NPFL099 Statistical Dialogue Systems

4. Training Neural Nets

http://ufal.cz npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

25. 10. 2021
Recap: Neural Nets

- **complex functions, composed of simple functions** (=layers)
 - linear, ReLU, tanh, sigmoid, softmax
- **fully differentiable**
- different arrangements:
 - feed forward / multi-layer perceptron
 - CNNs
 - RNNs (LSTM/GRU)
 - attention
 - Transformer
- **input**: binary, float, embedding
- **tasks/problems**: classification, regression, structured (sequences/ranking)
Supervised Training: Gradient Descent

- supervised training—**gradient descent** methods
 - minimizing a **cost/loss function**
 (notion of error – given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum – derivative gives the direction
 - **learning rate** = how fast we go (needs to be tuned)
- gradient typically computed (=averaged) over **mini-batches**
 - random bunches of a few training instances
 - not as erratic as using just 1 instance,
 not as slow as computing over whole data
- **stochastic gradient descent**
 - batches may be accumulated to fit into memory
 - e.g. your GPU only fits one instance
 → compute forward pass multiple times, then do 1 update

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
Cost/Loss Functions

• differ based on what we’re trying to predict

• **logistic / log loss** (“cross entropy”)
 • for classification / softmax – including **word prediction**
 • classes from the whole dictionary
 • pretty stupid for sequences, but works
 • sequence shifted by 1 ⇒ everything wrong

• **squared error loss** – for regression
 • forcing the predicted float value to be close to actual one

• **hinge loss** – for binary classification (SVMs), ranking
 • forcing the correct sign

• many others, variants

https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
Backpropagation

- network ~ computational graph
 - reflects function/layer composition
- composed function derivatives – simple rules
 - basically summing over different paths
 - factoring ~ merging paths at every node
- **backpropagation** = reverse-mode differentiation
 - going back from output to input
 - ~ how every node affects the output
 - output = cost function
 - → derivatives of all parameters w. r. t. cost
 - one pass through the network only → easy & fast
 - NN frameworks do this automatically

Rules & Derivatives

<table>
<thead>
<tr>
<th>Rules</th>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication by constant</td>
<td>cf</td>
<td>cf</td>
</tr>
<tr>
<td>Power Rule</td>
<td>x^n</td>
<td>nx^{n-1}</td>
</tr>
<tr>
<td>Sum Rule</td>
<td>f + g</td>
<td>f' + g'</td>
</tr>
<tr>
<td>Difference Rule</td>
<td>f - g</td>
<td>f' - g'</td>
</tr>
<tr>
<td>Product Rule</td>
<td>fg</td>
<td>f g' + f' g</td>
</tr>
<tr>
<td>Quotient Rule</td>
<td>t/g</td>
<td>(t' g - g' t) / g^2</td>
</tr>
<tr>
<td>Reciprocal Rule</td>
<td>1/f</td>
<td>-f'/f^2</td>
</tr>
<tr>
<td>Chain Rule (as "Composition of Functions")</td>
<td>f ∘ g</td>
<td>(f ∘ g)' × g'</td>
</tr>
</tbody>
</table>

https://www.mathsisfun.com/calculus/derivatives-rules.html

Learning Rate (α) & Momentum

- **α: most important parameter** in (stochastic) gradient descent
- tricky to tune:
 - too high α = may not find optimum
 - too low α = may take forever

- **Learning rate decay**: start high, lower α gradually
 - make bigger steps (to speed learning)
 - slow down when you’re almost there (to avoid overshooting)
 - linear, stepwise, exponential
 - reduce-on-plateau – check every now and then if we’re still improving, reduce LR if not

- **Momentum**: moving average of gradients
 - make learning less erratic
 - $m = \beta \cdot m + (1 - \beta) \cdot \Delta$, update by m instead of Δ

[Image: http://cs231n.github.io/neural-networks-3/]
Optimizers

• Better LR management
 • change LR based on gradients
 • much less sensitive to user setting

• AdaGrad – all history
 • remember sum of total gradients squared: $\sum_t \Delta_t^2$
 • divide LR by $\sqrt{\sum \Delta_t^2}$
 • variants: Adadelta, RMSProp – slower LR drop

• Adam – per-parameter momentum
 • moving averages for Δ & Δ^2:
 $$m = \beta_1 \cdot m + (1 - \beta_1)\Delta, \quad v = \beta_2 \cdot v + (1 - \beta_2)\Delta^2$$
 • use m instead of Δ, divide LR by \sqrt{v}
 • used as default in most applications
 • variant: AdamW – decoupled LR drop

https://ruder.io/optimizing-gradient-descent/

http://kaeken.hatenablog.com/entry/2016/11/10/203151
Schedulers

• more fiddling with LR – **warm-ups**
 • start learning slowly, then increase LR, then reduce again
 • may be repeated (warm restarts), with lowered maximum LR
 • allow to diverge slightly – work around local minima

• multiple options:
 • cyclical – linear, cosine annealing
 • **one cycle** – same, just don’
 • **Noam scheduler** – linear warm-up, decay by $\sqrt{\text{steps}}$

• combine with base SGD or Adam/Adadelta etc.
 • momentum updated inversely to LR
 • may have less effect with optimizers
 • trade-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html
When to stop training

• generally, when cost stops improving
 • despite all the LR fiddling

• problem: **overfitting**
 • cost is low on training set, high on validation set
 • network essentially memorized the training set
 • → check on validation set after each epoch (pass through data)
 • stop when cost goes up on validation set
 • regularization (see →) helps delay overfitting

• **bias-variance** trade-off
 • smaller models may underfit (high bias, low variance = not flexible enough)
 • larger models likely to overfit (too flexible, memorize data)
 • XXL models: overfit soo much they actually interpolate data → good (🤔?)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355
Regularization: Dropout

- regularization: preventing overfitting
 - making it harder for the network to learn, adding noise
- **Dropout** – simple regularization technique
 - more effective than e.g. weight decay (L2)
 - **zero out some neurons/connections**
 in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only – full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there’s fewer nodes
 - done by libraries automatically
 - may need larger networks to compensate

(Srivastava et al., 2014)
http://jmlr.org/papers/v15/srivastava14a.html
Regularization: Multi-task Learning

- achieve better generalization by **learning more things at once**
 - a form of regularization
 - implicit data augmentation
 - biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training – alternating between tasks
 - so the network doesn’t “forget”
Self-supervised training

• train supervised, but **don’t provide labels**
 • use naturally occurring labels
 • create labels automatically somehow
 • corrupt data & learn to fix them
 • learn from rule-based annotation (not ideal!)
 • use specific tasks that don’t require manually created labels

• good to train on huge amounts of data
 • language modelling
 • next-word prediction
 • MLM – masked word prediction (~like word2vec)
 • **autoencoding**: predict your own input (see ➔)

• good to **pretrain** the network for a final task

• unsupervised, but with supervised approaches

Autoencoders

- **Using NNs as generative models**
 - more than just classification – modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data

- **Autoencoder**: input \rightarrow encoding \rightarrow input
 - encoding ~ “embedding” in latent space (i.e. some vector)
 - trained by reconstruction loss
 - problem: can’t easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused – will generate weird stuff
 - no easy interpretation of embeddings – no idea what the model will generate

- extension – **denoising autoencoder**:
 - add noise to inputs, train to generate clean outputs
 - use in multi-task learning, representations for use in downstream tasks

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
Variational Autoencoders

- Making the encoding latent space more useful
 - using **Gaussians** – continuous space by design
 - encoding input into vectors of means μ & std. deviations σ
 - sampling encodings from $N(\mu, \sigma)$ for generation
 - samples vary a bit even for the same input
 - decoder learns to be more robust
 - model can degenerate into normal AE ($\sigma \to 0$)
 - we need to encourage some σ, smoothness, overlap ($\mu \sim 0$)
 - add **2nd loss: KL divergence** from $N(0,1)$
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs

- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate

[Links]
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/
VAE details

• VAE objective:
 “AE” • reconstruction loss (maximizing $p(x|z)$ in the decoder), MLE as per usual
 “V” • latent loss (KL-divergence from ideal $p(z)\sim N(0,1)$ in the encoder)

\[\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)] \]

• This is equivalent to maximizing true $\log p(x)$ with some error
 • i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

\[\mathbb{E}_q[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)] \]

• Sidestepping sampling – reparameterization trick
 • $z \sim \mu + \sigma \cdot N(0,1)$, then differentiate w.r.t. μ and σ
 • differentiating w.r.t. μ & σ still works, no hard sampling on that path

[Link to Wise Odd's blog post on variational autoencoders](https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/)
Discrete VAE: Gumbel-Softmax

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144

• “reparameterization trick for discrete distributions”
 • same idea, just with a **discrete/categorial distribution**
 • this makes the latent space better interpretable

Gumbel-max trick:
• categorial distribution π with probabilities π_i
• sampling from π: $z = \text{onehot}(\arg\max_i (\log \pi_i + g_i))$
• Swap argmax for softmax with temperature τ
 • differs from π if $\tau > 0$, but may be close
 • approx. sample of the true distribution
 • fully differentiable
 • g_i bypassed in differentiation, same as $\mathcal{N}(0,1)$ in Gaussian sampling

Gumbel noise:
$$g_i = -\log(-\log(\text{Uniform}(0,1)))$$
Conditional Variational Autoencoders

• Direct control over types of things to generate
• Additional conditioning on a given label/type/class c
 • c can be anything (discrete, continuous…)
 • image class: MNIST digit
 • sentiment
 • “is this a good reply?”
 • coherence level
 • just concatenate to input
 • given to both encoder & decoder at training time

• Generation – need to provide c
 • CVAE will generate a sample of type c
 • Latent space is partitioned by c
 • same latent input with different c will give different results

https://ijdykeman.github.io/ml/2016/12/21/cvae.html
Pretraining & Finetuning

• 2-step training:
 1. **Pretrain** a model on a huge dataset (**self-supervised**, language-based tasks)
 2. **Fine-tune** for your own task on your smaller data (**supervised**)

• ~pretrained embeddings, many variants
 • mostly Transformer architecture
 • pretraining tasks vary and make a difference

• **BERT** + variants: multilingual, **RoBERTa** (optimized)
• **GPT**(-2/-3): Transformer decoder only, next-word prediction
• **BART**: BERT as denoising autoencoder (more below)
• **T5**: generalization, many variants

• a lot of pretrained models released plug-and-play
 • you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Radford et al., 2019)
https://openai.com/blog/better-language-models/
(Brown et al., 2020)

https://github.com/huggingface/transformers
Generative Adversarial Nets

• Training generative models to generate **believable** outputs
 • to do so, they necessarily get a better grasp on the distribution

• Getting loss from a 2nd model:
 • **discriminator** D – “adversary” classifying real vs. generated samples
 • **generator** G – trained to fool the discriminator
 • the best chance to fool the discriminator is to generate likely outputs

• Training iteratively (EM style)
 • generate some outputs
 • classify + update discriminator
 • update generator based on classification
 • this will reach a stable point

(Goodfellow et al, 2014)
Clustering

• Unsupervised, finding similarities in data
• basic algorithms
 • **k-means**: assign into \(k \) clusters randomly, iterate:
 • compute means (centroids)
 • reassign to nearest centroid
 • **Gaussian mixture**: similar, but soft & variance
 • clusters = multivariate Gaussian distributions
 • estimating probabilities of belonging to each cluster
 • cluster mean/variance based on data weighted by probabilities
 • **hierarchical** (bottom up):
 start with one cluster per instance, iterate:
 • merge 2 closest clusters
 • end when you have \(k \) clusters / distance is too big
 • **hierarchical top-down** (reversed \(\rightarrow \))
• distance metrics & features decide what ends up together

https://www.displayr.com/what-is-hierarchical-clustering/
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://www.youtube.com/watch?v=9YA2t78Ha68
Reinforcement Learning

- Learning from **weaker supervision**
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don’t know if step X is good
 - sequence = e.g. sentence, dialogue

- Framing the problem as **states & actions & rewards**
 - “robot moving in space”, but works for dialogue too
 - state = generation so far (sentence, dialogue state)
 - action = one generation output (word, system dialogue act)
 - defining rewards might be an issue

- Training: **maximizing long-term reward**
 - via state/action values (Q function)
 - directly – optimizing policy
• Supervised training
 • cost function
 • stochastic gradient descent – minibatches
 • backpropagation
 • learning rate tricks – optimizers (Adam), schedulers
 • regularization: dropout, multi-task training

• Self-supervised learning (~kinda unsupervised)
 • autoencoders, denoising, variational autoencoders
 • (masked) language models

• Unsupervised
 • generative adversarial nets
 • clustering

• Reinforcement learning (more to come later)
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Troja N230/231/233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/