Machine Learning

• ML is basically function approximation

• function: data (features)→ labels
 • discrete labels = classification
 • continuous labels = regression

• function shape
 • this is where different algorithms differ
 • neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh…)

• training/learning = adjusting function parameters to minimize error
 • supervised learning = based on data + labels given in advance
 • reinforcement learning = based on exploration & rewards given online
Typical machine learning problems in NLP

- **regression**
 - many inputs, 1 float output

- **classification**
 - many inputs, 1 categorial output (k classes)

- **sequence labelling**
 - sequence of inputs, label each (~ repeated classification)
 - 1-to-1 input to output

- **ranking**
 - multiple inputs, choose best one (~ diff regression)

- **sequence prediction (autoregressive generation)**
 - some inputs (sequence/something else)
 - generate outputs, use previous output in predicting next one

- **structured prediction**
Neural networks

- Can be used for both classification & sequence models
- **Non-linear functions**, composed of basic building blocks
 - stacked into **layers**
- Layers are made of **activation functions**:
 - linear functions (~basic, default)
 - nonlinearities – sigmoid, tanh, ReLU
 - softmax – probability estimates:
 \[
 \text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^{\lvert x \rvert} \exp(x_j)}
 \]
- Fully differentiable – training by **gradient descent**
 - network output incurs loss/cost
 - gradients **backpropagated** from loss to all parameters (composite function differentiation)

![Sigmoid](image1.png)
\[\sigma(x) = \frac{1}{1+e^{-x}}\]

![tanh](image2.png)
\[\text{tanh}(x)\]

![ReLU](image3.png)
\[\text{max}(0, x)\]

https://medium.com/@shrutija don10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Layers visualization

• https://playground.tensorflow.org/
 • 2 numeric features (=2 input variables) → binary classification (=1 output, 2 classes)
 • easiest case, but you can see the internals
 • more complex input features (→)
 • **feed-forward = fully connected = multi-layer perceptron** here
 • easiest case: connect everything & let the network figure it out
 • nice but gets too large very quickly, not good for variable-sized inputs
 • added layers & power to distinguish different classes
 • fits the training data Y/N ?
 • different activation functions
 • without them, it’s just linear – no matter how many layers!

• best NN conceptualization – pipeline / flow (computational graph)
 • data flows through individual layers, gets changed
 • corresponds to a math formula, but can be easier to read
Feature representation

• technically can be anything, as long as it’s meaningful
 • the network will learn to assign meaning/values itself

• 1-hot/binary
 • words – numbered vocabulary
 • bigrams, n-grams, positional…
 • other features – especially handcrafted
 • word classes
 • various word combinations
 • outputs of other classifiers (sentiment, part-of-speech…)
 • is capitalized/is loud?

• numeric (floats)
 • best for continuous inputs: vision, audio
 • raw pixels, MFCCs…

• vectors (embeddings) →
Embeddings

- distributed (word) representation
 - each word = a vector of floats
 - basically an easy conversion of 1-hot \rightarrow numeric
 - a dictionary of trainable features
- part of network parameters – trained
 a) random initialization
 b) pretraining
- the network learns which words are used similarly – for the given task!
 - they end up having close embedding values
 - different embeddings for different tasks
- embedding size: \sim100s-1000
- vocab size: \sim50-100k

http://ruder.io/word-embeddings-2017/

Pretrained Word Embeddings

• **Word2Vec**
 - Continuous Bag-of-Words (CBOW) (~ “masked LM”)
 - predict a word, given ±k words window
 - disregarding word order within the window
 - Skip-gram: reverse
 - given a word, predict its ±k word window
 - closer words = higher weight in training

• **GloVe**
 - optimized directly from corpus co-occurrences (= w_1 close to w_2)
 - target: $e_1 \cdot e_2 = \log$ (co-occurrences)
 - number weighted by distance, weighted down for low totals
 - trained by minimizing reconstruction loss on a co-occurrence matrix

References

- Mikolov et al., 2013
 - https://arxiv.org/abs/1301.3781

- Pennington et al., 2014
 - http://aclweb.org/anthology/D14-1162

Links

- https://projector.tensorflow.org/
- https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
Word Embeddings

• Vocabulary is unlimited, embedding matrix isn’t
 • + the bigger the embedding matrix, the slower your models

• Special out-of-vocabulary token <unk>
 • “default” / older option
 • all words not found in vocabulary are assigned this entry
 • can be trained using some rare words in the data
 • problem for generation – you don’t want these on the output

• Using limited sets
 • characters – very small set
 • works, but makes for very long sequences
 (20 words ~ 80-100 characters)
 • slower, might be less accurate
 • subwords – compromise →
Subwords

• group of characters that:
 • make shorter sequences than using individual characters
 • cover everything

• byte-pair encoding
 • start from individual characters
 • iteratively merge most frequent bigram, until you get desired # of subwords
 • sub@@ word – the @@ marks “no space after”

• SentencePiece – don’t pre-tokenize
 • criterium: likelihood of joined vs. separate
 • sub word_ – the _ marks a space

• 20-50k subwords for 1 language
 • ~250k subwords to cover them all

(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/

https://github.com/google/sentencepiece
https://blog.floydhub.com/tokenization-nlp/
https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html
Convolutional Networks

- Designed for computer vision – inspired by human vision
 - works for language in 1D, too!
- less parameters than fully connected – **filter/kernel**
- Apply filter repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - => produce 1 element of output
 - can have more dimensions (~“set of filters”)
- **Stride** – how many steps to skip
 - less overlap, reducing output dimension
- **Pooling** – no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
Recurrent Neural Networks

- Identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = hidden state – fed to the next step
 - additional input – next token features

- **basic RNN**: linear + tanh
 - tanh: squashes everything to $[-1,1]$
 - good for repeated application
 - very simple structure
 - numeric problem: vanishing gradients
 - training updates get too small
 - can’t hold long sequences well
LSTMs & GRUs

- **GRU, LSTM**: more complex, to make training more stable
 - "gates" to keep old values
 - $\sigma \sim [0,1]$ decisions:
 - forget stuff from previous?
 - take input into account?
 - put stuff onto output?
 - over individual dimensions (e.g. input has 100 dims, forget gate forgets dims 1-3 & 4-25)
 - all based on current input & state
- LSTM is older & more complex
- GRU almost as good but faster
- both slower than base RNN
- both handle long recurrences

Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells over vectors of ~ embedding size
- used in MT, dialogue, parsing...
 - more complex structures linearized to sequences

$$
\begin{align*}
 s_0 &= h_T \\
 s_t &= \text{cell}(y_{t-1}, s_{t-1}) \\
 p(y_t|y_1, \ldots y_{t-1}, x) &= \text{softmax}(s_t) \\
 h_0 &= 0 \\
 h_t &= \text{cell}(x_t, h_{t-1}) \\
 h_0 &= 0
\end{align*}
$$

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- **Attention** = “memory” of **all encoder** hidden states
 - weighted combination, re-weighted for every decoder step
 - can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- **Self-attention** – over **previous decoder steps**
 - increases consistency when generating long sequences

https://skymind.ai/wiki/attention-mechanism-memory-network
Seq2seq RNNs with Attention

token representation: **embeddings**
= vectors of ~100-1000 numbers

source “word” embeddings

vocabulary is numbered

- 0 <pad>
- 1 inform
- 2 request
- 3 food
- 4 area
- 5 price
- 6 [name]
... ...

- 2 request
- 4 area

encoder outputs
- “hidden states”
(=again, vectors of numbers)

attention = weighted combination
(weights different for each step)

- 10 = which
- 5 = area

probability distribution
over the whole vocabulary

target word embeddings

- 0 <pad>
- 1 <start>
- 2 <stop>
- 3 the
- 4 restaurant
- 5 area
- 6 is
... ...
- 10 which

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473
Bahdanau & Luong Attention

- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation
- both work well – exact formula not important

attention weights = alignment model

Bahdanau:

\[\alpha_{ti} = \text{softmax}(v_\alpha \cdot \tanh(W_\alpha \cdot s_{t-1} + U_\alpha \cdot h_i)) \]

Luong:

\[\alpha_{ti} = \text{softmax}(h_i^T \cdot s_t) \]

attention value = context vector

same for both – sum encoder hidden states weighted by \(\alpha_{ti} \)

\[c_t = \sum_{i=1}^{n} \alpha_{ti} h_i \]

(Bahdanau et al., 2015)
http://arxiv.org/abs/1409.0473
(Luong et al., 2015)
http://arxiv.org/abs/1508.04025

http://cnyah.com/2017/08/01/attention-variants/
Transformer

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

• getting rid of (encoder) recurrences
 • making it faster to train, allowing bigger nets
 • replace everything with attention + feed-forward networks
 • ⇒ needs more layers
 • ⇒ needs to encode positions

• positional encoding
 • adding position-dependent patterns to the input

• attention – dot-product (Luong style)
 • scaled by $\frac{1}{\sqrt{\text{#dims}}}$ (so values don’t get too big)
 • more heads (attentions in parallel)
 – focus on multiple inputs

One of these for each word

http://jalammar.github.io/illustrated-transformer/
Transformer

- feed-forward (fully connected) network
 - ReLU activations
 - tricks for better training

- attention over all of input

- positional encoding
 (indicate position in sentence)

- encoder

- decoder

- no recurrent connections

- attention over all of input & output generated so far (self-attention)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Contextual Word Embeddings

- Beyond pretrained word embeddings
 - words have different meanings based on context
 - static word embeddings (word2vec/GloVe) don’t reflect that
- ELMo
 - LSTMs trained for language modelling
 - ELMo embeddings = weighted sum of input static embeddings & LSTM outputs
 - the weights are trained for a specific downstream task
- BERT
 - huge Transformer encoder trained for:
 - masked word prediction
 - adjacent sentences detection (does B come right after A?)
 - BERT embeddings
 = any combination of the Transformer layers

https://github.com/jessevig/bertviz

http://jalammar.github.io/illustrated-bert/

NPFL099 L3 2021
Summary

• ML as a function mapping in \rightarrow out
 • input features – 1-hot, numeric, embeddings
 • pretrained embeddings
 • contextual embeddings
 • function: layers \sim pipeline, data flows through (= complicated function)
 • outputs: classification (category), regression (float)
 • structured prediction – sequence tagging, ranking, generation

• Neural networks (\simfunction shapes)
 • feed-forward/fully connected
 • CNNs (filters, pooling)
 • RNNs (LSTMs, GRUs)
 • encoder-decoder (seq2seq)
 • attention, Transformer (positional encoding & feed-forward & attention)

• Next week: how to train this stuff
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Troja N231/N233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/