NPFL099 Statistical Dialogue Systems
4. Training Neural Nets

http://ufal.cz/npfl099

Ondrej Dusek, Simone Balloccu, Zdenék Kasner, Mateusz Lango,
Ondrej Platek, Patricia Schmidtova

24. 10. 2023

Charles University @ @ @
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics unless otherwise stated

http://ufal.cz/npfl099

« complex functions, composed of simple functions (=layers)
* linear, ReLU, tanh, sigmoid, softmax

* fully differentiable

* different arrangements:
« feed forward / multi-layer perceptron
* CNNs
* RNNs (LSTM/GRU)
* attention
* Transformer

* input: binary, float, embedding
* tasks/problems: classification, regression, structured (sequences/ranking)

Supervised Training: Gradient Descent

* supervised training- gradient descent methods

* minimizing a cost/loss function
(notion of error - given system output, how far off are we?)

* calculus: derivative = steepness/slope
* follow the slope to find the minimum - derivative gives the direction
* learning rate = how fast we go (needs to be tuned)

* gradient typically computed (=averaged) over mini-batches
* random bunches of a few training instances

* not as erratic as using just 1 instance,
not as slow as computing over whole data

 stochastic gradient descent

 batches may be accumulated to fit into memory

 e.g.your GPU only fits one instance
> compute gradients multiple times, then do 1 update

NPFL099 L4 2023 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

1(80,0;) ol

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Cost/Loss Functions

loss

» differ based on what we’re trying to predict

* logistic [log loss (“cross entropy”) “
« for classification / softmax - including word prediction logistic
* classes from the whole dictionary
* correct class <100% prob. > loss reference: Blue Spice is expensive
* pretty stupid for sequences, but works ——— prediction: expensive
: : cheap
* sequence shifted by 1 = everything wrong pricey
* squared error loss - for regression in the expensive price range
» forcing the predicted float value to be close to actual one
° hinge loss - binary classif. (SVMs), ranking squared error hinge
» forcing the correct sign 1 max(0,1-9-y)
: g o v —9)* -
* many others, variants <, g
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ N |
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-

-Lo0 -0.73 -050 -025 000 025 05 075 100
A

tensorflow-9f60be9d09f9, https://en.wikipedia.org/wiki/Hinge loss y—9 R _Gsy‘fy

>

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

Backpropagation

https://www.mathsisfun.com/calculus/derivatives-rules.html

Rules Function Derivative

Multiplication by constant cf cf’

* network ~ computational graph - o e
* reflects function/layer composition
» composed function derivatives - simple rules moo e

Reciprocal Rule 1/f —f/f2

* basically summing over different paths
» factoring ~ merging paths at every node

* backpropagation = reverse-mode differentiation
 going back from output to input
* ~how every node affects the output
* your graph output = cost function
* > derivatives of all parameters w. r. t. cost
* one pass through the network only »> easy & fast
* NN frameworks do this automatically

NPFL099 L4 2023 http://colah.github.io/posts/2015-08-Backprop/ 5

Chain Rule
(as "Composition of Functions™)

fog (ffog) x g’

http://colah.github.io/posts/2015-08-Backprop/
https://www.mathsisfun.com/calculus/derivatives-rules.html

* a: most important parameter in (stochastic) gradient descent

e tricky to tune:
* too higha
* too low «a

= may not find optimum

= may take forever

loss

N

low learning rate

high learning rate

* Learning rate decay: start high, lower a gradually
* make bigger steps (to speed learning) good earning rate -
» slow down when you’re almost there (to avoid overshooting) e i aseumtnermoric
* linear, stepwise, exponential

* reduce-on-plateau - check every now and then
if we’re still improving, reduce LR if not

 Momentum: moving average of gradients

* make learning less erratic i

*m= :8 m + (1 — ﬁ) - A, update bym instead of A base SGD momentum

https://ruder.io/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Optimizers

http://kaeken.hatenablog.com/entry/2016/11/10/203151

1.0

* Better LR management Jr e
* change LR based on gradients, less sensitive to settings

« AdaGrad - all history
« remember sum of total gradients squared: Y, A?
+ divide LR by /Y, A%

* variants: Adadelta, RMSProp - slower LR drop

* Adam - per-parameter momentum o
* moving averages for A & A?: SRR -2 IR
m=p-m+ (1=BAv =P v+ (1-p)A° Adapg\/'{’f/v”""’

 use minstead of A, divide LR by /v o
 often used as default nowadays :
(Loshchilov & Hutter, 2019)

e variant: AdamW - better regula rization hipsanivorg/abs/i711.05101
* not much difference though

https://ruder.io/optimizing-gradient-descent/
NPFL099 L4 2023 7
_ https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c¢

http://kaeken.hatenablog.com/entry/2016/11/10/203151
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

M M (You et al., 2020)
o ptl m I Ze rs http://arxiv.org/abs/1904.00962

* LAMB - Layer-wise Adaptive Moments for Batches
* for larger batches & allowing to use larger LR (~unstable otherwise)

* LARS layer-wise adaptive rate scaling

* layer-wise LRs, always multiplied by a trust ratio:

l W]
a' =a-
|1aY|

* higher trust ratio = faster updates

* start of training:
low w, high A > slow warm up

* towards convergence:
higher w, low A > faster training

* LAMB = LARS + AdamW

- norm of weights/ norm of gradients

loss test_acc M N I ST

tag: loss/test_acc

|
L]

g

NPFL099 L4 2023 https://towardsdatascience.com/an-intuitive-understanding-of-the-lamb-optimizer-46f8c0ae4866 8

https://towardsdatascience.com/an-intuitive-understanding-of-the-lamb-optimizer-46f8c0ae4866
http://arxiv.org/abs/1904.00962

Schedulers

* more fiddling with LR - warm-ups
* start learning slowly, then increase LR, then reduce again

* may be repeated (warm restarts),
with lowered maximum LR

* allow to diverge slightly - work around local minima

* multiple options:

« cyclical (=warm restarts) - linear, cosine annealing

* ohe cyc

* Noam scheduler - linear warm-up, decay by +/steps
* combine with base SGD or Adam/Adadelta etc.

le - same, just don’t restart

 momentum updated inversely to LR
* may have less effect with optimizers

* trade

-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADmM6F

NPFL099 L4 2023

https://nn.labml.ai/optimizers/noam.html

0.05

cyclical scheduler (warm restarts)

LR

092

0.88

0.86

"I\ momentum /

vvvvvvvvv

one cycle with cosine annealing

earning Rate

Noam scheduler with different parameters

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html

When to stop training

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

* generally, when cost stops going down
* despite all the LR fiddling

* problem: overfitting
* cost low on training set, high on validation set -

* network essentially memorized the training set

* > check on validation set after each epoch
(pass through data)

 stop when cost goes up on validation set
* regularization (see -) helps delay overfi

 bias-variance trade-off:
* smaller models may underfit (highbias, low variance = not flexi
* larger models likely to overfit (too flexible, memorize
« XXL models: overfit soo much they actually interpolate data > good (&) ?)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355

NPFL099 L4 2023 10

: \ Solutions interpolate
training data

Bias-variance
tradeoff

. Learned model
© complexity

https://arxiv.org/abs/2109.02355
https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

Regularization: Dropout

(Srivastava et al., 2014)
http://imlr.org/papers/v15/srivastaval4a.html

* regularization: preventing overfitting
* making it harder for the network to learn, adding noise

* Dropout - simple regularization technique
* more effective than e.g. weight decay (L2)

e zero out some neurons/connections
in the network at random

technically: multiply by dropout layer

* 0/1 with some probability (typically 0.5-0.8)
at training time only - full network for prediction
weights scaled down after training

 they end up larger than normal because there’s fewer nodes
» done by libraries automatically

* may need larger networks to compensate £
5

layer

dropped-out

inputs
NPFL099 L4 2023 (b) Dropout network

http://jmlr.org/papers/v15/srivastava14a.html

(Ruder, 2017)
° ° ° o http://arxiv.org/abs/1706.05098
Regularization: Multi-task Learning (Fan et 2019
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114

* achieve better generalization by learning more things at once
* aform of regularization e
* implicit data augmentation O e
* biasing/focusing the model , |
 e.g. by explicitly training for an important subtask | : e
* parts of network shared, parts task-specific / .
D oo

* hard sharing = parameters truly shared (most common) |

H H 1 |Con5t rrrrr d
. s?ft sharing = regularization by parameter distance ,\l , S T : T }
» different approaches w. r. t. what to share N 2ondistoe
German (translation)
* training - alternating between tasks T s I Rl
* catastrophic forgetting: SR
if you don’t alternate, == e]
the network forgets previous tasks

Tags (parsing)
| Encoder H Attention |—.| Decoder

English (unsupervised) Task2
NPFLO99 L4 2023

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.04326
http://arxiv.org/abs/1511.06114

MNIST digits autoencoder

 Using NNs as generative models fatentspace

* more than just classification - modelling the whole distribution
 (of e.g. possible texts, images)

sevens

7
»

* generate new instances that look similar to training data 0 ideawhatf.?\
the output wi '\ ones
* Autoencoder: input > encoding > input etk

* encoding ~ “embedding” in latent space

(i.e. some vector) 0 ++EL. 0

* trained by reconstruction loss
» problem: can’t easily get valid embeddings for generating new outputs

 parts of embedding space might be unused - will generate weird stuff
* no easy interpretation of embeddings - no idea what the model will generate

 extension - denoising autoencoder:
* add noise to inputs, train to generate clean outputs
e use in multi-task learning, representations for use in downstream tasks

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Autoencoders -

Dense - 500

]
Dense - 120

 Making the encoding latent space more useful —

* using Gaussians - continuous space by design e

* encoding input into vectors of means u & std. deVW v ‘
v

« sampling encodings from N (u, o) for generation

l Output

* samples vary a bit even for the same input
 decoder learns to be more robust N

* model can degenerate into normal AE (o — 0) :
« we need to encourage some o, smoothness, overlap (u ~ 0) S

* add 2nd loss: KL divergence from N(0,1)

* VAE learns a trade-off between
using unit Gaussians & reconstructing inputs

* Problem: still not too much control of the embeddings
* we can only guess what kind of output the model will generate

v

what can happen without regularisation

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 T :
Classical music sample vector

NPFL099 L4 2023 http://kvfrans.com/variational-autoencoders-explained/

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/

* VAE objective:

“AE”+* reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
“\/” { latent loss (KL-divergence from ideal p(z)~N(0,1) in the encoder)

L=—E,[logp(x|z)] + KL[q(z|x)||p(2)]

* This is equivalent to maximizing true log p(x) with some error
* i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

errorincurred

Eqllogp(x|2)] — KL[q(z|x)||p(2)] = logp(x) - KL[q(ZIx)IIp(ZIx)]<— by using q

instead of true
| ! distribution p

“evidence” ELBO
Normal noise (i.e. data)

* Sidestepping szimpling - reparameterization trick

e z~u+ o -N(0,1), then differentiatew.r.t. uand o
« differentiating w. r. t. u & o still works, no hard sampling on that path

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

Discrete VAE: Gumbel-Softmax e oo

» “reparameterization trick for discrete distributions”
* same idea, just with a discrete/categorial distribution

 this makes the latent space better interpretable Gumbel noise:

« Gumbel-max trick: gi = —log(—log(Uniform(0,1)))
* categorial distribution r with probabilities m; /
)

* sampling from m: z = onehot(arg miax(log T; + 9g; exp<log(ni)+gi)

T

» Swap argmax for softmax with temperature T— =z;-V=1e>qo(l"g(”f)+g")

o differsfrommift > 0, but may be closeto
* approx. sample of the true distribution T = 0: more like one-hot T — oo: more like uniform
e fully differentiable) "

* g; bypassed in differentiation,
same as V'(0,1) in Gaussian sampling

T =101 =105 T=11 T = 10.0)

l.l-l_ -.l.l_-.l_
l_ i, I ke N
NPEL099 L4 2023 https://anotherdatum.com/gumbel-gan.html 16

-.l.l.-.-l_—

sample expectation
4
0 &
= o
] oS
© <
= F o

https://arxiv.org/abs/1611.01144
https://anotherdatum.com/gumbel-gan.html

0.1% | Aardvark
Self-supervised training Posblodasses:
0% | Zyzzyva
* train supervised, but don’t provide labels
* use naturally occurring labels

 create labels automatically somehow
» corrupt data & learn to fix them
* learn from rule-based annotation (not ideal!) BERT

* use specific tasks that don’t require manual labels

* good to train on huge amounts of data
* language modelling
* next-word prediction s

e MLM - masked word prediction (~like word2vec)
» autoencoding: predict your own input
» good to pretrain the network for a final task

e unsupervised, but with supervised approaches

http://jalammar.github.io/illustrated-bert/

NPFL099 L4 2023 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

17

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/

Pretraining & Finetuning

* 2-step training:

1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
2. Fine-tune for your own task on your smaller data (supervised)

» ~pretrained embeddings, many variants

» mostly Transformer architecture

* pretraining tasks vary and make a difference

e typical tasks:

* masked language modelling
(masked words/spans)

* next-word prediction
* denoising scrambled texts

NPFL099 L4 2023

(AC._E.) (DE.ABC.) (C.DE.AB)
Token Masking Sentence Permutation Document Rotation

U
(a.c.e.)) (aBc.DE.) <I (A_.D_E.)

Token Deletion Text Infilling

(Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/

18

https://aclanthology.org/2020.acl-main.703/

Pretrained (Large) Language Models (PLMs/LLMs) ey

. (Devlin et al., 2019) https://aclanthology.org/N19-1423/
* BERT/ROBERTa' TranSformer enCOder (Liu etal., 2019) http://arxiv.org/abs/1907.11692
* masked word prediction, sentence order

° BART _ enCOder'deCOder (Lewis et al., 2020) https://aclanthology.org/2020.acl-main.703/
 denoising autoencoder: masking, word removal... > generate original sentence

° TS: generalizatiOn Of ,]\ (mUIti'taSk, dlfferent prOmptS) (Raffel etal., 2019) http://arxiv.org/abs/1910.10683

(Cpnneau etal., 2020) https://www.aclweb.org/anthologv/ZOZO.acl—main.747
» multilingual: XLM-ROBERTa, mMBART, MT5 .. 00 om0 nasclmain st
* GPT-2, most LLMs (GPT-3, LlaMa, Falcon, Mistral...): Transformer decoder

® neXt—WOI’d prediCtiOn (:language modeling) (Radford et al., 2019) https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165
* many models released plug-and-play itosy ugansfate g B
» you only need to finetune (and sometimes, not even that) 77"/ e
* Il others (GPT-3/ChatGPT/GPT-4, Claude... closed & APl-only)

L)
https://github.com/huggingface/transformers -

NPFL099 L4 2023

https://aclanthology.org/N19-1423/
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1910.10683
https://aclanthology.org/2020.acl-main.703/
https://github.com/huggingface/transformers
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2020.acl-main.747
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2021.naacl-main.41
http://arxiv.org/abs/2307.09288
https://huggingface.co/blog/falcon
https://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2303.18223

Parameter-efficient Finetuning (alinetal, 2023

http://arxiv.org/abs/2303.15647
(Sabry & Belz, 2023)
http://arxiv.org/abs/2304.12410

* Finetuning large models: don’t update all parameters
* faster, less memory-hungry (fewer gradients/momentums etc.)
* trains faster
* less prone to overfitting (~ regularization)

* Add few parameters & only update these
* Adapters - small feed-forward networks after/on top of each layer

» Soft prompts - tune a few special embeddings & use them in a prompt
h |

* LoRA (low-rank adaptation):
» updates =2 decomposition matrixes A, B (parallel to each layer)
T . Pretrained
 update = multiplication AB Weights
e 2 X1 X dis much smaller than full weights (d?)
« updateis added to original weights on the fl

* QLORA - LoRA + quantized 4/8-bit computation

* tofit large models onto a small GPU

(Houlsby et al., 2019) http://proceedings.mlr.press/v97/houlsbyl9a.html (Hu et al., 2021) http://arxiv.org/abs/2106.09685
(Lester et al., 2021) https://aclanthology.org/2021.emnlp-main.243 (Dettmers et al., 2023) http://arxiv.org/abs/2305.14314 20

http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2304.12410
https://aclanthology.org/2021.emnlp-main.243
http://proceedings.mlr.press/v97/houlsby19a.html

LLMs: Prompting = In-context Learning

* No model finetuning, just show a few examples in the input (=prompt)
* pretraiHEd LMS Can dO Va riOUS taSkS, Circulation revenue has increased by 5% Circulation revenue has increased by

in Finland. // Positive 5% in Finland. // Finance

g I Ve n th e rl ght p rO m pt Panostaja did not disclose the purchase They defeated ... in the NFC
, . Lo price. // Neutral Championship Game. // Sports
¢ th ey Ve Seen mada ny ta S kS IN tra NN g d d ta Paying off the national debt will he Apple ... development of in-house
. extremely painful. // Negative chips. // Tech
* on ly WO rkS WI th th S la rge I I— M S (> l B) The company anticipated its operating The company anticipated its operating

profit to improve. // profit to improve. //

* adjusting prompts often helps
* “prompt engineering”
 zero-shot (no examples) vs. few-shot
 chain-of-thought
prompting: “let’s think step by step”
 adding / rephrasing instructions
(see > >)

http://ai.stanford.edu/blog/understanding-incontext/

7Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

//(_1 A juggler can juggle 16 balls. Half of the balls are golf ballsx
and half of the golf balls are blue. How many blue golf balls are

| there?

" A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/ balls. That means that there are 8 golf balls. Half of the golf balls

\ are blue. That means that tt 4 blue golf balls. /)
NPFL0O99 L4 2023 (Liu et al., 2023) https://arxiv.org/abs/2107.13586 N\ZE e, T meens T e e T TR e 21

http://ai.stanford.edu/blog/understanding-incontext/
https://arxiv.org/abs/2107.13586
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

* Learning from weaker supervision

* only get feedback once in a while, not for every output . lOdel
» good for globally optimizing sequence generation
* you know if the whole sequenceis good ;| Agent |
* you don’t know if step X is good o P et
* sequence =e.g. sentence, dialogue *f zEnuironment |<7
* Framing the problem as states & actions & rewards Vsutton&sarto,zma
* “robot moving in space”, but works for dialogue too some definition

of rewards

» state = generation so far (sentence, dialogue state)
* action = one generation output (word, system dialogue act)
* defining rewards might be an issue

* Training: maximizing long-term reward

e via state/action values (Q function)
* directly - optimizing policy

Instruction Tuning / RL from Human Feedback

Finetune on many tasks (“instruction-tuning”)

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

° Fi n etu n e fo r u Se With ro m ti n Input (Commonsense Reasoning) | Input {Translation)
p p g Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
summer days. Spanish: '
* “in-domain” for what it’s used later Howvou you ccompls s goar | The new fice buidng e
OPTIONS: __ - was Dulltin fess ihan fhree have leamt one lesson.
. . . . -Keep stack of pillow cases in fridge. : thesis: It's not certain h
o Use Instru Ctlons (taSk d eSC rl ptl O n) -Keep stack of pillow cases in oven. Target # gggnsefrl:su'll Isegggﬁyc;ﬂrtgmi?;ny
. . Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
+ l p p keep stack of pillow cases in fridge se construyd en tres meses. OPTIONS:
So Utl o n I n ro m tS sent . veis task ' -yes | [-itis not possible to tell | [-no
. entiment analysis tasks |
. - FLAN hesponse
L M a ny d |ffe re nt ta S kS : Coreference resolution tasks . g isl:mllgrpljlsi:)lse :;::IT

Specific datasets available

Some LLMs released as base (“foundation”)
& instruction-tuned versions

(Ouyang et al., 2022)

* RL improvements on top of this (~InstructGPT/ChatGPT): Bt Orglabs/ 2002155

1) generate lots of outputs for instructions

2) have humansrate them
)
)

3) learn arating model (some kind of other LM: instruction + solution - score)
4) use rating model score as reward in RL
* main point: reward is global (not token-by-token) — RL-free alternatives exist

(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
http://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt

Adversarial Learning [Generative Adversarial Nets

* Training generative models to generate believable outputs
* to do so, they necessarily get a better grasp on the distribution

* Getting loss from a 2nd model:

* discriminator D - “adversary” classifying real vs. generated samples

« generator G - trained to fool the discriminator
* the best chance to fool the discriminator is to generate likely outputs

* Training iteratively (EM style)
* generate some outputs
* classify + update discriminator

* update generator
based on classification

* this will reach a stable point

NPFL099 L4 2023

(Goodfellow et al, 2014)
http://papers.nips.cc/paper/
5423-generative-adversarial-

nets.pdf

discriminator

classification .
discriminator

true distro updated
training progress
l generator E Prog >
output stable
A st & N point
Yoo distro Ny generator

. .‘_'- - updated

.............

<
.

- " L] .
. A . ' -
- L] - .-__

TP, -

0
R
v [
Vb ey
L
5 [

/I

JIN I\

Yl

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

https://en.wikipedia.org/wiki/K-means_clustering

[J
C '.u Ste rl n g https://www.displayr.com/what-is-hierarchical-clustering/

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

* Unsupervised, finding similarities in data

* basic algorithms

* k-means: assign into k clusters randomly, iterate:
e compute means (centroids)
* reassign to nearest centroid N ® °
» Gaussian mixture: similar, but soft & variance N(GETee g @y) B oo
* clusters = multivariate Gaussian distributions
 estimating probabilities of belonging to each cluster
 cluster mean/variance based on data weighted by probabilities
* hierarchical (bottom up):
start with one cluster per instance, iterate:
* merge 2 closest clusters
* end when you have k clusters / distance is too big

* hierarchical top-down (reversed)
* distance metrics & features decide what ends up together

https://www.youtube.com/watch?v=9YA2t78Ha68

Dendrogram

[—

25

https://www.youtube.com/watch?v=9YA2t78Ha68
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

* Supervised training
* cost function
« stochastic gradient descent — minibatches
* backpropagation
* learning rate tricks - optimizers (Adam), schedulers
* regularization: dropout, multi-task training

* Self-supervised learning (~kinda unsupervised)
 autoencoders, denoising, variational autoencoders
* (masked) language models

* PLMs/LLMs: pretraining & finetuning, prompting, instruction tuning
* Reinforcement learning (more to come later)
* Unsupervised: GANs, clustering

Thanks

Contact us: Labsin 10 mins

https://ufaldsg.slack.com/)
{odusek,hudecek,kasner}@ufal.mff.cuni.cz Next Monday 12:20

Zoom/Skype/Troja

Get the slides here:
http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)

Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:

* https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
 https://minitorch.github.io/index.html

* https://objax.readthedocs.io/en/latest/

NPFL099 L4 2023 27

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://www.deeplearningbook.org/
http://arxiv.org/abs/1812.06834
http://ufal.mff.cuni.cz/courses/npfl114/1819-summer
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
https://minitorch.github.io/index.html
https://objax.readthedocs.io/en/latest/

