10. Chatbots (non-task-oriented)

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

6.12.2021
Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue – **chitchat**
• **non-task-oriented**
 • main goal: keep the user entertained
 • standard evaluation: conversation length, user engagement
• (more or less) different architecture
 • may have the same structure as task oriented (NLU → DM → NLG)
 • often simpler, integrated – somewhat like end-to-end DS
 • it’s hard to have explicit NLU for open domain
 • no task to guide a meaning formalism
 • some of them don’t need a DB connection (but some use it)
• beware: *anything* can be called a “chatbot” nowadays
 • here: only chatterbots / non-task-oriented systems
Chatbot tests

• **Turing test** (1950)
 • evaluator & 2 conversations, with a machine & human, text-only
 • needs to tell which is which
 • does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990+)
 • Turing test style, first topic-restricted 1995+ unrestricted
 • time-limited (currently 25 minutes for both conversations)
 • criticized as publicity stunt – creates hype but no real progress

• **Amazon Alexa Prize** (2017+)
 • no pretending it’s human, just coherent & engaging conversation for 20 mins.
 • topic semi-restricted (“on popular topics”)
 • evaluator & 3 judges with stop-buttons
 • score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)

• 1st chatbot: Eliza (1966)
 • rule-based, simulates a therapist

• Parry (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test

• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems

• 1990’s/2000’s – retrieval-based systems

• 2015+ – huge surge of generative models
Notable/hyped chatbots

- **Pandorabots/AIML** – framework for rule-based chatbots
 - A.L.I.C.E. bot – basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) – multiple times Loebner Prize winner

- **Jabberwacky/Cleverbot** (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times

- **Xiaolce** (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with “her”

https://home.pandorabots.com/home.html
https://www.cleverbot.com/
https://www.zo.ai/
https://www.facebook.com/zo/
https://youtu.be/z3jqIGT-kmg
http://nautil.us/issue/33/attraction/your-next-new-best-friend-might-be-a-robot
Chatbot basic architectures

• **Rule-based**
 • human-scripted, react to keywords/phrases in user input
 • very time-consuming to make, but still popular
 • chitchat by conversational assistants is typically rule-based

• **Data-driven**
 • retrieval – remember a corpus & get replies from there
 • “nearest neighbour” approaches
 • corpus can contain past conversations with users (Jaberwacky/Xiaolce)
 • chatbots differ in the sophistication of reply selection
 • **generative** – (typically) seq2seq-based models
 • trained typically on static corpora
 • (theoretically) able to handle unseen inputs, produce original replies
 • basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context
 (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. alike → what is the connection
- fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user’s phrasing
- it’s all about the framing
 - it’s easier to appear human as a therapist (or paranoid schizophrenic)

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose?
YOU: They’re always bugging us about something or other.
ELIZA: Can you think of a specific example?
YOU: Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here?
YOU: He says I’m depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy?
YOU: I...
AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 😏
- main concepts:
 - **category** – basic unit of knowledge
 - groups patterns & templates
 - **pattern** – user input pattern (with wildcards)
 - **set** – lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** – response specification
 - allows multiple options
 - **srai** – symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - **variable** – can be set/retrieved in templates
 - e.g. remember user name
Retrieval-based chatbots

• remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

• needs 2 steps
 1) rough retrieval
 • needs to be fast to search the whole corpus (e.g. TF-IDF)
 2) more accurate reranking for candidates
 • most research focuses on this step

• problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

• solution (Xiaolce, Cleverbot):
 • use postprocessing, combine with rules

(Wang et al., 2013)
https://aclweb.org/anthology/D13-1096
Ranking responses

- **Machine learning – learning to rank**
 - **pointwise:** binary classifier
 - good=1, bad=0, ranking score = P(good)
 - **pairwise:** just learn to rank good > bad
 - incur loss for inversions
 - **architecture – anything possible**
 - typical neural: dual encoder / Siamese network
 - 2 RNNs, for context & response + fully connected

- **training data problem:**
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
DialogRPT: Ranking with pretrained LMs

• GPT-2-based model (DialoGPT →)
• contrastive learning: feed 1 context + 2 responses, classify which is better
 • binary classification layer on top of last token
 • better than classify good/bad in isolation
• self-supervised data for ranking from Reddit
 • width = # of direct replies
 • depth = max. dialog length in subtree
 • updown = 👍 - 👎 votes
Generative chatbots: RNNs

- Generic LSTM-based **Seq2seq** model
 - encode context / input, decode response
 - examples in paper look great, but... (→)

U: who is skywalker?
S: he is a hero.

U: who is bill clinton?
S: he’s a billionaire.

U: what is the purpose of life?
S: to serve the greater good.

C[S]: nothin much, and how’s the book?!
U: its good but i’m only like halfway through cuz i don’t feel like reading. i’m so bored ...
S: that’s good! i have the book but i’m bored too.

C[S]: thanks. yeah i am good thanks! good, but angry!
U: sorry you’re angry, been there, i hope it dies down.
S: i hope so too, i’m not angry!!

U: what is moral?
S: what empowered humanity, what intellectual the essence is.
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

(Wei et al., 2019)
https://arxiv.org/abs/1712.02250

(Jiang & De Rijke, 2018)
https://www.aclweb.org/anthology/W18-5712

(U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?)

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

(U: How old are you?
S: 16 and you?
U: What’s your age?
S: 18.)

(Wei et al., 2019)
https://arxiv.org/abs/1712.02250

(Jiang & De Rijke, 2018)
https://www.aclweb.org/anthology/W18-5712
Diversity/Coherence

- **Reranking:** MMI
 - avoid dull replies that work anywhere
 - instead of maximizing $P(Resp|Context)$, **maximize mutual information**
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

- **Longer context:** HRED (Hierarchical Recurrent Encoder-Decoder)
 - 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input

(Li et al., 2016)
https://www.aclweb.org/anthology/N16-1014

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698
• joining **next turn generation** & **autoencoding**
 • LSTM VAE-like model, shared latent space
 • multi-task learning (see last lecture)
 • shared decoder
 • additional “fusion loss” enforcing the same encoding for both tasks

• inference: adding a little noise to encodings
 • to produce different outputs

(Gao et al., 2019)
http://arxiv.org/abs/1902.11205
• improving consistency by modelling chatbot’s personality

Persona embeddings
• train speaker embeddings
• use speaker + word embeddings in the decoder
• needs lots of data

Persona copy-net
• add & attend to personal bio in context
 • chunks of text
• copy-net or pretrained LMs

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

(Yavuz et al., 2019)
https://www.aclweb.org/anthology/W19-5917/
Coherence: Additional Objectives

• Transformer-based architectures

• **Denoising** (autoencoder): additional decoders
 • shuffled word order
 • masked words
 • masked utterance (mid-dialogue)
 • utterance order (GRU decoding order)

• **Unlikelihood** – demoting unlikely tokens
 • penalize set of tokens selected at each time step
 • repeating n-grams, too much high-freq. vocab…
 • weighted combination with regular MLE loss

(Zhao et al., 2020) https://www.aclweb.org/anthology/2020.emnlp-main.279

(Li et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.428
Chat-Specific Pretrained Language Models

• **DialogPT** – GPT-2 finetuned on Reddit (147M dialogues)
 • no hierarchy, whole chat as a long text – next-word prediction
 • works better than seq2seq-based ones

• **Meena**
 • “Evolved Transformer” architecture (Transformer + small changes automatically tuned)
 • encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
 • rule-based postprocessing
 • evaluation: “making sense” & “being specific” – better on both

• **BlenderBot** (sorta SotA now)
 • again, huge Transformers (but has a smaller version)
 • retrieval & generative versions
 • pretrained on Reddit, finetuned on a combination of specific dialogue datasets
 • constrained beam search (avoid too short replies), better than sampling

(Adiwardana et al., 2020)

(Zhang et al., 2020)
https://www.aclweb.org/anthology/2020.acl-demos.30

(Roller et al., 2021)
https://aclanthology.org/2021.eacl-main.24/
State-of-the-art today: **combining all methods**
- rule-based for sensitive/frequent/important questions
- retrieval for jokes, trivia etc.
- task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all

- NLU is typically shared, with advanced NLP pipelines
 - NER is very important – can get relevant news & trivia

- Decision among bots
 - based on NLU topic detection
 - ranking multiple answers
 - profanity detection – censoring outputs
• Bots:
 • Rule-based chit-chat
 • Ontologies – knowledge graph walk
 • movies, music, sports, books
 • Retrieval
 • Reddit trivia
 • news
 • Wikipedia
 • fun facts
 • Specific services
• Bots compete for reply
 • priority list
 • bots can “lock”

http://arxiv.org/abs/1712.07558
Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?

User: Vanilla Sky – I'm looking forward to watching Vanilla Sky

Alana: Oh I heard something interesting about Vanilla Sky. [...] Movie trivia Speaking of movies. What actors do you like? I like Leonardo DiCaprio [...]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [...] Music trivia What's a band that you would like to see? [...]

User: any news about him – any news about Kendrick Lamar

[Coreference resolution]
Alana Example dialogue

Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?

User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading [...]

User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?

User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia]

User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn’t like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself – conversation grounding
 - tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction – KB fuzzy matching (allow for “typos”)
 - sentence segmentation (RNN-based)

- NLU – keyphrase extraction
 - focus on noun phrases

- Dialog manager – stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel…
Alquist (Czech Technical University, 2017&2018 2nd)

• full NLU pipeline (similar to Alana)
• 2017 – handcrafted state machines
 • traversing sub-dialogue graphs
 • dividing for easier maintenance
 • well scripted
 • easy to break, but users play along
 • hand-added variation
• 2018 – adding machine learning
 • Hybrid Code Networks
 • RNN-based dialogue management
 • for each sub-dialogue/topic
 • topic switch detector
 • RNN-based architecture similar to HCN
A knowledge graph: Wikidata + User + Bot model
- RDF triples, partially delexicalized
- Allows building user profile + referencing it

NLU – BERT-based segmenting (multiple intents)
- Produce responses to all, then select

DM/NLG – response based on “adjacency pairs”
- Predefined input-response pairs/sub-graphs
- Transition depends on KG search
- Adding prompts (questions, fun facts etc.)

Out-of-domain: detection & DialoGPT response
- DialogRPT reranker

Exploration vs. exploitation
- First get to know user, then use this information

(Konrád et al., 2021) https://arxiv.org/abs/2109.07968
Emora (Emory Uni, 19/20 winner) & Chirpy Cardinal (Stanford, 19/20 2nd)

 - NLU – prominent topic & sentiment classifier
 - stress on emotion, personal experience
 - hierarchical ontology of topics & sub-topics
 - use higher level if more specific is not available
 - state machine manager
 - transitions similar to Alquist

Chirpy Cardinal

- architecture similar to Alana
- handcrafted treelets + GPT-2 generation
- focus on user engagement:
 - backchanneling (just the right amount)
 - open-ended prompts (force user to say more than Y/N)
 - self-disclosure (reciprocal effect)

(Mm-hmm
I see

(Paranjape et al., 2020)
(Hardy et al., 2021)
https://aclanthology.org/2021.sigdial-1.11
Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem
• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)
• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work
• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)
• brutal variance in the evaluation – very subjective
Summary

• chatbots = **non-task oriented** systems
 • targets: **conversation length** & **user engagement**
 • impersonating a human – Turing test

• approaches:
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq/transformer trained on corpora of dialogues
 • too many possible responses don’t go well with MLE → safe, short, dull
 • many extensions: personality, coherence, diversity… still not ideal
 • **hybrid** – combining all of the above
 • typically mainly rule-based + retrieval, machine learning in NLU only

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:

- Mainly individual papers referenced directly on slides
- Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test Xiaoice Zo_(bot)