
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

9. End-to-end Systems
http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

29. 11. 2021

http://ufal.cz/npfl099

End-to-end dialogue systems

• End-to-end = represent the whole system as one neural net
• sometimes, just some of the components can be joined

• e.g. just NLU + tracker + policy, NLG excluded

• Pros & cons:
• Traditional architecture – separate components:

• more flexible (replace one, keep the rest)

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• explainability

• End-to-end:
• joint optimization by backprop

• if fully differentiable

• still can work via RL (with supervised initialization)

• architectures still decompose into (some of) original DS components
• and often still need DA-level annotation 2NPFL099 L9 2021

Training end-to-end systems

• Supervised
• sometimes components still trained separately

• e.g. hard knowledge base lookup

• sometimes all in one

• can’t learn from users

• problems with train-test mismatch

• RL
• can learn from users, can learn all-in-one

• doesn’t work great if done on word-level
• RL doesn’t care about fluency/naturalness

• either avoid word-level, or mix with supervised

3NPFL099 L9 2021

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-
artificial-intelligence-ai-chatbot-new-language-research-openai-google-
a7869706.html

https://towardsdatascience.com/the-truth-behind-
facebook-ai-inventing-a-new-language-37c5d680e5a7

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-artificial-intelligence-ai-chatbot-new-language-research-openai-google-a7869706.html
https://towardsdatascience.com/the-truth-behind-facebook-ai-inventing-a-new-language-37c5d680e5a7

Supervised with component nets

• “seq2seq augmented with history (tracker) & DB”

• end-to-end, but has components
• LSTM “intent network”/encoder (latent intents)

• CNN+RNN belief tracker (prob. dist. over slot values)
• lexicalized + delexicalized CNN features

• turn-level RNN (output is used in next turn hidden state)

• MLP policy (feed-forward)

• LSTM generator
• conditioned on policy output, delexicalized

• DB: rule-based, takes most probable belief values
• creates boolean vector of selected items

• vector compressed to 6-bin 1-hot (no match, 1 match… >5 matches)
on input to policy

• 1 matching item selected at random & kept for lexicalization after generation

4

1-layer with tanh

LSTM encoder
(latent intent representation)

slot value prob. dist. CNN

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

RNN

NPFL099 L9 2021

RNN + CNN + FC | seq gen + classif

https://www.aclweb.org/anthology/E17-1042

Supervised with component nets

• belief tracker trained separately

• rest trained by cross-entropy on generator outputs

• data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
• workers take turns to be user & system, always just add 1 turn

5NPFL099 L9 2021

base seq2seq
HRED
(hierarchical
seq2seq)

length-weighted
decoding

average on top 5 candidate outputs

BLEU for best output

match + answered all requested slots

returned correct restaurant

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

added
attention

RNN + CNN + FC | seq gen + classif

https://www.aclweb.org/anthology/E17-1042

Hybrid Code Networks

• partially handcrafted, designed for little training data
• with Alexa-type assistants in mind

• Utterance representations:
• bag-of-words binary vector

• average of word embeddings

• Entity extraction & tracking
• domain-specific NER

• handcrafted tracking

• returns action mask
• permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)

• return (optional) handcrafted context features (various flags)

• LSTM state tracker (output retained for next turn)

• i.e. no explicit state tracking, doesn’t need state tracking annotation

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274

handcrafteddomain-specific NER

permitted actions in this timestep
(masks out any illogical steps)

various handcrafted flags

turn-level LSTM tracker
(LSTM hidden = “dialogue state”)

RNN + FC + rule | classif

http://arxiv.org/abs/1702.03274

Hybrid Code Networks

• feed-forward policy – produces probability distribution over actions
• mask applied to outputs & renormalized → choosing action = output template

• handcrafted fill-in for entities
• takes features from ent. extraction

• ~learned part is fully delexicalized

• actions may trigger API calls
• APIs can return feats for next step

• training – supervised & RL:
• SL: beats a rule-based system

with just 30 training dialogues

• RL: REINFORCE with baseline

• RL & SL can be interleaved

• extensions: better input than binary & averaged embeddings
7

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162

feed-forward
policy

handcrafted
entity fill-inactions passed

to next timestep

RNN + FC + rule | classif

https://arxiv.org/abs/1811.12148
http://arxiv.org/abs/1907.12162

Sequicity: Fully seq2seq-based model

• less hierarchy, simpler architecture
• no explicit system action – direct to words

• still explicit dialogue state

• KB is external (as in most systems)

• seq2seq + copy (pointer-generator):
• encode: previous dialogue state

+ prev. system response
+ current user input

• decode new state first
• attend over whole encoder

• decode system output (delexicalized)
• attend over state only

+ use KB (one-hot vector added to each generator input)
• KB: 0/1/more results – vector of length 3

8NPFL099 L9 2021

en
co

d
er

d
eco

d
er

keep hidden
state here

decode new
dialogue state

decode system output,
attend over state only,
add KB vector to inputs,
delexicalized

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133

previous
state

previous
system

response
current

user input

RNN + copy | seq gen

https://www.aclweb.org/anthology/P18-1133

“Hello, it’s GPT-2 – How can I help?”

• Simple adaptation of the GPT pretrained LM
• system/user embeddings

• added to Transformer positional embs. & word embs.

• training to generate as well as classify utterances (good vs. random)
• all supervised

• no DB & belief tracking (yet, see →)

• using gold-standard belief & DB, no way of updating belief

9NPFL099 L9 2021

(Budzianowski & Vulić, 2019)
https://www.aclweb.org/anthology/D19-5602

decoded part

simple encoding:
domain-slot-value[-slot-value…] DB result entry tokens

delexicalized
generation

pre-LM | seq gen

https://www.aclweb.org/anthology/D19-5602

Real stuff with GPT-2: SOLOIST, SimpleTOD, NeuralPipeline, UBAR

• basically Sequicity over GPT-2: decode belief state, consult DB, decode response

• history, state, DB results/system action – all recast as sequence

• finetuning on dialogue datasets

• extensions:
• specific user/system embeddings (NP)

• additional training (SOLOIST)
• not just word-level generation

(as GPT-2 default)

• contrastive objective:
detecting fake belief/fake response
from real ones

• explicit system actions
(SimpleTOD, UBAR)
• one more decoding step

• Context includes dialogue states (UBAR)
10NPFL099 L9 2021

SOLOIST

(Peng et al., 2020) http://arxiv.org/abs/2005.05298
(Hosseini-Asl et al., 2020) http://arxiv.org/abs/2005.00796
(Ham et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.54
(Yang et al., 2021) http://arxiv.org/abs/2012.03539

pre-LM | seq gen
(+classif)

http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.00796
https://www.aclweb.org/anthology/2020.acl-main.54
http://arxiv.org/abs/2012.03539

AuGPT: our take on this

• similar to Soloist:
• “GPT-2 based Sequicity”

• 1. encode context & user utterance

• 2. decode belief state

• 3. query DB

• 4. encode results

• 5. decode response

• consistency auxiliary task

• for robustness & diversity:
• input data augmentation via backtranslation

• unlikelihood training (penalize repeated tokens)

• nucleus sampling (cover ≥ 0.9 probability)

11NPFL099 L9 2021

(more auxiliary tasks,
not really useful)

actually useful

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

NB: “encode” with GPT-2 means force-decode
(ignore the softmax, feed your own tokens)

pre-LM | seq gen (+classif)

http://arxiv.org/abs/2102.05126

MinTL: Diff dialogue states

• 2-step decoding, same as ↑
• based on T5 or BART here

• explicit 2 decoders
(for state, for response)

• “Levenshtein states”
• don’t decode full state each time

• just decode a diff
(“Levenshtein distance from previous”)

• better consistency over dialogue

12NPFL099 L9 2021

encode previous state & context

decode diffs

obtain diffs from state annotation

update state based on
decoded diff

DB queried based on updated state
response decoder starting token = # of DB results

(Lin et al., 2020)
https://aclanthology.org/2020.emnlp-main.273/

pre-LM | seq gen

https://aclanthology.org/2020.emnlp-main.273/

Few-shot dialogue generation

• Domain transfer:
• source domain training dialogues

• target domain “seed responses”
with annotation

• encoding all into latent space
• keeping response & annotation encoding close

• keeping context & response encoding close

• decoder loss + matching loss

• encoder: HRE (hierarchical RNN)

• decoder: copy RNN (with sentinel)
• “copy unless attention points to sentinel” (see Mem2Seq)

• DB queries & results treated as responses/inputs
• DB & user part of environment

responses annotations

dialogue contexts
(source domain only)

(target domain only)(source & target domains)

resp. encoder
resp.

decoder
latent space

context
encoder

training on source domain

dialogue context responsematching loss

matching loss

training on target domain

turn-level encoder

annotation response

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001

RNN + copy | seq gen

http://aclweb.org/anthology/W18-5001

Latent Action RL

• Making system actions latent, learning them implicitly

• Like a VAE, but discrete latent space here (𝑀 𝑘-way variables)
• using Gumbel-Softmax trick for backpropagation

• using Full ELBO (KL vs. prior network)
or “Lite ELBO” (KL vs. uniform 1/𝑘)

• RL over latent actions, not words
• avoids producing disfluent language

• “fake RL” based on supervised data
• generate outputs, but use original contexts

from a dialogue from training data

• success & RL updates based on generated responses

• ignores DB & belief tracking
• takes gold annotation from data (assumes external model for this)

14

discrete latent
action set

(Zhao et al., 2019)
https://www.aclweb.org/anthology/N19-1123

RNN | seq gen

https://www.aclweb.org/anthology/N19-1123

LAVA: Latent Actions with VAE pretraining

• kinda combination of two previous

• discrete latent space for actions

• multi-step training scenario:
1) autoencode responses into latent space

2) supervised training for response generation
via the latent space

3) RL over the latent actions
• same “fake RL” as previous

• options to join autoencoding & response generation

a) KL loss – don’t go too far from autoencoding in latent space

b) multi-task training (go back to autoencoding once in a while)

• again, assumes gold state & DB

15

(Lubis et al., 2020)
https://aclanthology.org/2020.coling-main.41/

RNN | seq gen

NPFL099 L9 2021

https://aclanthology.org/2020.coling-main.41/

HDNO: Hierarchical RL with latent actions

• Hierarchical RL
• top level: over system actions

• bottom: over words

• system actions are latent
• Gaussian distribution

• word-level RL with LM rewards
• pretrained LSTM LM to provide scores

• to avoid low fluency due to word-level RL

• REINFORCE with supervised pretraining
• separate updates on both levels (so you’re not aiming at a moving target)

• “fake RL” on data (same as previous)

• again, assumes gold state & DB

16NPFL099 L9 2021

1 linear layer

Gaussian

(Wang et al., 2021)
http://arxiv.org/abs/2006.06814

oracle
(from gold
annotation)

RNN | seq gen

http://arxiv.org/abs/2006.06814

JOUST: system & simulator joint RL

• System & user simulator with similar architecture
• both seq2seq-based

• joint context encoder

• system: state tracker
• private context encoder

(user shouldn’t see it)

• user: preset goals & tracking

• interaction via utterances

• RL over actions
• REINFORCE, supervised pretraining

• dialog-level or turn-level rewards
• turn-level for each reasonable action, e.g. requesting new slot, providing entity etc.

• Domain transfer – new domains / domain combinations from fewer (~100-300) dialogs

17NPFL099 L9 2021

all LSTMs

(Tseng et al., 2021)
https://aclanthology.org/2021.acl-long.13

RNN | seq gen

https://aclanthology.org/2021.acl-long.13

Soft DB Lookups

• incorporating NLU/tracker uncertainty into DB results

• making the system fully differentiable
• but less interpretable

• DB output = distribution over all items
• plain MLE estimation: 𝑝 row 𝑖 = ςslots 𝑗

• not trained, based directly on tracker

• NLU/trackers – per-slot GRUs + softmaxes
• input: counts of n-grams

• policy = GRU + softmax

• trained by RL
• shown to outperform hard DB on a movie domain

NPFL099 L9 2021

(Dinghra et al., 2017)
https://www.aclweb.org/anthology/P17-1045

𝑝(𝑣=𝑗)

of 𝑣′s in table
if 𝑗 specified & in table

1/# rows (uniform) otherwise

as given by tracker

trainable fixed
(but differentiable)

18

RNN | classif

https://www.aclweb.org/anthology/P17-1045

whole dialogue history
(except last user input)

sum of BoW
embeddings

A

last user input

R

linear transform

matrix product
(a.k.a. attention)

R1

R2

R3

response candidates

Memory networks

• not a full dialogue model,
just ranker of candidate replies

• no explicit modules

• based on attention over history
• sum of bag-of-words embeddings

• added features (user/system, turn no.)

• weighted match against
last user input (dot + softmax)

• linear transformation to produce
next-level input

• last input matched (dot + softmax)
against a pool of possible responses

19NPFL099 L9 2021

lo
o

p
 a

 fe
w

 t
im

es

single step of the loop

multiple steps

(Sukhbaatar et al., 2015) http://arxiv.org/abs/1503.08895
(Bordes et al., 2017) http://arxiv.org/abs/1605.07683

𝑜 = 𝑅෍

𝑖

𝑝𝑖𝑚𝑖

𝑝𝑖 = softmax 𝑞T𝑚𝑖

FC + att | classif

http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1605.07683

last user input

dialogue
history

+
KB

Mem2Seq: memory nets & pointer-generator

• “standard” MemNN encoder:
• special memory:

• token-level dialogue history
(whole history concatenated, no hierarchy)
• with added turn numbers & user/system flags

• DB tuples (sums of subject-relation-object)

• “sentinel” (special token)

• decoder: MemNN over GRU
• GRU state is MemNN initial query

• last level attention is copy pointer

• if copy pointer points at sentinel,
generate from vocabulary
• copies whenever it can

• vocabulary distribution comes from
1st level of memory + GRU state
• linear transform + softmax 20

(Madotto et al., 2018) https://www.aclweb.org/anthology/P18-1136
encoder

decoder (word level)

GRU GRU

GRU hidden state is the
initial MemNN query

standard MemNN
(see previous slide)

state embedding
(1st decoder GRU input)

previous
generated

word

𝑜𝐾 = ℎ0

vocab softmax generated
from 1st memory hop

𝑃vocab ෝ𝑦𝑡 = softmax(𝑊1[ℎ𝑡, 𝑜
1])

pointer softmax is
last memory level attention

𝑃𝑝𝑡𝑟 = 𝑝𝑡
𝐾

only if 𝑃𝑝𝑡𝑟 points

at sentinel,
𝑃vocab is used

token-level
dialogue history

FC + att + RNN | seq gen

https://www.aclweb.org/anthology/P18-1136

attention weights
at individual
word generation steps

Mem2Seq visualization

21NPFL099 L9 2021

dialogue
history

DB

sentinel
“don’t copy, generate”

values
(these get output)

subject-relation-object
(this gets embedded)

steps correspond
to generated words

from the sentence on top

away and through
are newly generated

270_altaire_walk
and 4_miles
are copied from DB

the and closest
are copied from history

FC + att + RNN | seq gen

Note: some DB entries were omitted for readability

(Madotto et al., 2018)
https://www.aclweb.org/anthology/P18-1136

https://www.aclweb.org/anthology/P18-1136

Summary

• End-to-end = single network for NLU/tracker + DM + (sometimes) NLG
• networks may decompose to components + need dialogue state annotation

• joint training by backprop (if differentiable)

• Hybrid Code Nets – partially handcrafted, but end-to-end

• Sequicity – seq2seq & 2-step decoding: dialogue state, then response

• GPT-2-based systems – same idea, just with pretrained LMs

• Discrete latent action space – learning w/o action annotation

• Soft DB lookups – making the whole system differentiable

• RL optimization
• without NLG (over actions) or hierarchical

• “fake RL” on training data (no simulator needed)

• JOUST: joint system-simulator training
22NPFL099 L9 2021

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267

• Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems:
http://dad.uni-bielefeld.de/index.php/dad/article/view/3690

23NPFL099 L9 2021

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
https://arxiv.org/abs/1809.08267
http://dad.uni-bielefeld.de/index.php/dad/article/view/3690

