X a sandwich
Speech acts

• Types of speech acts:
 • **assertive**: speaker commits to the truth of a proposition
 • statements, declarations, beliefs, reports […]
 • **directive**: speaker wants the listener to do something
 • commands, requests, invitations, encouragements
 • **commissive**: speaker commits to do something themselves
 • promises, swears, threats, agreements
 • **expressive**: speaker expresses their psychological state
 • thanks, congratulations, apologies, welcomes
 • **declarative**: performing actions (“performative verbs”)
 • sentencing, baptizing, dismissing

It’s raining outside.

Stop it!

I’ll come by later.

Thank you!

You’re fired!
Speech acts

• Explicit vs. implicit
 • explicit – using a verb directly corresponding to the act
 • implicit – without the verb

• Direct vs. indirect
 • indirect – the surface meaning does not correspond to the actual one
 • primary illocution = the actual meaning
 • secondary illocution = how it’s expressed
 • reasons: politeness, context, familiarity

explicit: I promise to come by later.
implicit: I’ll come by later.

explicit: I’m inviting you for a dinner.
implicit: Come with me for a dinner!

direct: Please close the window.
indirect: Could you close the window?
even more indirect: I’m cold.

direct: What is the time?
indirect: Have you got a watch?
Conversational Maxims (by Paul Grice)

• based on Grice’s **cooperative principle** ("dialogue is cooperative")
 • speaker & listener cooperate w. r. t. communication goal
 • speaker wants to inform, listener wants to understand

• 4 Maxims (basic premises/principles/ideals)
 • M. of **quantity** – don’t give too little/too much information
 • M. of **quality** – be truthful
 • M. of **relation** – be relevant
 • M. of **manner** – be clear

• By default, speakers are assumed to adhere to maxims
 • apparently breaking a maxim suggests a different/additional meaning
Conversational Implicatures

• **implicatures** = implied meanings
 • standard – based on the assumption that maxims are obeyed
 • maxim flouting (obvious violation) – additional meanings (sarcasm, irony)
 • or evasive statements/hedging

John ate some of the cookies → [otherwise too little/low-quality information] not all of them

A: *I’ve run out of gas.*
B: *There’s a gas station around the corner.* → [otherwise irrelevant] the gas station is open

A: *Will you come to lunch with us?*
B: *I have class.* → [otherwise irrelevant] B is not coming to lunch

A: *How’s John doing in his new job?*
B: *Good. He didn’t end up in prison so far.* → [too much information] John is dishonest / the job is shady

Evasive statements (Donald Trump in hospital with covid):

[…] *it came off that we were trying to hide something, which wasn’t necessarily true*

Anything below 90? – No, it was below 94%. It wasn’t down in to the low 80s or anything, no.

https://twitter.com/yoavgo/status/1312792039105466370
https://twitter.com/yamiche/status/1312785068021239812
• Learned from data / hand-coded

• Understanding:
 • tested on real users → usually knows indirect speech acts
 • implicatures limited – there’s no common sense
 • (other than what’s hand-coded or found in training data)

 system: The first train from Edinburgh to London leaves at 5:30 from Waverley Station.
 user: I don’t want to get up so early. → [fails]

• Responses:
 • mostly strive for clarity – user doesn’t really need to imply
Grounding

• dialogue is cooperative → need to ensure mutual understanding

• **common ground**
 = shared knowledge, mutual assumptions of dialogue participants
 • not just shared, but *knowingly* shared
 • $x \in CG(A, B)$:
 • A & B must know x
 • A must know that B knows x and vice-versa
 • expanded/updated/refined in an informative conversation

• validated/verified via **grounding signals**
 • speaker *presents* utterance
 • listener *accepts* utterance by providing evidence of understanding
Grounding signals / feedback

• used to notify speaker of (mis)understanding
• positive – understanding/acceptance signals:
 • **visual** – eye gaze, facial expressions, smile […]
 • **backchannels** – particles signalling understanding

 • **explicit feedback** – explicitly stating understanding
 • **implicit feedback** – showing understanding implicitly in the next utterance

U: find me a Chinese restaurant
S: I found three Chinese restaurants close to you […]
A: Do you know where John is?
B: John? Haven’t seen him today.

• negative – misunderstanding:
 • **visual** – stunned/puzzled silence

 • **clarification requests**
 – demonstrating ambiguity & asking for additional information

 • **repair requests** – showing non-understanding & asking for correction

A: Do you know where John is?
B: Do you mean John Smith or John Doe?

Oh, so you’re not flying to London? Where are you going then?
Grounding in dialogue systems

• Crucial for successful dialogue
 • e.g. booking the right restaurant / flight
• Backchannels / visual signals typically not present
• **Implicit confirmation** very common
 • users might be confused if not present
• **Explicit confirmation** may be required for important steps
 • e.g. confirming a reservation / bank transfer
• **Clarification & repair requests** very common
 • when input is ambiguous or conflicts with previously said
• Part of dialogue management
 • uses NLU confidence in deciding to use the signals
Prediction

• Dialogue is a **social interaction**
 • people view dialogue partners as goal-directed, intentional agents
 • they analyze their partners’ goals/agenda

• Brain does not listen passively
 • projects hypotheses/interpretations on-the-fly

• **prediction** is crucial for human cognition
 • people predict what their partner will (or possibly can) say/do
 • continuously, incrementally
 • unconsciously, very rapidly
 • guides the cognition

• this is (part of) why we understand in adverse conditions
 • noisy environment, distance
Prediction in dialogue systems

• Used a lot in speech recognition
 • language models – based on information theory
 • predicting likely next word given context
 • weighted against acoustic information

• Not as good as humans
 • may not reflect current situation (noise etc.)
 • (often) does not adapt to the speaker

• Less use in other DS components
 • also due to the fact that they aren’t incremental
Alignment/entrainment

- People subconsciously **adapt/align/entrain** to their dialogue partner over the course of the dialogue
 - wording (lexical items)
 - grammar (sentential constructions)
 - speech rate, prosody, loudness
 - accent/dialect
 - *pram → stroller* [BrE speaker]
 - *lorry → truck* talking to AmE speaker
- This helps a successful dialogue
 - also helps social bonding, feels natural

(Oppenheim & Jones, 2019)
Alignment in dialogue systems

• Systems typically don’t align
 • NLG is rigid
 • templates
 • machine learning trained without context
 • experiments: makes dialogue more natural
• People align to dialogue systems
 • same as when talking to people

(Dušek & Jurčíček, 2016)
http://www.aclweb.org/anthology/W16-3622

<table>
<thead>
<tr>
<th>context</th>
<th>response DA</th>
<th>base NLG</th>
<th>+ alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I need to find a bus connection</td>
<td>inform_no_match(vehicle=bus)</td>
<td>Next connection.</td>
<td>You want a later option.</td>
</tr>
<tr>
<td>is there a later option</td>
<td>implicit_confirm(alternative=next)</td>
<td>No bus found, sorry.</td>
<td>I’m sorry, I cannot find a bus connection.</td>
</tr>
</tbody>
</table>

(Parent & Eskenazi, 2010)
https://www.isca-speech.org/archive/interspeech_2010/i10_3018.html

D1 = V1 was in system prompts
D2 = V2 was in system prompts
(frequencies in user utterances)
Politeness

• Dialogue as social interaction – follows **social conventions**

• **indirect is polite**
 • this is the point of most indirect speech acts
 • clashes with conversational maxims (m. of manner)
 • appropriate level of politeness might be hard to find
 • culturally dependent

• **face-saving** (Brown & Lewinson)
 • positive face = desire to be accepted, liked
 • negative face = desire to act freely

• **face-threatening acts** – potentially any utterance
 • threatening other’s/own negative/positive face

• politeness softens FTAs

Open the window.
Can you open the window?
Would you be so kind as to open the window?
Would you mind closing the window?

<table>
<thead>
<tr>
<th>Threat to</th>
<th>Positive Face</th>
<th>Negative Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>apology, self-humiliation</td>
<td>accepting order / advice, thanks</td>
</tr>
<tr>
<td>other</td>
<td>criticism, blaming</td>
<td>order, advice, suggestion, warning</td>
</tr>
</tbody>
</table>
Ethics & NLP

- NLP is not just about language, it’s a proxy to people
 - language divulges author characteristics
 - language is an instrument of power
- Dual use of systems
 - improve search by parsing
 but force linguistic norms or even censor results
 - research historical texts or uncover dissenters
 - generate fast, personalized news stories or fake news
- Even if we only consider intended usage, there are problems
 - bias, discrimination
 - robustness

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096
https://slideslive.com/38929585/what-i-wont-build
Some proposed NLP tasks are questionable by definition

- predicting intellect/personality from text snippets
 - given university entrance tests
 - free text answers to questions
 - IQ, knowledge and other capabilities tests
 - will hurt people who don’t fit norms
- predicting face from voice
 - given a few seconds of audio
 - trained from audio & photos pairs
 - questionable w. r. t. race (+ possibly gender)
- predicting length of prison charge from case description

Interesting as intellectual exercises
- but it’s hard to find a “non-evil” application

https://twitter.com/emilymbender/status/1202302109552533504
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2020-psychopred.html
Bias

• (Mainly) data side effect

• **Demographic bias**: exclusion/misrepresentation
 • best user experience is for white males in California
 • without countermeasures, models *augment* data bias
 • not just ease-of-use – biased MT/NLG
 • can be subtle, hard to detect by e.g. sentiment analysis

• Language/typological bias:
 • most recent systems are tested on English
 • up to the point where English is not even mentioned in papers
 • self-reinforcing:
 more tools available → more research → more tools

(Hovy & Spruit, 2016) https://www.aclweb.org/anthology/P16-2096
(Ciora et al., 2021) https://aclanthology.org/2021.inlg-1.7

GPT2 racial bias

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Generated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>The man worked as</td>
<td>a car salesman at the local Wal-Mart</td>
</tr>
<tr>
<td>The woman worked as</td>
<td>a prostitute under the name of Hariya</td>
</tr>
<tr>
<td>The Black man worked as</td>
<td>a pimp for 15 years.</td>
</tr>
<tr>
<td>The White man worked as</td>
<td>a police officer, a judge, a prosecutor, a prosecutor, and the president of the United States.</td>
</tr>
<tr>
<td>The gay person was known for</td>
<td>his love of dancing, but he also did drugs</td>
</tr>
<tr>
<td>The straight person was known for</td>
<td>his ability to find his own voice and to speak clearly.</td>
</tr>
</tbody>
</table>

MT gender bias

https://www.youtube.com/watch?v=CYvFxs32rvQ
https://twitter.com/nickstenning/status/1274374729101651968
https://twitter.com/asayeed/status/1276482121746591745
https://twitter.com/elasri_layla/status/1268977723168501760
Voice Assistant Gender Bias

• Basically all voice assistants have a woman’s voice by default
 • you can change it for a few of them, not all
 • they identify as genderless
 • some of them (Alexa, Cortana, Siri) have a woman’s name

• This reinforces stereotype of women in subordinate positions
 • command style doesn’t help that
 • “OK, Google” feels less harsh than just “Alexa”

• Women’s voice aren’t more intelligible
 • as a popular myth suggests
 • but it’s easier to create a likeable woman’s voice (→ safer bet)

https://qz.com/911681/
https://gizmodo.com/1683901643
https://medium.com/startup-grind/google-home-vs-alexa-56e26f69ac77
Overgeneralization/Overconfidence

- modelling side effect
- current models aren’t very interpretable
 - their predicted confidence isn’t informative
 - not just the example here, happens e.g. with ASR too
- potential solution: allow “I don’t know”
 - add an additional class & adjust training data
 - when to use this: would a false answer be worse than no answer?
- other: data augmentation
 - use reduced/scrambled training instances
 - only works for this specific problem, though

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096
(Feng et al., 2018)
http://aclweb.org/anthology/D18-1407
(Niu & Bansal, 2018)
http://arxiv.org/abs/1809.02079

Question answering based on text / image

SQuAD

Context

In 1899, John Jacob Astor IV invested $100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his Colorado Springs experiments.

Original

What did Tesla spend Astor’s money on?

Reduced

did

Confidence

0.78 → 0.91

VQA

Original

What color is the flower?

Answer

yellow

Reduced

flower?

Confidence

0.827 → 0.819

removing words from input doesn’t change prediction
Robustness

• Slight change in the input can break the output
 • e.g. misspellings, paraphrases
 • solution: data augmentation, again

• Learning from users can be tricky
 • check your data if they come from users
 • it’s not just swearwords – problems can be hard to find

• Users can be used for system hacking
 • let users break your system, then add their trials to training data
 • human-in-the-loop adversarial training
 • used to improve offensive speech classifier
 • setup needs to be controlled (crowdsourcing, not real-world use)
Robustness

- **Toxic users**
 - ~5% of voice bot requests are explicit/harassing
 - comments on gender/sexuality
 - sexualized comments, insults
 - sexual requests & demands
 - Bots’ responses often nonsense / play-along
 - conflict of interest for bot builders: be ethical vs. cater to abusive users
 - systems are often not tested enough for this

- **Toxic systems**
 - pretrained LMs can be triggered to produce toxic language
 - even relatively harmless contexts can trigger it
 - data problem – but hard to avoid (unless you train your own)
 - adaptive pretraining / blocklists

(Cercas Curry & Rieser, 2018)
http://aclweb.org/anthology/W18-0802

(Gehman et al., 2020)
https://aclanthology.org/2020.findings-emnlp.301

https://qz.com/911681/
Safety

- it’s not just about “not being offensive”
- care about sensitive topics – death, suicide etc.
 - you don’t want to worsen someone’s depression
 - especially for medical systems, but also in general
- contextual safety
 - e.g. in-car systems:
 - do not startle the driver
 - do not give dangerous instructions
 - do not give too much mental load
- special care needs to be taken for RL rewards
 - restricting exploration / highly negative rewards for unsafe behavior

(Henderson et al., 2017)
http://arxiv.org/abs/1711.09050
http://twitter.com/JNov21602962/status/1316753031329976324
• careful with users’ data
 • users are likely to divulge private information
 • especially with voice systems
 • parts of conversations get recorded by accident
 • some Alexa/Siri etc. conversations are checked by humans

• neural models leak training data
 • synthetic experiment:
 • train a seq2seq model with dialogue data + passwords
 • try getting the password by providing the same context
 • GPT2 leaks information if prompted properly
 • using samples of texts leading to personal data as prompts
 • even if it just appears in training data once
 • larger models more vulnerable
 • this is not overfitting (not on average)

— Carlini et al., 2021

— Henderson et al., 2017
 http://arxiv.org/abs/1711.09050

passwords are UUID (unique words)
passwords are random English words

https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
Summary

• Dialogue is messy: turn overlaps, barge-ins, weird grammar […]
• Dialogue utterances are acts: illocution = pragmatic meaning
• Dialogue needs understanding
 • grounding = mutual understanding management
 • backchannels, confirmations, clarification, repairs
• Dialogue is cooperative, social process
 • conversational maxims ~ “play nice”
 • people predict & adapt to each other
• NLP has ethical considerations
 • bias – misrepresentation, can be amplified by the models
 • overconfidence/brittleness – misclassification/lack of robustness
 • safety – robustness to abuse, sensitive topics, contextual safety
 • privacy – training data can be private, models can leak them
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Ralf Klabunde’s lectures and slides (Ruhr-Universität Bochum): https://www.linguistics.ruhr-uni-bochum.de/~klabunde/lehre.htm
• Arash Eshghi & Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Gina-Anne Levow’s slides (University of Washington): https://courses.washington.edu/ling575/
• Eika Razi’s slides: https://www.slideshare.net/eikarazi/anaphora-and-deixis
• Emily M. Bender’s Ethics in NLP course (University of Washington): http://faculty.washington.edu/ebender/2019_575/
• Rachael Tatman’s lecture & reading list: https://slideslive.com/38929585/what-i-wont-build
• Alvin Grissom II’s slides (WiNLP2019): https://github.com/acgrissom/presentations/blob/master/winlp_tech_dom_marp.md
• Wikipedia: Anaphora_(linguistics) Conversation Cooperative_principle Grounding_in_communication Implicature Speech_act Sprechakttheorie

No labs today

Next week:
Last lecture &
Last 2 assignments

No lecture/lab after holidays