NPFL099 Statistical Dialogue Systems 4. Training Neural Nets

http://ufal.cz/npfl099

Ondřej Dušek, Simone Balloccu, Zdeněk Kasner, Mateusz Lango, Ondřej Plátek, Patrícia Schmidtová

24. 10. 2023



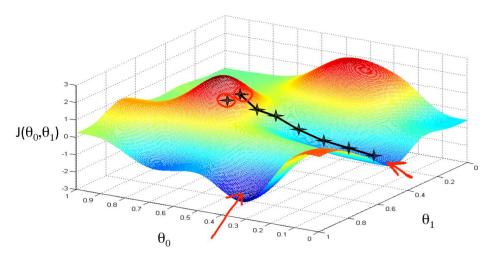
Recap: Neural Nets

- complex functions, composed of simple functions (=layers)
 - linear, ReLU, tanh, sigmoid, softmax
- fully differentiable
- different arrangements:
 - feed forward / multi-layer perceptron
 - CNNs
 - RNNs (LSTM/GRU)
 - attention
 - Transformer
- input: binary, float, embedding
- tasks/problems: classification, regression, structured (sequences/ranking)

NPFL099 L4 2023

Supervised Training: Gradient Descent

- supervised training- **gradient descent** methods
 - minimizing a cost/loss function
 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast we go (needs to be tuned)
- gradient typically computed (=averaged) over mini-batches
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not as slow as computing over whole data
 - stochastic gradient descent
 - batches may be **accumulated** to fit into memory
 - e.g. your GPU only fits one instance
 → compute gradients multiple times, then do 1 update



Cost/Loss Functions

- differ based on what we're trying to predict
- logistic / log loss ("cross entropy")
 - for classification / softmax including word prediction
 - classes from the whole dictionary
 - correct class <100% prob. → loss
 - pretty stupid for sequences, but works
 - sequence shifted by 1 ⇒ everything wrong
- squared error loss for regression
 - forcing the predicted float value to be close to actual one
- hinge loss binary classif. (SVMs), ranking
 - forcing the correct sign
- many others, variants

 $\sum_{\substack{S \\ O \\ 1 \\ 0 \\ -1 \\ -2 \\ 0.0}} \sum_{0.0}^{C} y_c \cdot \log(\widehat{y_c})$ $\sum_{c=1}^{C} y_c \cdot \log(\widehat{y_c})$

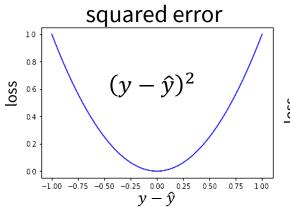
reference: Blue Spice is expensive

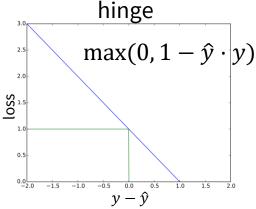
prediction:

expensive cheap

pricey

in the expensive price range





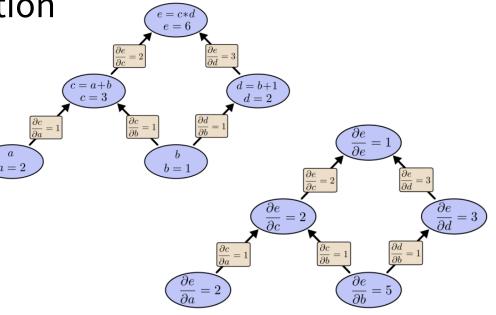
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9, https://en.wikipedia.org/wiki/Hinge_loss

- network ~ computational graph
 - reflects function/layer composition
- composed function derivatives simple rules
 - basically summing over different paths
 - factoring ~ merging paths at every node

backpropagation = reverse-mode differentiation

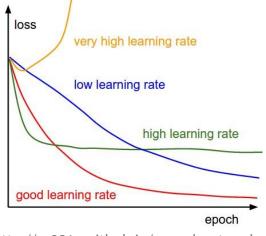
- going back from output to input
- ~ how every node affects the output
- your graph output = cost function
- → derivatives of all parameters w. r. t. cost
- one pass through the network only → easy & fast
- NN frameworks do this automatically

Rules	Function	Derivative
Multiplication by constant	cf	cf′
Power Rule	x ⁿ	nx^{n-1}
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' - g'
Product Rule	fg	fg' + f'g
Quotient Rule	f/g	$\frac{f'g-g'f}{g^2}$
Reciprocal Rule	1/f	$-f'/f^2$
Chain Rule (as "Composition of Functions")	f ° g	(f' ° g) × g'

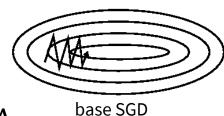


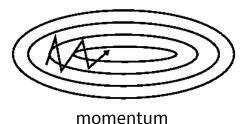
Learning Rate (\alpha) & Momentum

- α : most important parameter in (stochastic) gradient descent
- tricky to tune:
 - too high α = may not find optimum
 - too low α = may take forever
- Learning rate decay: start high, lower α gradually
 - make bigger steps (to speed learning)
 - slow down when you're almost there (to avoid overshooting)
 - linear, stepwise, exponential
 - reduce-on-plateau check every now and then if we're still improving, reduce LR if not
- Momentum: moving average of gradients
 - make learning less erratic
 - $m = \beta \cdot m + (1 \beta) \cdot \Delta$, update by m instead of Δ



http://cs231n.github.io/neural-networks-3/





- Better LR management
 - change LR based on gradients, less sensitive to settings
- AdaGrad all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide LR by $\sqrt{\sum \Delta_t^2}$
 - variants: Adadelta, RMSProp slower LR drop
- Adam per-parameter momentum
 - moving averages for $\Delta \& \Delta^2$:

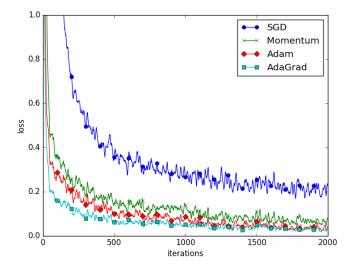
$$m = \beta_1 \cdot m + (1 - \beta_1)\Delta, v = \beta_2 \cdot v + (1 - \beta_2)\Delta^2$$

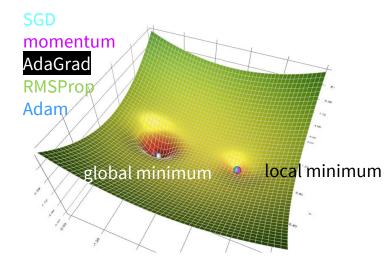
- use m instead of Δ , divide LR by \sqrt{v}
- often used as default nowadays
- variant: **AdamW** better regularization

not much difference though

(Loshchilov & Hutter, 2019) https://arxiv.org/abs/1711.05101

https://arxiv.org/abs/1412.6980

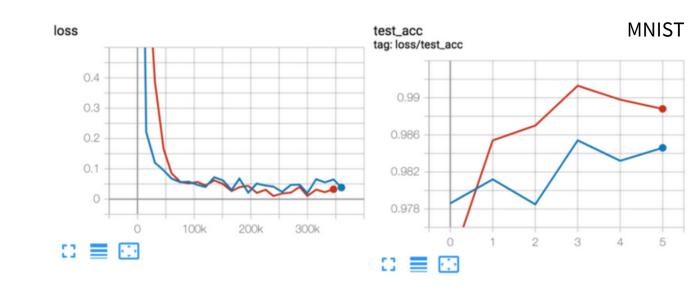




(Kingma & Ba, 2015)

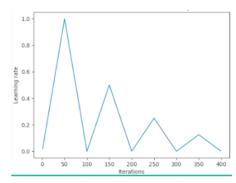
Optimizers

- **LAMB** Layer-wise Adaptive Moments for Batches
 - for larger batches & allowing to use larger LR (~unstable otherwise)
- LARS layer-wise adaptive rate scaling
 - layer-wise LRs, always multiplied by a **trust ratio**: $\alpha^l = \alpha \cdot \frac{||w^l||}{||\Delta^l||} \text{norm of weights/ norm of gradients}$
 - higher trust ratio = faster updates
 - start of training: low w, high $\Delta \rightarrow$ slow warm up
 - towards convergence: higher w, low $\Delta \rightarrow$ faster training
- LAMB ≈ LARS + AdamW

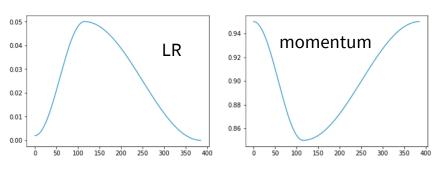


Schedulers

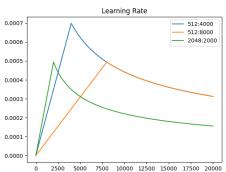
- more fiddling with LR warm-ups
 - start learning slowly, then increase LR, then reduce again
 - may be repeated (warm restarts), with lowered maximum LR
 - allow to diverge slightly work around local minima
- multiple options:
 - cyclical (=warm restarts) linear, cosine annealing
 - one cycle same, just don't restart
 - Noam scheduler linear warm-up, decay by √steps
- combine with base SGD or Adam/Adadelta etc.
 - momentum updated inversely to LR
 - may have less effect with optimizers
 - trade-off: speed vs. sensitivity to parameter settings



cyclical scheduler (warm restarts)



one cycle with cosine annealing

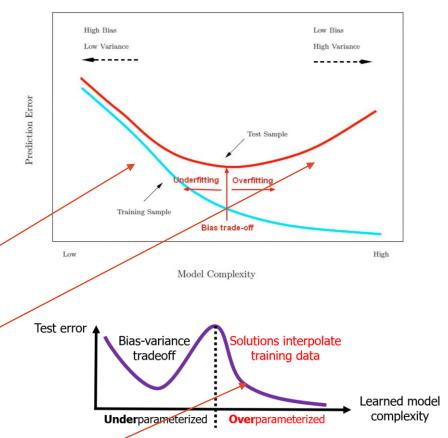


Noam scheduler with different parameters

When to stop training

- generally, when cost stops going down
 - despite all the LR fiddling
- problem: overfitting
 - cost low on training set, high on validation set
 - network essentially memorized the training set
 - → check on validation set after each epoch (pass through data)
 - stop when cost goes up on validation set
 - regularization (see →) helps delay overfitting
- bias-variance trade-off:
 - smaller models may underfit (high bias, low variance = not flexible enough)
 - larger models likely to overfit (too flexible, memorize data)
 - XXL models: overfit soo much they actually interpolate data → good (��?)

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

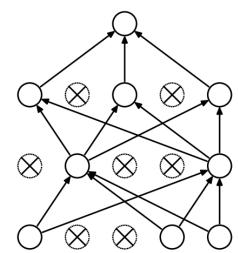


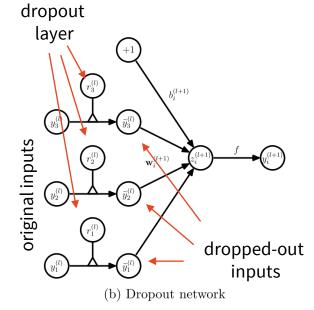
(Dar et al., 2021) https://arxiv.org/abs/2109.02355

Regularization: Dropout

- regularization: preventing overfitting
 - making it harder for the network to learn, adding noise
- Dropout simple regularization technique
 - more effective than e.g. weight decay (L2)
 - zero out some neurons/connections in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there's fewer nodes
 - done by libraries automatically
 - may need larger networks to compensate

(Srivastava et al., 2014) http://jmlr.org/papers/v15/srivastava14a.html





Regularization: Multi-task Learning

(Ruder, 2017) http://arxiv.org/abs/1706.05098 (Fan et al., 2017) http://arxiv.org/abs/1706.04326 (Luong et al., 2016) http://arxiv.org/abs/1511.06114

achieve better generalization by learning more things at once

• a form of regularization

implicit data augmentation

biasing/focusing the model

• e.g. by explicitly training for an important subtask

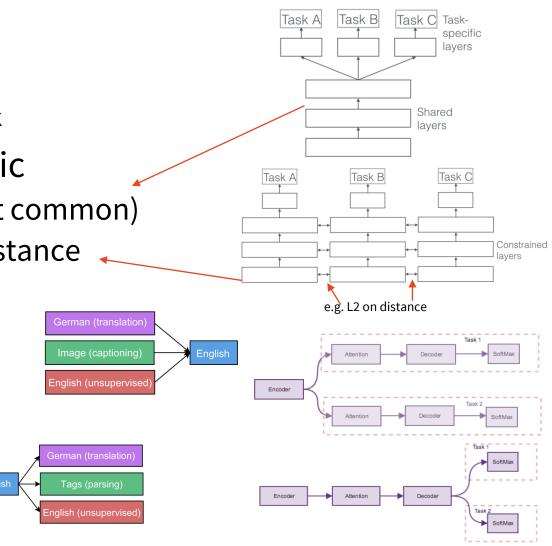
parts of network shared, parts task-specific

hard sharing = parameters truly shared (most common)

• soft sharing = regularization by parameter distance

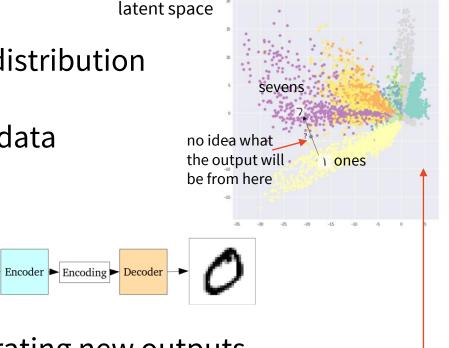
• different approaches w. r. t. what to share

- training alternating between tasks
 - catastrophic forgetting: if you don't alternate, the network forgets previous tasks



Autoencoders

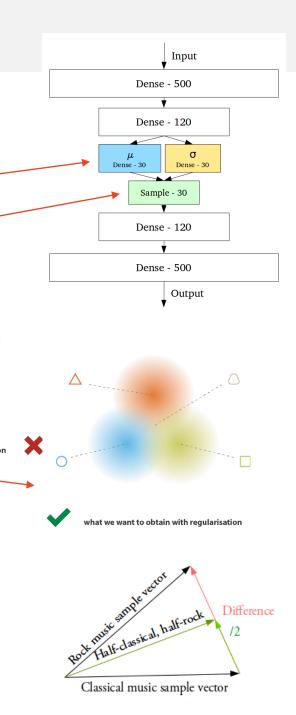
- Using NNs as generative models
 - more than just classification modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data
- Autoencoder: input → encoding → input
 - encoding ~ "embedding" in latent space (i.e. some vector)
 - trained by reconstruction loss
 - problem: can't easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused will generate weird stuff
 - no easy interpretation of embeddings no idea what the model will generate
- extension denoising autoencoder:
 - add noise to inputs, train to generate clean outputs
 - use in multi-task learning, representations for use in downstream tasks



MNIST digits autoencoder

Variational Autoencoders

- Making the encoding latent space more useful
 - using **Gaussians** continuous space by design
 - encoding input into vectors of means μ & std. deviations σ
 - sampling encodings from $N(\mu, \sigma)$ for generation
 - samples vary a bit even for the same input
 - decoder learns to be more robust
 - model can degenerate into normal AE ($\sigma \to 0$)
 - we need to encourage some σ , smoothness, overlap ($\mu \sim 0$)
 - add **2nd loss: KL divergence** from N(0,1)
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs
- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate



VAE details

- VAE objective:
- "AE" $\{ \bullet \}$ reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
- "V" \bullet latent loss (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

$$\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]$$

- This is equivalent to maximizing true $\log p(x)$ with some error
 - i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

$$\mathbb{E}_q[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)] \xrightarrow{\text{error incurred} \\ \text{by using } q \\ \text{instead of true} \\ \text{distribution } p}$$

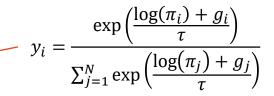
$$\text{"evidence"} \quad \text{ELBO}$$
Normal noise

- Sidestepping sampling reparameterization trick
 - $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ
 - differentiating w. r. t. $\mu \& \sigma$ still works, no hard sampling on that path

- "reparameterization trick for discrete distributions"
 - same idea, just with a discrete/categorial distribution
 - this makes the latent space better interpretable
- Gumbel-max trick:
 - categorial distribution π with probabilities π_i
 - sampling from π : $z = \text{onehot}(\arg\max_{i}(\log \pi_i + g_i))$
- Swap argmax for softmax with temperature au
 - differs from π if $\tau > 0$, but may be close to i
 - approx. sample of the true distribution
 - fully differentiable
 - g_i bypassed in differentiation, same as $\mathcal{N}(0,1)$ in Gaussian sampling

Gumbel noise:

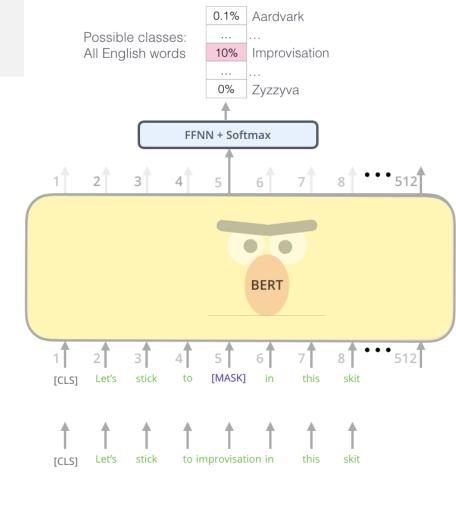
$$g_i = -\log(-\log(\operatorname{Uniform}(0,1)))$$



16

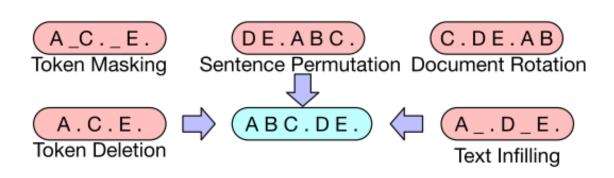
Self-supervised training

- train supervised, but don't provide labels
 - use naturally occurring labels
 - create labels automatically somehow
 - corrupt data & learn to fix them
 - learn from rule-based annotation (not ideal!)
 - use specific tasks that don't require manual labels
- good to train on huge amounts of data
 - language modelling
 - next-word prediction
 - MLM masked word prediction (~like word2vec)
 - autoencoding: predict your own input
 - good to pretrain the network for a final task
- unsupervised, but with supervised approaches



Pretraining & Finetuning

- 2-step training:
 - 1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
 - 2. Fine-tune for your own task on your smaller data (supervised)
- ~pretrained embeddings, many variants
 - mostly Transformer architecture
 - pretraining tasks vary and make a difference
- typical tasks:
 - masked language modelling (masked words/spans)
 - next-word prediction
 - denoising scrambled texts



(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/

NPFL099 L4 2023 18

Pretrained (Large) Language Models (PLMs/LLMs)

- **BERT/RoBERTa**: Transformer encoder
- (Devlin et al., 2019) https://aclanthology.org/N19-1423/
 (Liu et al., 2019) https://arxiv.org/abs/1907.11692
- masked word prediction, sentence order
- BART encoder-decoder (Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/
 - denoising autoencoder: masking, word removal... → generate original sentence
- T5: generalization of ↑ (multi-task, different prompts) (Raffel et al., 2019) http://arxiv.org/abs/1910.10683
- multilingual: XLM-RoBERTa, mBART, mT5

 (Conneau et al., 2020)
 (Liu et al., 2020)
 (Xue et al., 2021)
 (Xue et al., 2021)
- GPT-2, most LLMs (GPT-3, LlaMa, Falcon, Mistral...): Transformer decoder
 - next-word prediction (=language modeling)

(Radford et al., 2019) https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

many models released plug-and-play

(Touvron et al., 2023) https://arxiv.org/abs/2307.09288

https://huggingface.co/blog/falcon

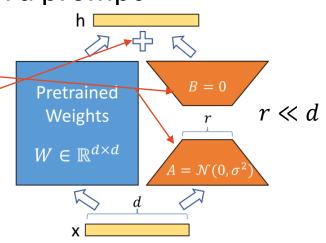
you only need to finetune (and sometimes, not even that)

(Jiang et al., 2023) https://arxiv.org/abs/2310.06825

• !! others (GPT-3/ChatGPT/GPT-4, Claude... closed & API-only)

(Lialin et al., 2023) http://arxiv.org/abs/2303.15647 (Sabry & Belz, 2023) http://arxiv.org/abs/2304.12410

- Finetuning large models: don't update all parameters
 - faster, less memory-hungry (fewer gradients/momentums etc.)
 - trains faster
 - less prone to overfitting (~ regularization)
- Add few parameters & only update these
 - Adapters small feed-forward networks after/on top of each layer
 - **Soft prompts** tune a few special embeddings & use them in a prompt
 - LoRA (low-rank adaptation):
 - updates = 2 decomposition matrixes A, B (parallel to each layer)
 - update = multiplication AB
 - $2 \times r \times d$ is much smaller than full weights (d^2)
 - update is added to original weights on the fly
 - QLoRA LoRA + quantized 4/8-bit computation
 - to fit large models onto a small GPU



LLMs: Prompting = In-context Learning

- No model finetuning, just show a few examples in the input (=prompt)
- pretrained LMs can do various tasks, given the right prompt
 - they've seen many tasks in training data
 - only works with the larger LMs (>1B)
- adjusting prompts often helps
 - "prompt engineering"
 - zero-shot (no examples) vs. few-shot
 - chain-of-thought prompting: "let's think step by step"
 - adding / rephrasing instructions (see → →)

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

http://ai.stanford.edu/blog/understanding-incontext/

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

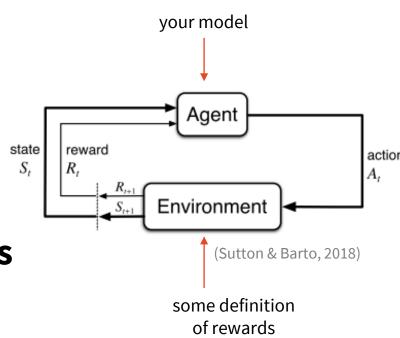
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

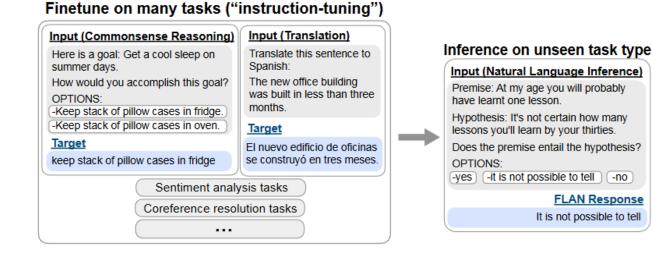
(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Reinforcement Learning

- Learning from weaker supervision
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don't know if step X is good
 - sequence = e.g. sentence, dialogue
- Framing the problem as states & actions & rewards
 - "robot moving in space", but works for dialogue too
 - state = generation so far (sentence, dialogue state)
 - action = one generation output (word, system dialogue act)
 - defining rewards might be an issue
- Training: maximizing long-term reward
 - via state/action values (Q function)
 - directly optimizing policy



- Finetune for use with prompting
 - "in-domain" for what it's used later
 - Use instructions (task description)
 + solution in prompts
 - Many different tasks
 - Specific datasets available
 - Some LLMs released as base ("foundation")
 & instruction-tuned versions
- RL improvements on top of this (~InstructGPT/ChatGPT):
 - 1) generate lots of outputs for instructions
 - 2) have humans rate them
 - 3) learn a rating model (some kind of other LM: instruction + solution → score)
 - 4) use rating model score as reward in RL
 - main point: reward is global (not token-by-token) RL-free alternatives exist

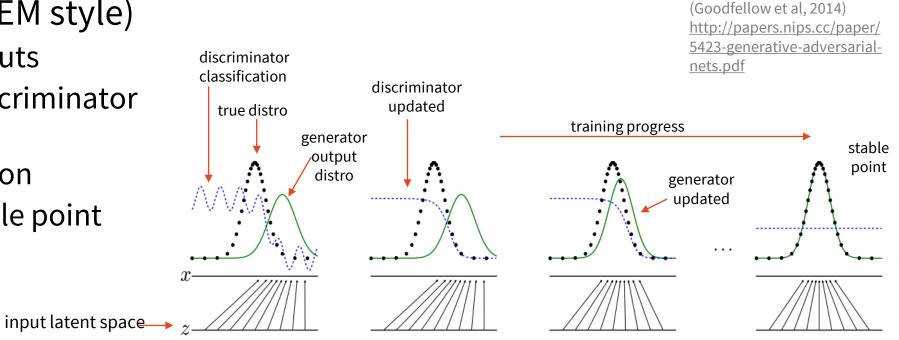


(Ouyang et al., 2022) http://arxiv.org/abs/2203.02155 https://openai.com/blog/chatgpt

(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

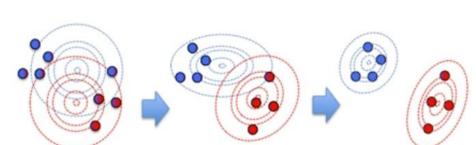
Adversarial Learning / Generative Adversarial Nets

- Training generative models to generate believable outputs
 - to do so, they necessarily get a better grasp on the distribution
- Getting loss from a 2nd model:
 - **discriminator D** "adversary" classifying real vs. generated samples
 - **generator** *G* trained to fool the discriminator
 - the best chance to fool the discriminator is to generate likely outputs
- Training iteratively (EM style)
 - generate some outputs
 - classify + update discriminator
 - update generator based on classification
 - this will reach a stable point

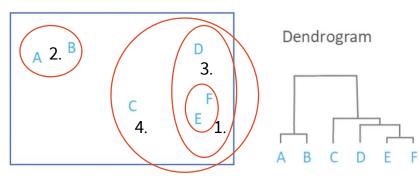


Clustering

- Unsupervised, finding similarities in data
- basic algorithms
 - **k-means**: assign into *k* clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
 - Gaussian mixture: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
 - hierarchical (bottom up): start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have k clusters / distance is too big
 - hierarchical top-down (reversed →)
- distance metrics & features decide what ends up together



https://www.youtube.com/watch?v=9YA2t78Ha68



Summary

- Supervised training
 - cost function
 - stochastic **gradient descent** minibatches
 - backpropagation
 - learning rate tricks optimizers (Adam), schedulers
 - regularization: dropout, multi-task training
- Self-supervised learning (~kinda unsupervised)
 - autoencoders, denoising, variational autoencoders
 - (masked) language models
- PLMs/LLMs: pretraining & finetuning, prompting, instruction tuning
- Reinforcement learning (more to come later)
- Unsupervised: GANs, clustering

NPFL099 L4 2023

Thanks

Contact us:

https://ufaldsg.slack.com/
{odusek,hudecek,kasner}@ufal.mff.cuni.cz
Zoom/Skype/Troja

Labs in 10 mins Next Monday 12:20

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka's Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:

- https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
- https://minitorch.github.io/index.html
- https://objax.readthedocs.io/en/latest/

NPFL099 L4 2023