
NFPL099 Statistical Dialogue Systems 10. Chatbots (non-task-oriented)

http://ufal.cz/npfl099

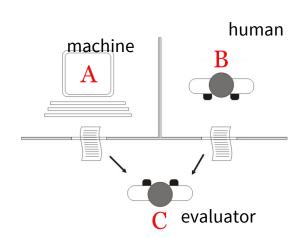
Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda 6.12.2021

Chatbots / Chatterbots

- dialogue systems for open-domain dialogue chitchat
- non-task-oriented
 - main goal: keep the user entertained
 - standard evaluation: conversation length, user engagement
- (more or less) different architecture
 - may have the same structure as task oriented (NLU → DM → NLG)
 - often simpler, integrated somewhat like end-to-end DS
 - it's hard to have explicit NLU for open domain
 - no task to guide a meaning formalism
 - some of them don't need a DB connection (but some use it)
- beware: anything can be called a "chatbot" nowadays
 - here: only chatterbots / non-task-oriented systems

Chatbot tests

• **Turing test** (1950)

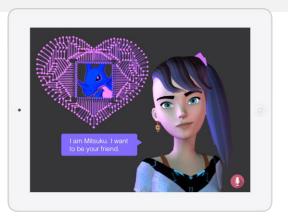

- evaluator & 2 conversations, with a machine & human, text-only
- needs to tell which is which
- does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990+)

- Turing test style, first topic-restricted 1995+ unrestricted
- time-limited (currently 25 minutes for both conversations)
- criticized as publicity stunt creates hype but no real progress

Amazon Alexa Prize (2017+)

- no pretending it's human, just coherent & engaging conversation for 20 mins.
- topic semi-restricted ("on popular topics")
- evaluator & 3 judges with stop-buttons
- score: duration + 1-5 scale of "would talk again"


Chatbot history

- natural communication important part of general AI
 - concerned people even before modern computers (cf. Turing)
- 1st chatbot: **Eliza** (1966)
 - rule-based, simulates a therapist
- **Parry** (1972)
 - similar, simulates a person with paranoid schizophrenia
 - was able to fool psychotherapists in a Turing test
- Not much progress until end of 1990's just better rules
 - research focused on task-oriented systems
- 1990's/2000's retrieval-based systems
- 2015+ huge surge of generative models

Notable/hyped chatbots

- Pandorabots/AIML framework for rule-based chatbots
 - A.L.I.C.E. bot basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) multiple times Loebner Prize winner
- Jabberwacky/Cleverbot (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times
- Xiaolce (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with "her"

https://www.zo.ai/ https://www.facebook.com/zo/

https://home.pandorabots.com/home.html

https://www.cleverbot.com/

Chatbot basic architectures

Rule-based

- human-scripted, react to keywords/phrases in user input
- very time-consuming to make, but still popular
 - chitchat by conversational assistants is typically rule-based

Data-driven

- retrieval remember a corpus & get replies from there
 - "nearest neighbour" approaches
 - corpus can contain past conversations with users (Jaberwacky/XiaoIce)
 - chatbots differ in the sophistication of reply selection
- **generative** (typically) seq2seq-based models
 - trained typically on static corpora
 - (theoretically) able to handle unseen inputs, produce original replies
 - basic seq2seq architecture is weak (dull responses) → many extensions

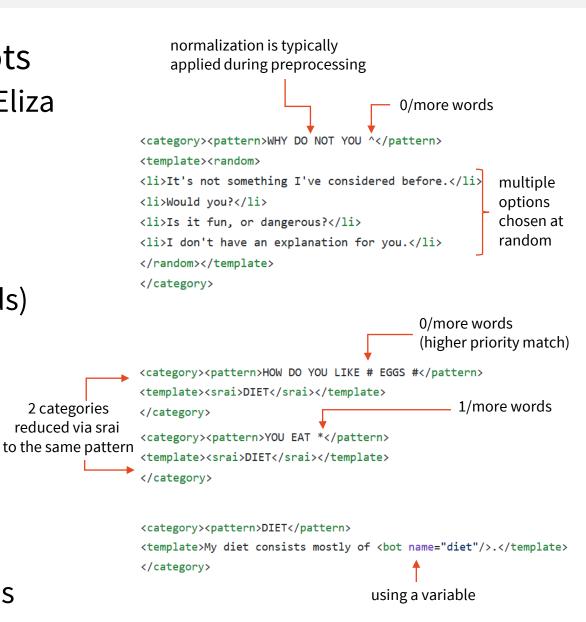
NPFL099 L10 2021 6

Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. *alike* → *what is the connection*
 - fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user's phrasing

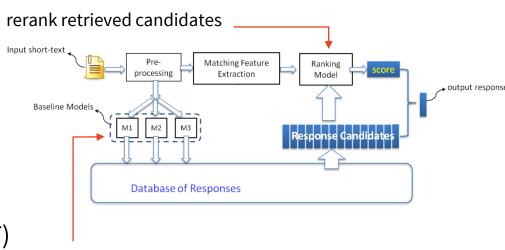
```
Welcome to
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
      Men are all alike.
ELIZA: What is the connection, do you suppose?
      They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
      He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
      It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
```

https://en.wikipedia.org/wiki/ELIZA


- it's all about the framing
 - it's easier to appear human as a therapist (or paranoid schizophrenic)

AIML (Pandorabots rules)

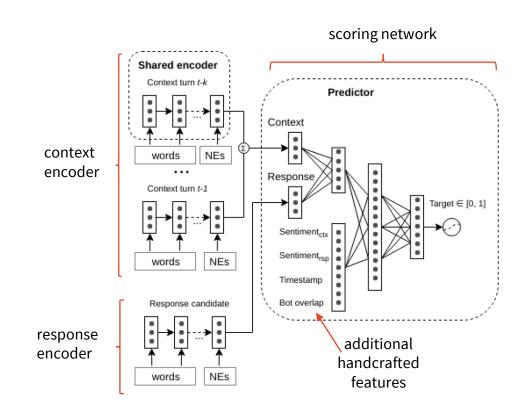
- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions (3)



- main concepts:
 - category basic unit of knowledge
 - groups patterns & templates
 - pattern user input pattern (with wildcards)
 - **set** lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** response specification
 - allows multiple options
 - **srai** symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - variable can be set/retrieved in templates
 - e.g. remember user name

Retrieval-based chatbots

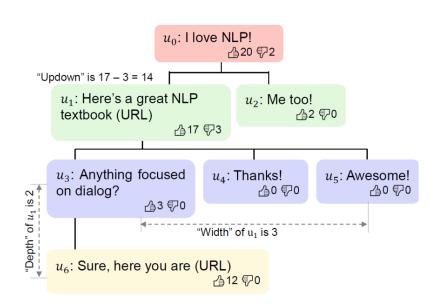
- remember a large corpus
 - 1) check for similar inputs in the corpus
 - 2) retrieve & rerank corresponding outputs
- needs 2 steps
 - 1) rough retrieval
 - needs to be fast to search the whole corpus (e.g. TF-IDF)
 - 2) more accurate reranking for candidates
 - most research focuses on this step
- problems:
 - can't produce unseen sentences
 - reply consistency isn't great
- solution (XiaoIce, Cleverbot):
 - use postprocessing, combine with rules



retrieve candidates (using simple matching)

(Wang et al., 2013) https://aclweb.org/anthology/D13-1096

Ranking responses


- Machine learning learning to rank
 - pointwise: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - pairwise: just learn to rank good > bad
 - incur loss for inversions
 - architecture anything possible
 - typical neural: dual encoder / Siamese network
 - 2 RNNs, for context & response + fully connected
- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from "bad" dialogues where long = good & short = bad)

(Shalyminov et al., 2018) https://www.aclweb.org/anthology/W18-5701

DialogRPT: Ranking with pretrained LMs

- GPT-2-based model (DialoGPT →)
- contrastive learning: feed 1 context + 2 responses, classify which is better
 - binary classification layer on top of last token
 - better than classify good/bad in isolation
- self-supervised data for ranking from Reddit
 - width = # of direct replies
 - depth = max. dialog length in subtree
 - updown = ⚠- ♥ votes

- Generic LSTM-based Seq2seq model
 - encode context / input, decode response
 - examples in paper look great, but... (→)

U: who is skywalker? S: he is a hero.

U: what is the purpose of life? S: to serve the greater good.

U: who is bill clinton?

so bored ...
S: that's good! i have the book but i'm bored too.

C[S]: nothin much, and how's the book?!

U: its good but i'm only like halfway through cuz i don't feel like reading. i'm

S: he 's a billionaire.

C[S]: thanks. yeah i am good thanks! good, but angry!
U: sorry you're angry, been there, i hope it dies down.

S: i hope so too, i'm not angry!!

U: what is moral?

S: what empowered humanity, what intellectual the essence is.

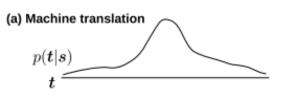
Seq2seq Chatbot Problems

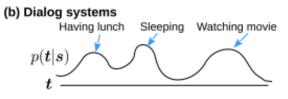
generic/dull responses

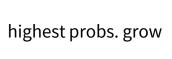
• short, low-entropy, repetitive

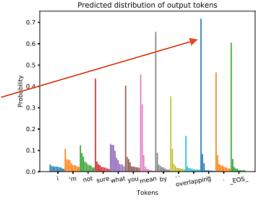
- see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

limited context


- encoding long contexts is slow & ineffective
- contexts are too sparse to learn much


inconsistency


NPFL099 L10 2021


- ask the same question twice, get two different answers
- no notion of own personality

(Wei et al., 2019) https://ieeexplore.ieee.org/document/8682634

(Jiang & De Rijke, 2018)

https://www.aclweb.org/anthology/W18-5712

U: How old are you?

S: 16 and you?

U: What's your age?

S: 18.

U: Where do you live now?

S: I live in Los Angeles.

U: In which city do you live now?

S: I live in Madrid.

U: In which country do you live now?

S: England, you?

Diversity/Coherence

Reranking: MMI

(Li et al., 2016) https://www.aclweb.org/anthology/N16-1014 Input: what is your name?

-0.91 I don't know.

-0.92 I don't know!

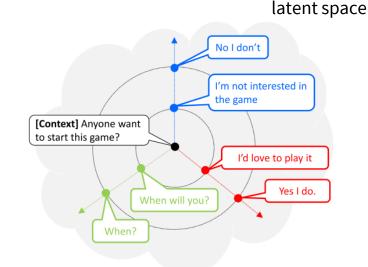
-0.92 I don't know, sir.

-0.97 Oh, my god!

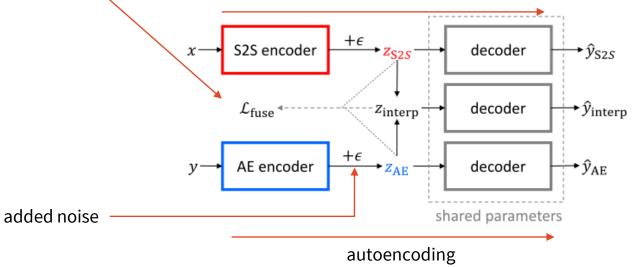
-1.58 My name is Robert.

-1.58 My name is John.

-1.59 My name's John.


- avoid dull replies that work anywhere
- instead of maximizing P(Resp|Context), maximize mutual information
 - actually can be rewritten as a trade-off between P(R|C) and P(C|R)
- can't train it easily, so train normally & rerank beams afterwards

- $MI = \log \frac{P(R,C)}{P(R)P(C)}$
- Longer context: HRED (Hierarchical Recurrent Encoder-Decoder)
 - 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input


Diversity

joining next turn generation & autoencoding

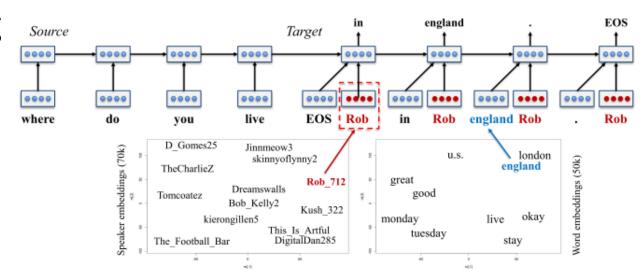
- LSTM VAE-like model, shared latent space
- multi-task learning (see last lecture)
- shared decoder
- additional "fusion loss" enforcing the same encoding for both tasks
- inference: adding a little noise to encodings
 - to produce different outputs

response generation

NPFL099 L10 2021 15

Consistency/Personality

 improving consistency by modelling chatbot's personality


Persona embeddings

- train speaker embeddings
- use speaker + word embeddings in the decoder
- needs lots of data

Persona copy-net

- add & attend to personal bio in context
 - chunks of text
- copy-net or pretrained LMs

(Yavuz et al., 2019) https://www.aclweb.org/anthology/W19-5917/

16

Coherence: Additional Objectives

- Transformer-based architectures
- **Denoising** (autoencoder): additional decoders
 - shuffled word order
 - masked words
 - masked utterance (mid-dialogue)
 - utterance order (GRU decoding order)
- Unlikelihood demoting unlikely tokens
 - penalize set of tokens selected at each time step
 - repeating n-grams, too much high-freq. vocab...
 - weighted combination with regular MLE loss

Auxiliary Tasks

| Context-Response Attention | Attent

(Li et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.428

NPFL099 L10 2021 17

(Zhao et al., 2020)

Chat-Specific Pretrained Language Models

- DialoGPT GPT-2 finetuned on Reddit (147M dialogues) (Zhang et al., 2020) https://www.aclweb.org/anthology/2020.acl-demos.30
 - no hierarchy, whole chat as a long text next-word prediction
 - works better than seq2seq-based ones

Meena

(Adiwardana et al., 2020) https://arxiv.org/abs/2001.09977

- "Evolved Transformer" architecture (Transformer + small changes automatically tuned)
- encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
- rule-based postprocessing
- evaluation: "making sense" & "being specific" better on both
- BlenderBot (sorta SotA now)

(Roller et al., 2021) https://aclanthology.org/2021.eacl-main.24/

- again, huge Transformers (but has a smaller version)
- retrieval & generative versions
- pretrained on Reddit, finetuned on a combination of specific dialogue datasets
- constrained beam search (avoid too short replies), better than sampling

Hybrid / Ensemble Chatbots (a.k.a. most Alexa Prize Entries)

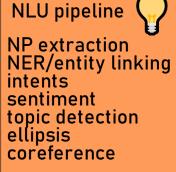
- State-of-the-art today: combining all methods
 - rule-based for sensitive/frequent/important questions
 - retrieval for jokes, trivia etc.
 - task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all
- NLU is typically shared, with advanced NLP pipelines
 - NER is very important can get relevant news & trivia
- Decision among bots
 - based on NLU topic detection
 - ranking multiple answers
 - profanity detection censoring outputs

Alana (Heriot-Watt University, 2017 & 2018 3rd)

- Bots:
 - Rule-based chit-chat
 - Ontologies knowledge graph walk

User

- movies, music, sports, books
- Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
- Specific services
- Bots compete for reply
 - priority list
 - bots can "lock"


Amazon

Post-

processing

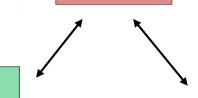
Echo

Bots

Coherence bot

ensemble

Eliza bot



Persona bot

Alana Example dialogue

coherence: stay on topic & ask further questions

Coherence bot Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking

forward to watching?

User: Vanilla Sky -> I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

Ontologies bot Alana: Oh I heard something interesting about Vanilla Sky. [... Movie trivia] Speaking of movies. What actors do you like? I like Leonardo DiCaprio [...]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What's a band that you would like to see? [...]

any news about him -> any news about Kendrick Lamar [Coreference resolution]

Alana Example dialogue

user model: name + preferred topics

Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?

User: could we talk about something else

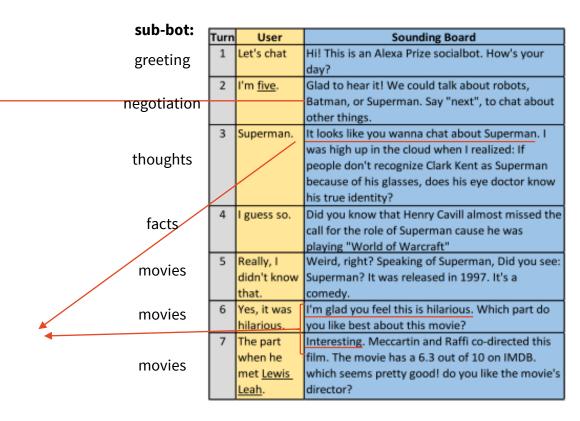
Alana: So John, since I know you like books, what have you read recently? I am reading [...]

User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?

I mean the novelist User:

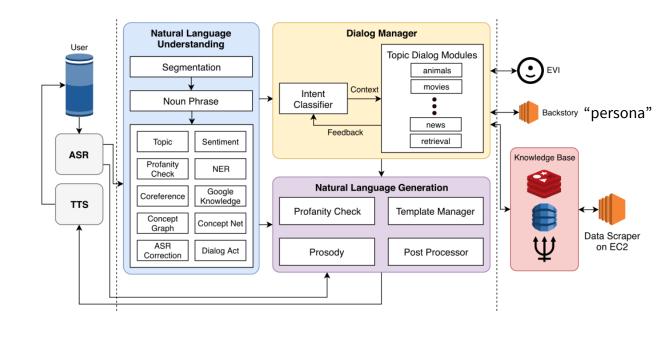
Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia]


User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.

Sounding Board (Uni Washington, 2017 winner)

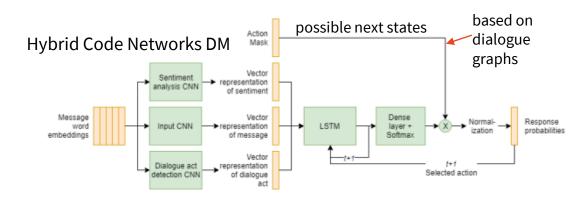
- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn't like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

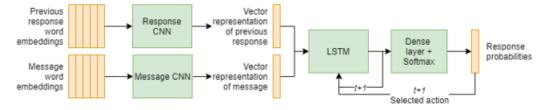

http://arxiv.org/abs/1804.10202

https://s3.amazonaws.com/alexaprize/2017/technical-article/soundingboard.pdf https://sounding-board.github.io/

Gunrock (UC Davis, 2018 winner)

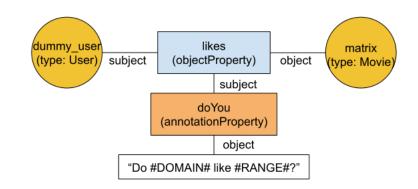
- Improving ASR
 - error correction KB fuzzy matching (allow for "typos")
 - sentence segmentation (RNN-based)
- NLU keyphrase extraction
 - focus on noun phrases
- Dialog manager stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel...

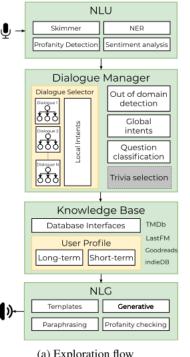



Alquist (Czech Technical University, 2017&2018 2nd)

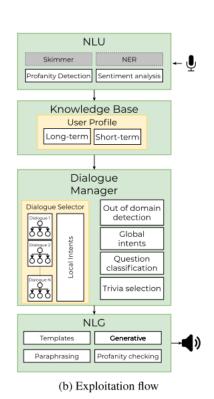
- full NLU pipeline (similar to Alana)
- 2017 handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

Topic Switch Detector


http://alquistai.com/

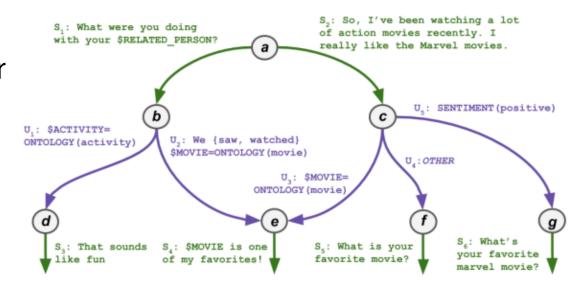

NPFL099 L10 2021

http://alexaprize.s3.amazonaws.com/2017/technical-article/alquist.pdf
http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alquist.pdf
https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb


https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f

- Knowledge graph: Wikidata + User + Bot model
 - RDF triples, partially delexicalized
 - allows building user profile + referencing it
- NLU BERT-based segmenting (multiple intents)
 - produce responses to all, then select
- DM/NLG response based on "adjacency pairs"
 - predefined input-response pairs/sub-graphs
 - transition depends on KG search
 - adding prompts (questions, fun facts etc.)
- Out-of-domain: detection & DialoGPT response
 - DialogRPT reranker
- Exploration vs. exploitation
 - first get to know user, then use this information

Emora (Emory Uni, 19/20 winner) & Chirpy Cardinal (Stanford, 19/20 2nd)


- Emora (Finch et al., 2020) https://arxiv.org/abs/2009.04617
 - NLU prominent topic & sentiment classifier
 - stress on emotion, personal experience
 - hierarchical ontology of topics & sub-topics
 - use higher level if more specific is not available
 - state machine manager
 - transitions similar to Alquist

Chirpy Cardinal

- architecture similar to Alana
- handcrafted treelets + GPT-2 generation
- focus on user engagement:

Mm-hmm

- backchanneling (just the right amount)
- open-ended prompts (force user to say more than Y/N)
- self-disclosure (reciprocal effect)

(Paranjape et al., 2020) https://arxiv.org/abs/2008.12348 (Hardy et al., 2021) https://aclanthology.org/2021.sigdial-1.11

Alexa Prize bottom line

- understanding is the bottleneck
 - ASR problems chat-specific ASR improved things, but it's by far not perfect
 - vague concept of dialogue state, despite full NLP pipelines
 - result: typically very crude intents + list of named entities
 - recognizing multiple/fine-grained intents is a problem
- it's still more about social engineering than "AI"
 - a lot of strategies for not-understanding (switching topics, questions...)
- machine learning helps, but pure ML is not enough
 - lack of annotated data → often relatively simple methods
 - ML helps mainly in NLU, end-to-end seq2seq doesn't work
- interesting content is crucial
 - the more handcrafted topics, the better
 - fluent NLG not so much (but prosody helps!)
- brutal variance in the evaluation very subjective

Summary

- chatbots = non-task oriented systems
 - targets: conversation length & user engagement
 - impersonating a human Turing test
- approaches:
 - rule-based keyword spotting, scripting
 - retrieval copy & paste from large databases
 - **generative** seq2seq/transformer trained on corpora of dialogues
 - too many possible responses don't go well with MLE → safe, short, dull
 - many extensions: personality, coherence, diversity... still not ideal
 - hybrid combining all of the above
 - typically mainly rule-based + retrieval, machine learning in NLU only
- open-domain NLU is still an unsolved problem
 - despite that, many people enjoy conversations with chatbots
 - interesting content is crucial

Thanks

Contact us:

https://ufaldsg.slack.com/ {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Labs in 10 mins 5th assignment

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Mainly individual papers referenced directly on slides
- Ram et al. (2018): Conversational AI: The Science Behind the Alexa Prize https://arxiv.org/abs/1801.03604
- Khatri et al. (2018): Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize https://arxiv.org/abs/1812.10757
- Shum et al. (2018): From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots https://link.springer.com/article/10.1631/FITEE.1700826
- Vlahos (2018): Inside the Alexa Prize https://www.wired.com/story/inside-amazon-alexa-prize/
- Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner Prize Mitsuku PARRY Turing test Xiaoice Zo (bot)

NPFL099 L10 2021 30