NPFL099 Statistical Dialogue Systems 9. End-to-end Systems

http://ufal.cz/npfl099

Ondřej Dušek, **Vojtěch Hudeček** & Tomáš Nekvinda 29. 11. 2021

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

End-to-end dialogue systems

End-to-end = represent the whole system as one neural net

- sometimes, just some of the components can be joined
 - e.g. just NLU + tracker + policy, NLG excluded
- Pros & cons:
 - Traditional architecture separate components:
 - more flexible (replace one, keep the rest)
 - error accumulation
 - improved components don't mean improved system
 - possibly joint optimization by RL
 - explainability
 - End-to-end:
 - joint optimization by backprop
 - if fully differentiable
 - still can work via RL (with supervised initialization)
 - architectures still decompose into (some of) original DS components
 - and often still need DA-level annotation

Training end-to-end systems

- Supervised
 - sometimes components still trained separately
 - e.g. hard knowledge base lookup
 - sometimes all in one
 - can't learn from users
 - problems with train-test mismatch

• RL

- can learn from users, can learn all-in-one
- doesn't work great if done on word-level
 - RL doesn't care about fluency/naturalness
 - either avoid word-level, or mix with supervised

<pre>Alice : book=(count:3 value:1) hat=(count:2 value:1) ball=(count:1 value:5) Bob : book=(count:3 value:0) hat=(count:2 value:0) ball=(count:1 value:10</pre>
Bob : i can i i everything else
Alice : balls have zero to me to
Bob : you i everything else
Alice : balls have a ball to me
Bob : i i can i i i everything else
Alice : balls have a ball to me
Bob : i
Alice : balls have zero to me to
Bob : you i i i i i everything else
Alice : balls have 0 to me to
Bob : you i i i everything else
Alice : balls have zero to me to

https://towardsdatascience.com/the-truth-behindfacebook-ai-inventing-a-new-language-37c5d680e5a7

¥	INDE	EPENDE	NT	¥	SUBSCRIBE NOW	LOGIN	Q	≡
3	`₩ —						•	-0:00 🕻
		FA	CEBC	OK'S	ARTIFIC	IAL		
	INT	ELLIG	ENCE	E ROB	OTS SH	JT D	OW	Ν
	AFT	ER TH	EY S	FART 1	ALKING	GTO	EAC	Η
	ΤΟ	HER	IN TH	EIR O	WN LAN	IGUA	GE	
			נ'	you i i i everythi	ng else'			
		Andrew Grif	fin @_ andrew _.	griffin Monday	31 July 2017 17:10 8	38 comments	5	

Facebook abandoned an experiment after two artificially intelligent programs appeared to be chatting to each other in a strange language only they understood.

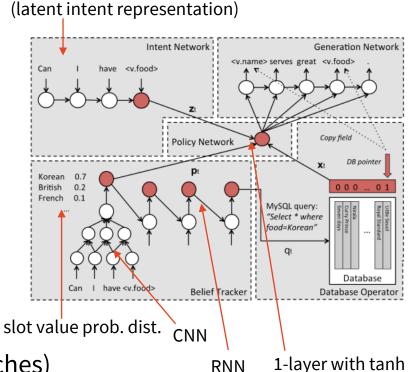
https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebookartificial-intelligence-ai-chatbot-new-language-research-openai-googlea7869706.html

Supervised with component nets

(Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042

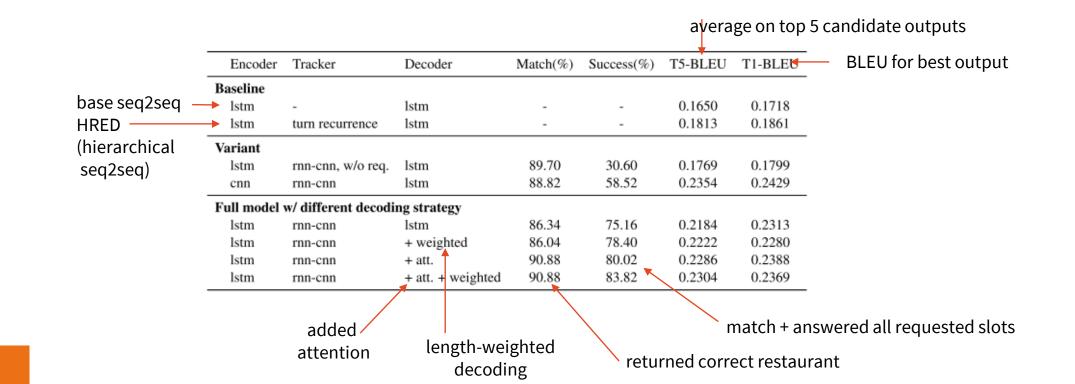
LSTM encoder

- "seq2seq augmented with history (tracker) & DB"
- end-to-end, but has components
 - LSTM "intent network"/encoder (latent intents)
 - CNN+RNN **belief tracker** (prob. dist. over slot values)
 - lexicalized + delexicalized CNN features
 - turn-level RNN (output is used in next turn hidden state)
 - MLP **policy** (feed-forward)
 - LSTM generator
 - conditioned on policy output, delexicalized
 - **DB**: rule-based, takes most probable belief values
 - creates boolean vector of selected items
 - vector compressed to 6-bin 1-hot (no match, 1 match... >5 matches) on input to policy
 - 1 matching item selected at random & kept for lexicalization after generation



Supervised with component nets

- belief tracker trained separately
- rest trained by cross-entropy on generator outputs
- data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
 - workers take turns to be user & system, always just add 1 turn



Hybrid Code Networks

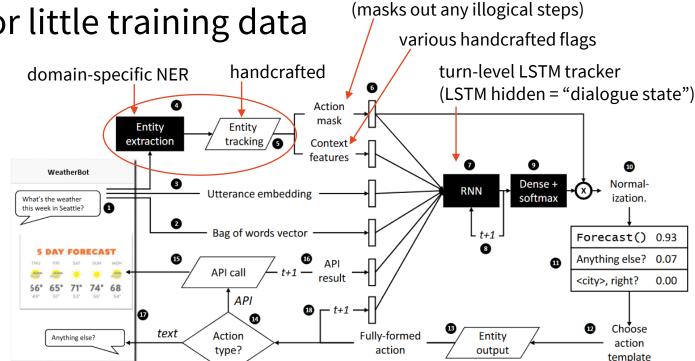
(Williams et al., 2017) http://arxiv.org/abs/1702.03274

permitted actions in this timestep

- partially handcrafted, designed for little training data
 - with Alexa-type assistants in mind
- Utterance representations:
 - bag-of-words binary vector
 - average of word embeddings

Entity extraction & tracking

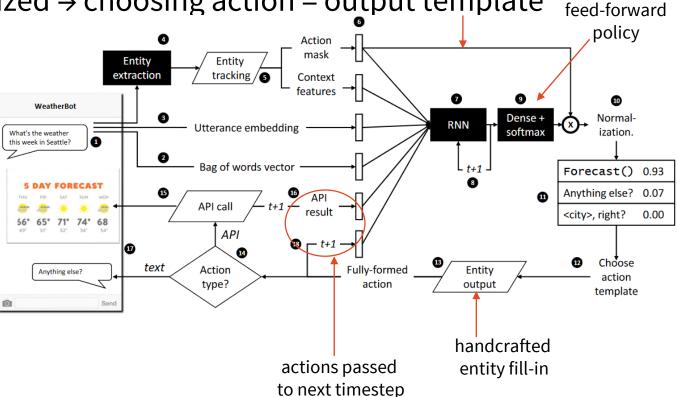
- domain-specific NER
- handcrafted tracking
- returns action mask



- permitted actions in this step (e.g. can't place a phone call if we don't know who to call yet)
- return (optional) handcrafted **context features** (various flags)
- LSTM state tracker (output retained for next turn)
 - i.e. no explicit state tracking, doesn't need state tracking annotation

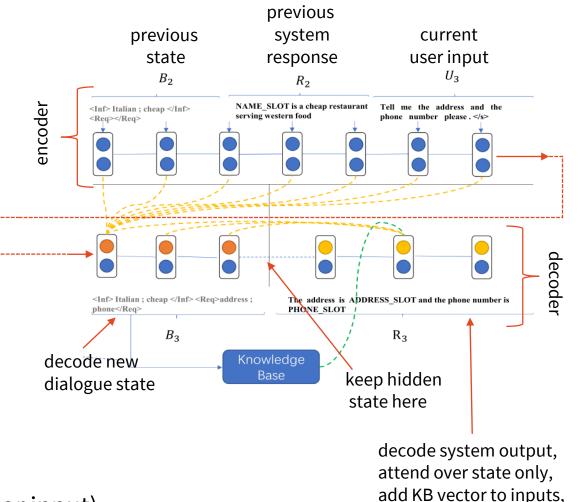
Hybrid Code Networks

- feed-forward policy produces probability distribution over actions
 - mask applied to outputs & renormalized → choosing action = output template
- handcrafted fill-in for entities
 - takes features from ent. extraction
 - ~learned part is fully delexicalized
- actions may trigger API calls
 - APIs can return feats for next step
- training supervised & RL:
 - SL: beats a rule-based system with just 30 training dialogues
 - RL: REINFORCE with baseline
 - RL & SL can be interleaved
- extensions: better input than binary & averaged embeddings



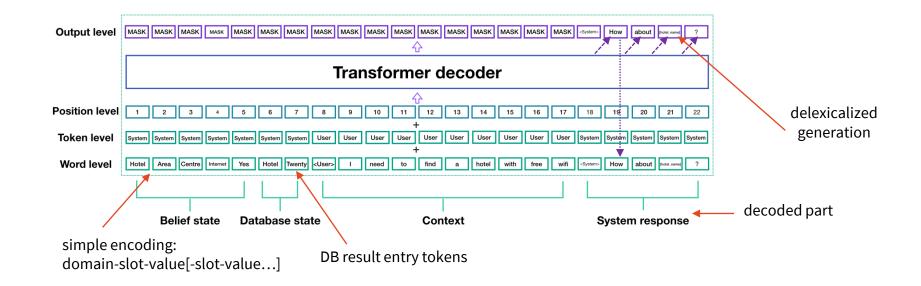
Sequicity: Fully seq2seq-based model

- less hierarchy, simpler architecture
 - no explicit system action direct to words
 - still explicit dialogue state
 - KB is external (as in most systems)
- seq2seq + copy (pointer-generator):
 - encode: previous dialogue state
 + prev. system response
 + current user input
 - decode new state first
 - attend over whole encoder
 - decode system output (delexicalized)
 - attend over state only
 - + use KB (one-hot vector added to each generator input)
 - KB: 0/1/more results vector of length 3



"Hello, it's GPT-2 – How can I help?"

- Simple adaptation of the GPT pretrained LM
 - system/user embeddings
 - added to Transformer positional embs. & word embs.
 - training to generate as well as classify utterances (good vs. random)
 - all supervised
- no DB & belief tracking (yet, see →)
 - using gold-standard belief & DB, no way of updating belief



pre-LM seg gen

Real stuff with GPT-2: SOLOIST, SimpleTOD, NeuralPipeline, UBAR

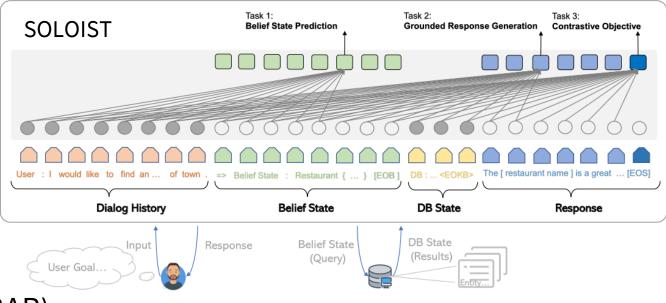
- basically Sequicity over GPT-2: decode belief state, consult DB, decode response
 - history, state, DB results/system action all recast as sequence
 - finetuning on dialogue datasets
- extensions:
 - specific user/system embeddings (NP)
 - additional training (SOLOIST)
 - not just word-level generation (as GPT-2 default)
 - contrastive objective: detecting fake belief/fake response from real ones
 - explicit system actions (SimpleTOD, UBAR)
 - one more decoding step
 - Context includes dialogue states (UBAR)

(Peng et al., 2020)	http://arxiv.org/abs/2005.05298
(Hosseini-Asl et al., 2020)	<u>http://arxiv.org/abs/2005.00796</u>
(Ham et al., 2020)	https://www.aclweb.org/anthology/2020.acl-main.54
(Yang et al., 2021)	http://arxiv.org/abs/2012.03539

pre-LM

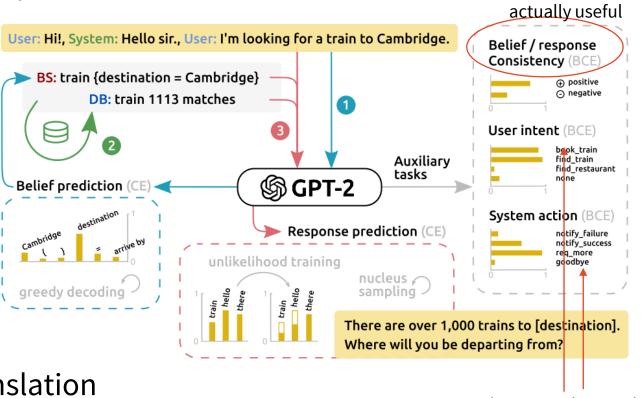
seq gen

(+classif)



AuGPT: our take on this

- NB: "encode" with GPT-2 means **force-decode**
- (ignore the softmax, feed your own tokens)
- similar to Soloist:
 - "GPT-2 based Sequicity"
 - 1. encode context & user utterance
 - 2. decode belief state
 - 3. query DB
 - 4. encode results
 - 5. decode response
 - consistency auxiliary task
- for robustness & diversity:
 - input data augmentation via backtranslation
 - unlikelihood training (penalize repeated tokens)
 - nucleus sampling (cover ≥ 0.9 probability)

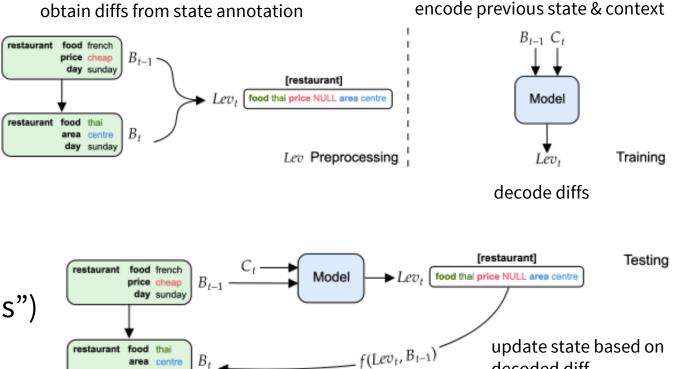


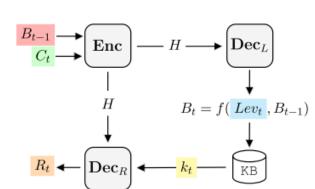
(more auxiliary tasks, not really useful)

decoded diff

MinTL: Diff dialogue states

- 2-step decoding, same as ↑
 - based on T5 or BART here
 - explicit 2 decoders (for state, for response)
- "Levenshtein states"
 - don't decode full state each time
 - just decode a diff ("Levenshtein distance from previous")
 - better consistency over dialogue





[hotel] stars 5 area centre day sunday [restaurant] food thai area centre day sunday name bangkok city <EOB> Can you help me book a 5 star hotel near the restaurant on the same day? <EOU>For how many people? <EOR>10 people <EOU> <SOB>[hotel] people 10 <EOB>

B,

area centre

day sunday

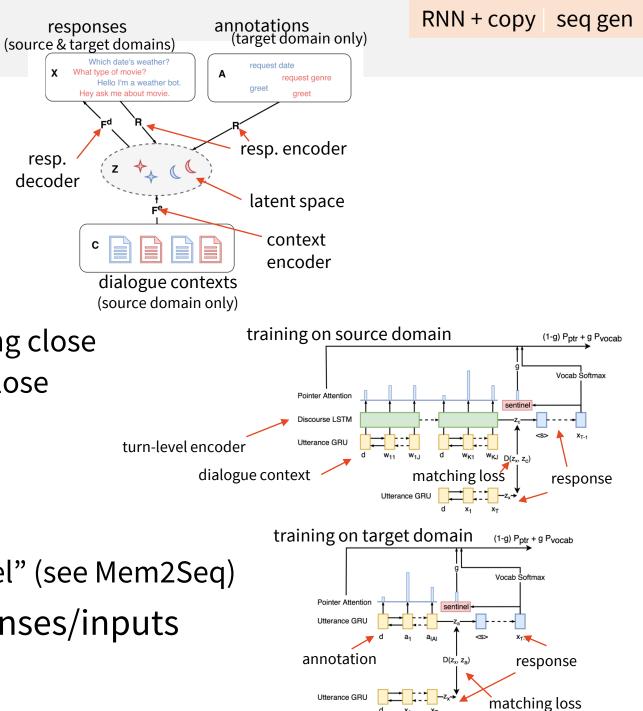
<KB2> sorry, there are no matches. would you like to try another part of town? <EOR>

DB gueried based on updated state response decoder starting token = # of DB results

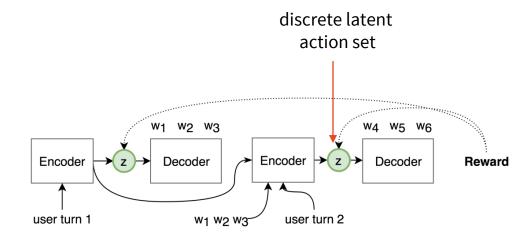
Few-shot dialogue generation

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001

- Domain transfer:
 - source domain training dialogues
 - target domain "seed responses" with annotation
- encoding all into latent space
 - keeping response & annotation encoding close
 - keeping context & response encoding close
 - decoder loss + matching loss
- encoder: HRE (hierarchical RNN)
- decoder: copy RNN (with sentinel)
 - "copy unless attention points to sentinel" (see Mem2Seq)
- DB queries & results treated as responses/inputs
 - DB & user part of environment



- Making system actions latent, learning them implicitly
- Like a VAE, but **discrete latent space** here (*M k*-way variables)
 - using Gumbel-Softmax trick for backpropagation
 - using Full ELBO (KL vs. prior network) or "Lite ELBO" (KL vs. uniform 1/k)
- RL over latent actions, not words
 - avoids producing disfluent language
 - "fake RL" based on supervised data
 - generate outputs, but use original contexts from a dialogue from training data
 - success & RL updates based on generated responses
- ignores DB & belief tracking
 - takes gold annotation from data (assumes external model for this)

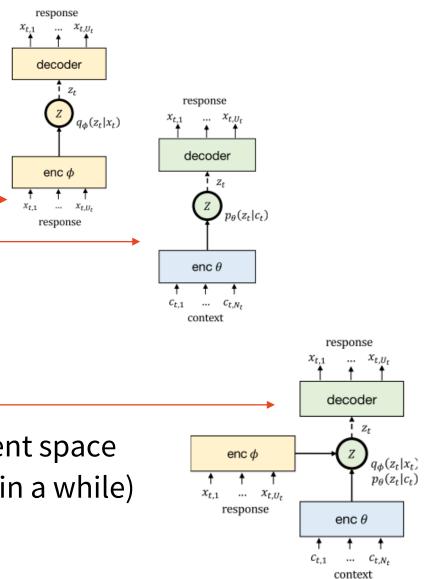


RNN

seq gen

LAVA: Latent Actions with VAE pretraining

- kinda combination of two previous
- discrete latent space for actions
- multi-step training scenario:
 - **1) autoencode** responses into latent space
 - **2) supervised** training for response generation via the latent space
 - 3) RL over the latent actions
 - same "fake RL" as previous
- options to join autoencoding & response generation
 - a) KL loss don't go too far from autoencoding in latent space
 - b) multi-task training (go back to autoencoding once in a while)
- again, assumes gold state & DB



https://aclanthology.org/2020.coling-main.41/

(Lubis et al., 2020)

generated utterances primitive actions

where

vour

natural language generator

low-level policy

destination

HDNO: Hierarchical RL with latent actions

(Wang et al., 2021) http://arxiv.org/abs/2006.06814

dialogue policy

high-level policy

→ utterance

elief state

database

search result

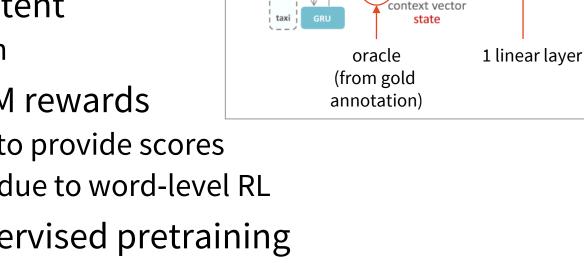
Gaussian

dialogue

act

option

- Hierarchical RL
 - top level: over system actions
 - bottom: over words
- system actions are latent
 - Gaussian distribution
- word-level RL with LM rewards
 - pretrained LSTM LM to provide scores
 - to avoid low fluency due to word-level RL
- REINFORCE with supervised pretraining
 - separate updates on both levels (so you're not aiming at a moving target)
 - "fake RL" on data (same as previous)
- again, assumes gold state & DB

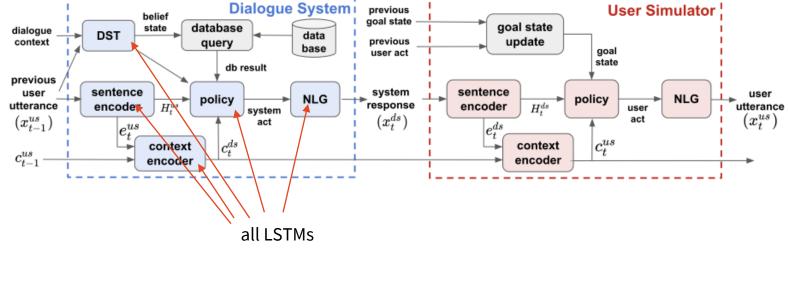


book

JOUST: system & simulator joint RL

(Tseng et al., 2021) https://aclanthology.org/2021.acl-long.13

- System & user simulator with similar architecture
 - both seq2seq-based
 - joint context encoder
 - system: state tracker
 - private context encoder (user shouldn't see it)
 - user: preset goals & tracking
 - interaction via utterances
- RL over actions
 - REINFORCE, supervised pretraining
 - dialog-level or turn-level rewards
 - turn-level for each reasonable action, e.g. requesting new slot, providing entity etc.
- Domain transfer new domains / domain combinations from fewer (~100-300) dialogs



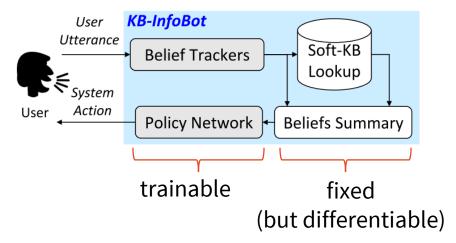
Soft DB Lookups

- incorporating NLU/tracker uncertainty into DB results
- making the system fully differentiable
 - but less interpretable
- DB output = distribution over all items
 - plain MLE estimation: $p(row i) = \prod_{slots} \vec{i}$
 - not trained, based directly on tracker
- NLU/trackers per-slot GRUs + softmaxes
 - input: counts of n-grams
- policy = GRU + softmax
- trained by RL
 - shown to outperform hard DB on a movie domain

 $-\frac{p(v=j)}{\# \text{ of } v' \text{ s in table}} \text{ if } j \text{ specified } \& \text{ in table}$

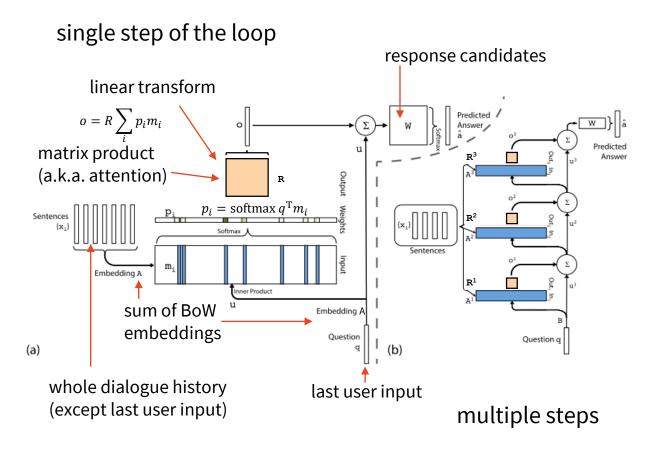
as given by tracker

1/# rows (uniform) otherwise



Memory networks

- not a full dialogue model, just ranker of candidate replies
- no explicit modules
- based on attention over history
 - sum of bag-of-words embeddings
 - added features (user/system, turn no.)
 - weighted match against last user input (dot + softmax)
 - linear transformation to produce next-level input
- last input matched (dot + softmax) against a pool of possible responses



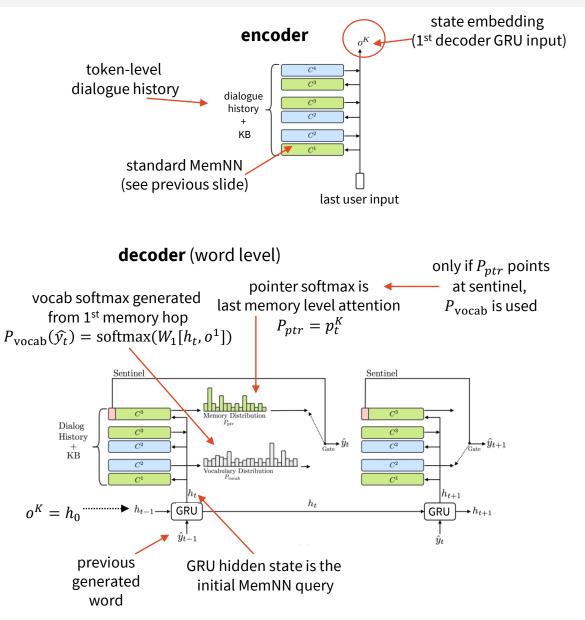
oop a few times.

FC + att + RNN seq gen

Mem2Seq: memory nets & pointer-generator

(Madotto et al., 2018) <u>https://www.aclweb.org/anthology/P18-1136</u>

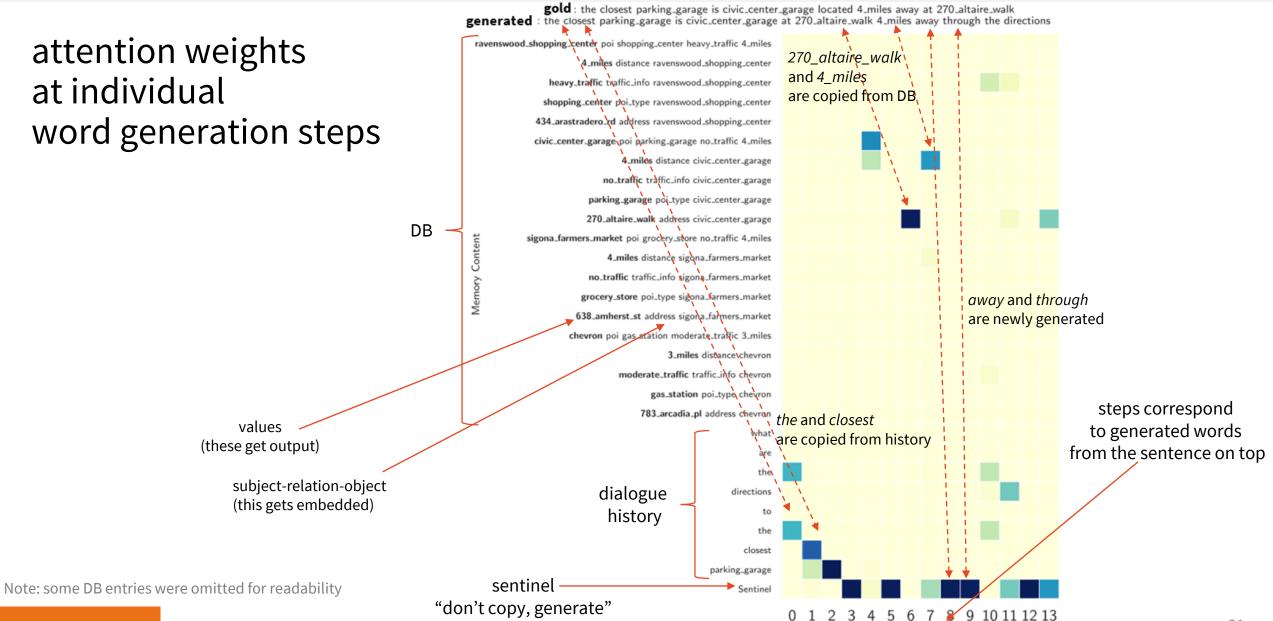
- "standard" MemNN encoder:
 - special memory:
 - token-level dialogue history (whole history concatenated, no hierarchy)
 - with added turn numbers & user/system flags
 - DB tuples (sums of subject-relation-object)
 - "sentinel" (special token)
- decoder: MemNN over GRU
 - GRU state is MemNN initial query
 - last level attention is copy pointer
 - if copy pointer points at sentinel, generate from vocabulary
 - copies whenever it can
 - vocabulary distribution comes from 1st level of memory + GRU state
 - linear transform + softmax



Mem2Seq visualization

attention weights at individual word generation steps

(Madotto et al., 2018) https://www.aclweb.org/anthology/P18-1136



Generation Step

Summary

- End-to-end = single network for NLU/tracker + DM + (sometimes) NLG
 - networks may decompose to components + need dialogue state annotation
 - joint training by backprop (if differentiable)
- Hybrid Code Nets partially handcrafted, but end-to-end
- Sequicity seq2seq & 2-step decoding: dialogue state, then response
- GPT-2-based systems same idea, just with pretrained LMs
- Discrete latent action space learning w/o action annotation
- Soft DB lookups making the whole system differentiable
- RL optimization
 - without NLG (over actions) or hierarchical
 - "fake RL" on training data (no simulator needed)
 - JOUST: joint system-simulator training

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Gao et al. (2019): Neural Approaches to Conversational AI: <u>https://arxiv.org/abs/1809.08267</u>
- Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems: <u>http://dad.uni-bielefeld.de/index.php/dad/article/view/3690</u>