NPFL099 Statistical Dialogue Systems
6. Dialogue Management (1)
mostly Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda
8. 11. 2021
Dialogue Management & State

• Dialogue management consists of:
 • **State update** ← we need to track dialogue state over time
 • Action selection (discussed later)

• **Dialogue state** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.
S: What part of town do you have in mind?
× *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
× *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

✓ *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.
Dialogue State Contents

• “All that is used when the system decides what to say next” (Henderson, 2015)

• **User goal/preferences ~ NLU output**
 • slots & values provided (search constraints)
 • information requested

• **Past system actions**
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested

• **Other semantic context**
 • user/system utterance: bye, thank you, repeat, restart etc.

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]
S: What time would you like to leave?
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

ASR: 0.5 I’m looking for an expensive hotel
 0.5 I’m looking for inexpensive hotels

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!
Belief State

• Assume we don’t know the true current dialogue state s_t
 • states (what the user wants) influence observations o_t (what the system hears)
 • based on observations o_t & system actions a_t, we can estimate a probability distribution $b(s)$ over all possible states – belief state

• More robust than using dialogue state directly
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
 • but not only them – rule-based, too
no probability accumulation (1-best, no state)

accumulating over NLU n-best list (still no state)

accumulating over NLU n-best + turns

this is what we need (=belief state)
Basic Discriminative Belief Tracker

- **Partition the state** by assuming conditional independence
 - simplify – assume each slot is independent:
 - state $s = [s^1, ... s^N]$, belief $b(s_t) = \prod_i b(s^i_t)$

- **Always trust the NLU**
 - this makes the model parameter-free
 - ...and basically rule-based
 - but very fast, with reasonable performance

The belief state update rule is deterministic

\[
\begin{align*}
 b(s^i_t) &= \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1}) \\
 p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) &= \begin{cases}
 p(o^i_t) & \text{if } s^i_t = o^i_t \land o^i_t \neq ⏯ \\
 p(o^i_t) & \text{if } s^i_t = s^i_{t-1} \land o^i_t = ⏯ \\
 0 & \text{otherwise}
 \end{cases} \\
 b(s^i_t) &= \begin{cases}
 p(s^i_t = ⏯)p(o^i_t = ⏯) & \text{if } s^i_t = ⏯ \\
 p(o^i_t = s^i_t) + p(o^i_t = ⏯)p(s^i_t = s^i_{t-1}) & \text{otherwise}
 \end{cases}
\end{align*}
\]
Basic Feed-forward Neural Tracker

• a simple feed-forward (fully connected) network
 • input – features (w.r.t. slot-value v & time t)
 • NLU score of v
 • n-best rank of v
 • user & system intent (inform/request)
 • … – other domain-independent, low-level NLU features
 • 3 tanh layers
 • output – softmax
 (= probability distribution over values)
 • static – does not model dialogue as a sequence
 • uses a sliding window:
 current time t + few steps back + \sum previous

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
 - turn-level LSTM would work similarly
- does not need NLU
 - turn features = lexicalized + delexicalized n-grams from ASR n-best list, weighted by confidence
- delexicalization is very harsh: `<slot> <value>`
 - you don’t even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- **dynamic** – explicitly models dialogue as sequence
 - using the network recurrence

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190
Incremental Recurrent Tracker

• Simple: LSTM over words + classification on hidden states
 • runs over the whole dialogue history (user utterances + system actions)
 • classification can occur after each word, right as it comes in from ASR

• Dynamic/sequential

• Doesn’t use any NLU
 • infrequent values are delexicalized (otherwise it can’t learn them)

• Slightly worse performance – possible causes:
 • only uses ASR 1-best
 • very long recurrences (no hierarchy)

(Žilka & Jurčiček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471
• No delexicalization needed
• Current turn + rule-based updates (=static tracker)
• Pretrained word vectors (kept fixed)
 • GloVe enhanced with paraphrases
• Text = n-gram sums/CNNs, summed
 • same parameters + handling for all inputs
 • contextual: requested/confirmed slot (+value)
 • current user utterance
 • candidate slot-value pair (run once for each)
• Simple combinations
 • dot product, feed-forward
 • binary decision: is the candidate correct?

(Mrkšić et al., 2017) https://www.aclweb.org/anthology/P17-1163
Candidate Ranking

- Previous systems consider all values for each slot
 - this is a problem for open-ended slots (e.g. restaurant name)
 - enumerating over all takes ages, some are previously unseen
- Alternative: always consider just K candidates
 - use last K candidates from system actions and NLU output
 - NB: only way history is incorporated here (~static)
 - select from them using a per-slot softmax

![Diagram](https://arxiv.org/abs/1712.10224)

- pictures assume $K = 2$
- 2 sigmoid layers
 - representation of i-th candidate: utterance/slot/candidate features (next slide)
 - additional values to consider (even if not mentioned in NLU)
 - padding (not enough values mentioned)

(Rastogi et al., 2017)
Candidate Ranking – representation

• Using BiGRU over lexicalized & delexicalized utterance

• Features:
 • **utterance** – last GRU state + NLU indicators for non-slot DAs (user & prev. system)
 • **slot** – NLU indicators for DAs with this slot (user & prev. system) \(\text{inform(slot=*)}, \text{request(slot)} \)
 + last turn scores for \(\text{null} \) & \(\text{dontcare} \)
 • **candidate** – GRU states over matched value words
 + NLU indicators for DAs with this slot & value (user & prev. system) \(\text{inform(slot=value)} \)

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224
Candidate Ranking Extensions

• What if multiple values are true?
 • previous approach picks one (softmax)
 • use set of binary classifiers (log loss) instead

• Making it dynamic
 • embedding previous states, system actions, text of the whole dialogue

• Hybrid classify/rank
 • ranking is faster & more flexible vs. classification can be more accurate for some slots
 • generally ranking better with many values, classification with fewer values
 • check for performance on development data & decide which model to use

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883
BERT & Span Selection a.k.a. Span Tagging
(≈question answering/reading comprehension)

• BERT over previous system & current user utterance
• from 1st token’s representation, get a **decision:** **none/dontcare/span**
 • per-slot (BERT is shared, but the final decision is slot-specific)
• span = need to find a concrete value as a span somewhere in the text
 • **predict start & end token** of the span using 2 softmaxes over tokens
• rule-based update (static):
 • if **none** is predicted, keep previous value

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040
Span Selection with Modelled Update

- Also uses BERT, but not necessarily
 - works slightly worse with random-initialized word embeddings
- sequence of 3 decisions
 - do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 - if span: predict span’s start and end

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/
Span Selection & Better Copying

• “triple-copy” – gets the value from 3 sources:
 • user utterance (same as previous span tagging models)
 • system informs (last value the system mentioned)
 • another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

• rule-based update (static)

Boolean slots are handled separately (classification)

Coreference – distribution over slots to copy from

Same decision as previously, just different options:
none/dontcare/span/inform/refer
Multi-domain Span Selection

- encode domain & slot names w. static pretrained word-embeddings (GloVe)
 - adding **new unseen domains & slots** is easy (no retraining)
- otherwise similar as previous, BERT-based:
 - decide if domain changed (BERT: yes/no/chitchat)
 - if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)
 - for each domain, find values (BERT + GloVe span selection)

(Dey & Desarkar, 2021)
https://aclanthology.org/2021.sigdial-1.23
Generator-based Tracker

- Similar to span selection: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: “use generated”/\textit{dontcare}/\textit{none}
 - same as the decisions done in span tagging, just applied after getting the value

\begin{itemize}
 \item takes concatenated dialogue history
 \item G_i: Slot Gate
 \item $c_{j=0}$: Context Vector
 \item $p_{history_j}$: Utterances
 \item $p_{generate}$: Domain
 \item p_{attend}: Utterances
 \item p_{slot}: Slots
 \item h_{seq}: State Generator
\end{itemize}

pointer-generator net (see NLU lecture): can\textbf{ generate} tokens from vocabulary or\textbf{ copy} tokens from attention

\begin{itemize}
 \item specific start token for each slot (& domain)
\end{itemize}

(Wu et al., 2019)
https://www.aclweb.org/anthology/P19-1078
Action Selection / Policy

• Dialogue management:
 • **State tracking** (↑)
 • **Action selection/Policy** (↓)

• action selection – **deciding what to do next**
 • based on the current belief state – under uncertainty
 • following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 • controlling the coherence & flow of the dialogue
 • actions: linguistic & non-linguistic

• DM/policy should:
 • manage uncertainty from belief state
 • recognize & follow dialogue structure
 • plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)
Action Selection Approaches

• Finite-state machines
 • simplest possible
 • dialogue state is machine state

• Frame-based (VoiceXML)
 • slot-filling + providing information – basic agenda
 • rule-based in essence

• Rule-based
 • any kind of rules (e.g. Python code)

• Statistical
 • typically using reinforcement learning
Why Reinforcement Learning

- **Action selection ~ classification** → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features

- Yes, but…
 - You’d need sufficiently large **human-human data** – hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there’s **no single correct next action** – multiple options may be equally good
 - but datasets will only have one next action
 - **some paths will be unexplored** in data, but you may encounter them
 - DSs won’t behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - **DSs should behave differently** – make the best of what they have
 - supervised classification **doesn’t plan ahead**!
 - RL optimizes for the whole dialogue, not just the immediate action
RL World Model: Markov Decision Process

- **MDP = probabilistic control process**
 - modelling situations that are partly random, partly controlled
- **agent in an environment:**
 - has internal **state** $s_t \in S$ (~ dialogue state)
 - takes **actions** $a_t \in A$ (~ system dialogue acts)
 - actions chosen according to **policy** $\pi: S \rightarrow A$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
- **rewards are typically handcrafted**
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
- **Markov property** – state defines everything
 - no other temporal dependency
- **policy may be deterministic or stochastic**
 - stochastic: prob. dist. of actions, sampling

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)
Partially-observable MDPs

- **POMDPs** – **belief** states instead of dialogue states
 - true states ("what the user wants") are not observable
 - observations ("what the system hears") depend on states
 - belief – probability distribution over states
 - can be viewed as **MDPs with continuous-space states**
 - just represent 1 slot as set of binary floats 😊

- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex

- Deep RL typically works out of the box
 - function approximation approach, allows continuous states

(from Milica Gašić’s slides)

https://en.wikipedia.org/wiki/Voronoi_diagram
Simulated Users

- Static datasets aren’t enough for RL
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k’s dialogues used for training, depending on method

- solution: **user simulation**
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU

- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE/supervised policy from data
 - combination (best!)
for a typical DS, the belief state is too large to make RL tractable

solution: map state into a reduced space, optimize there, map back

reduced space = **summary space**
- handcrafted state features
 - e.g. top slots, # found, slots confirmed…

reduced action set = **summary actions**
- e.g. just DA types \(\text{inform, confirm, reject}\)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions

state is still tracked in original space
- we still need the complete information for accurate updates
Reinforcement learning: Definition

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

\[R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1} \]

alternative – **episodes**: only count to \(T \) when we encounter a terminal state (e.g. 1 episode = 1 dialogue)

\(\gamma \in [0,1] = \text{discount factor} \)
(Immediate vs. future reward trade-off)

\(\gamma < 1: R_t \) is finite (if \(r_t \) is finite)
\(\gamma = 0: \) greedy approach (ignore future rewards)

- state transition is stochastic \(\rightarrow \) maximize **expected return**

\[\mathbb{E}[R_t | \pi, s_0] \]

expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
Summary

- **State tracking**: track user goal over multiple turns (probabilistic – belief state)
 - good NLU + rules – works well (and used frequently)
 - static (sliding-window/rule-based update) vs. dynamic (explicit modelling)
 - with vs. without NLU
- **classification** vs. candidate ranking vs. span selection vs. generation
 - classifiers are more accurate than rankers but slower, limited to seen values
 - span selection is the SotA approach, works nicely but probably slow
 - many architectures (FC/CNN/RNN), newest mostly BERT-based
- **Action selection**: deciding what to do next (following a policy)
 - FSM, frames, rule-based, supervised, reinforcement learning
 - RL – agent in an environment, taking actions, getting rewards
 - MDP formalism (+POMDP can be converted to it)
 - summary states might be needed
 - trained often with user simulators
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Labs in 10 minutes
DailyDialog training

Next Mon 15:40
rest of Dialogue Policy