
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

8. Natural Language Generation
http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

22.11.2021

http://ufal.cz/npfl099

Natural Language Generation

• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective:
given input & communication goal,

create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

2

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition

NLG Subtasks (textbook pipeline)

• Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

• Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

• Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

• Text 3

organizing content into sentences
& merging simple sentences

this is needed for NLG
in dialogue systems

typically handled by
dialogue manager

in dialogue systems
deciding

what to say

deciding
how to say it

e.g. restaurant vs. it

NLG Basic Approaches

• canned text
• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• NNs made it work much better

4NPFL099 L8 2021

Template-based NLG

• Most common in dialogue systems
• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

5NPFL099 L8 2021

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex

Neural End-to-End NLG: RNNLG

• Unlike previous, doesn’t need alignments
• no need to know which word/phrase

corresponds to which slot

• Using RNNs, generating word-by-word
• neural language models conditioned on DA

• generating delexicalized texts

• input DA represented as binary vector

• Enhanced LSTM cells (SC-LSTM)
• special part of the cell (gate)

to control slot mentions

6NPFL099 L8 2021

delexicalized (~generated templates)

after lexicalization (templates filled in)
R

N
N

R
N

N

R
N

N

R
N

N

R
N

N

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

dialogue act
binary representation

dialogue act
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

RNN | seq gen

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

Seq2seq NLG (TGen)

• Standard seq2seq with attention
• encoder – triples <intent, slot, value>

• decodes words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

7NPFL099 L8 2021

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

RNN | seq gen + classif

https://aclweb.org/anthology/P16-2008

Delexicalization vs. Copy/Pointer net

• Most models still use it
• preprocess/postprocess step – names to <placeholders>

• generator works with template-like stuff

• Alternative – copy mechanisms (see NLU)
• generate or point & copy from input

• does away with the pre/postprocessing

• Czech & other languages with rich morphology
• basic delexicalization or copy don’t work

• nouns need to be inflected
(unlike English, where they only have 1 form)

• basically another step needed: inflection model
• one option: RNN LM

NPFL099 L8 2021

Baráčnická rychta je na <area>

Baráčnická rychta is in Malá Strana

inform(name=Baráčnická rychta, area=Malá Strana)

Malá Strana nominative
Malé Strany genitive
Malé Straně dative, locative
Malou Stranu accusative
Malou Stranou instrumental

0.10
0.07
0.60
0.10
0.03

lstm lstm lstm lstm

(Shi et al., 2018) http://arxiv.org/abs/1812.02303
(Dušek & Jurčíček, 2019) https://arxiv.org/abs/1910.05298

http://arxiv.org/abs/1812.02303
https://arxiv.org/abs/1910.05298

Pretrained LMs

9NPFL099 L8 2021

(Kasner & Dušek, 2020) https://aclanthology.org/2020.webnlg-1.20/
(Kale & Rastogi, 2020) https://www.aclweb.org/anthology/2020.inlg-1.14

(Liu et al., 2020)
http://arxiv.org/abs/2001.08210

(Lewis et al., 2019)
https://arxiv.org/abs/1910.13461

pre-LM | seq gen

• BART (or T5) – encoder-decoder LM
• pretrained for denoising autoencoding

• works nicely when simply finetuned for data-to-text
• encode linearized data, decode text, just like seq2seq

• mBART (multilingual) → allows multilingual generation
• can generate Russian outputs from English triples

• You can even recast whole NLG as denoising (“unsupervised”)

• train seq2seq for “important words” → sentence

• use slot values
as the important words

(Freitag & Roy, 2018)
http://aclweb.org/anthology/D18-1426

https://aclanthology.org/2020.webnlg-1.20/
https://www.aclweb.org/anthology/2020.inlg-1.14
http://arxiv.org/abs/2001.08210
https://arxiv.org/abs/1910.13461
http://aclweb.org/anthology/D18-1426

Pretrained LMs with Reranking

• Basically the same as seq2seq + reranking
• just with GPT-2 & RoBERTa instead of LSTMs

• GPT-2 fine-tuned for <data> name[Zizzi] eatType[bar] <text> Zizzi is a bar .

• on the target datasets

• beam search decoding

• RoBERTa for classification
• accurate/omission/repetition/hallucination/value error

• training data synthesized
• “accurate” examples from original training data

• others created by manipulating the data and texts
(adding/removing/replacing sentences and/or data items)

10NPFL099 L8 2021

prompt (fed into GPT-2)

this is decoded
given the prompt

(Harkous et al., 2020)
http://arxiv.org/abs/2004.06577

pre-LM | seq gen + classif

http://arxiv.org/abs/2004.06577

Problems with neural NLG

• Checking the semantics
• neural models tend to forget / hallucinate (make up irrelevant stuff)

• reranking works currently best to mitigate this, but it’s not perfect

• Delexicalization needed (at least some slots)
• otherwise the data would be too sparse

• alternative: copy mechanisms, pretrained LMs

• Diversity & complexity of outputs
• still can’t match humans by far

• needs specific tricks to improve this
• vanilla seq2seq models tend to produce repetitive outputs

• Still more hassle than writing up templates

• Some approaches to counter this follow (→), but none are perfect

11NPFL099 L8 2021

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)

(Puzikov & Gurevych, 2018)
https://www.aclweb.org/anthology/W18-6557

http://arxiv.org/abs/1901.07931
https://www.aclweb.org/anthology/W18-6557

Decoding approaches

• same model, different approaches to choosing words
• sequence generation models have a softmax on top

• up to you what (sub)word you choose & feed back to the model

• large influence on the generation outputs – quality & diversity

• greedy – basic, always do the argmax

• sampling – can be wild (top-k/nucleus counter this)

• random – sample according to softmax distribution

• top-k – choose just top 𝑘 options (~5-500), sample from them

• nucleus – choose top options that cover ≥ 𝑝 probability (~0.9)

• beam search – can be too conservative, still not optimal
• try 𝑛 continuations for each of 𝑛 hypotheses, then discard all but 𝑛 best

• lends itself to reranking well

• in addition, you can e.g. penalize repeated tokens
12

https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc

(Holtzmann et al., 2020)
https://arxiv.org/abs/1904.09751

https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc
https://arxiv.org/abs/1904.09751

Data Noise & Cleaning

• NLG errors are often caused by data errors
• ungrounded facts (← hallucinating)

• missing facts (← forgetting)

• domain mismatch

• noise (e.g. source instead of target)
• just 5% untranslated stuff kills an NMT system

• Easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose

• crowdsourcing – workers forget/don’t care

• Cleaning improves situation a lot
• can be done semi-automatically up to a point

(Dušek et al., 2019)
https://arxiv.org/abs/1911.03905

(Khayrallah & Koehn, 2018)
https://www.aclweb.org/anthology/W18-2709

(Wang, 2019)
https://www.aclweb.org/anthology/W19-8639/

https://arxiv.org/abs/1911.03905
https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W19-8639/

Data Augmentation

1) Get more texts that look like your outputs
• get texts online that come from the target domain

2) Produce corresponding inputs
• automatically, noisily

• need a parser/NLU system for that

3) Mix the result with your training data
• potentially pretrain on synthetic data, then finetune on real data

• Increases diversity of data, robustness of models

• Relatively easy to do for broad-coverage surface realizers
• harder for everything else: where to get the right data?

14NPFL099 L8 2021

(Elder et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.665

https://www.aclweb.org/anthology/2020.acl-main.665

NLG-NLU Combo: Self-training

• Self-training = create your own additional training data
• to make the generator more robust & accurate

• needs an NLU trained on original data (using regex or CNN classifier)

• Approach:
• Train base generator

• Sample more data from it
• sample many DAs at random

• noise injection sampling – greedy decoding with Gaussian noise in hidden states
• use noise injection sampling to get many texts for each DA

• classify each sampled instance with an NLU
• discard any texts which don’t correspond to the DA

• Train generator on original & sampled data (can loop more)

• Near perfect accuracy with basic seq2seq+attention as generator
• on E2E restaurants data (relatively simple but noisy dataset)

15

(Kedzie & McKeown, 2019)
https://arxiv.org/abs/1911.03373

(25k for each # of slots)

(200 texts per DA)

(42k instances)

ensure clean
generated data

RNN + rule/CNN | seq gen + classif

https://arxiv.org/abs/1911.03373

NLG-NLU Combo: NLU data cleaning

• NLU used to clean training data
• NLU model – BiLSTM + attention

& vector distance ranking (choose “closest” value ∀slot)

• Training NLU iteratively:
• train initial NLU on all data

• parse DAs for all data

• select only data where NLU gives high confidence

• use high-confidence data to tune the NLU

• NLG (seq2seq+copy) trained on NLU-reparsed data
• increases semantic accuracy greatly

NPFL099 L8 2021

plain supervised NLU

original data

iterative NLU training

handcrafted NLU

softmax(dist)

∑

(Nie et al., 2019)
https://www.aclweb.org/anthology/P19-1256 16

RNN | rank + seq gen

https://www.aclweb.org/anthology/P19-1256

NLG-NLU Combo: Semi-supervised

• learn from partially unpaired data
• some DA-text pairs, some loose DAs, some loose texts

• similar to previous: symmetric models, joint optimization

• loss = 𝛼 ⋅ lossNLG
paired

+ 𝛽 ⋅ lossNLG
unpaired

+ 𝛾 ⋅ lossNLU
paired

+ 𝛿 ⋅ lossNLU
unpaired

• losses for paired data are as usual (MLE, seq2seq models)

• unpaired case: models are connected, reconstruction loss
• loss is difference from original text/DA when passing through the whole loop

• greedy decoding

• trick for making it fully differentiable:
Straight-Through Gumbel-Softmax
• Gumbel-Softmax: approximate sampling

from categorial token distributions (Lecture 4)

• straight-through = real (hard) sampling for forward pass,
smooth approximation for backward pass

(Qader et al., 2019)
https://arxiv.org/abs/1910.03484

for unpaired data

orig.
DA

pred.
DA

predicted
text

original
text

17NPFL099 L8 2021

RNN | seq gen

https://arxiv.org/abs/1910.03484

Few-shot NLG with Pretrained LMs

• GPT-2 (pretrained Transformer LM)
• Transformer trained for next-word prediction

• initialized by preceding context by default
→ tuned to use input data

• word embeddings fixed

• using copy (pointer-generation) on top
• LM fine-tuned, forced to copy inputs

• additional loss term for copying

• encoder: field-gating LSTM
• 2-layers: bottom (table field info)

added to cell state of top (values)

• learns from very few training examples
• reasonable outputs with 200 training instances

(Chen et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.18/

newly trained LM context

generate from LM
or copy from input?

during training:
to find out where to copy inputs

input: WikiBio – tables

NPFL099 L8 2021 18

RNN + pre-LM + copy | seq gen

https://www.aclweb.org/anthology/2020.acl-main.18/

Few-shot: Templates + Pretrained LM

• Have some simple templates (1 piece of info each)
• a bit of handcrafting, but manageable for many datasets

• Use pretrained LMs (e.g. T5/BART) to combine them into nice sentences
• basically text-to-text denoising, i.e. what the models were originally trained to do

• Works well, needs less data, generalizes to new domains

19NPFL099 L8 2021

(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.emnlp-main.527

data

filled templates

output text

rule + pre-LM | seq gen

https://www.aclweb.org/anthology/2020.emnlp-main.527

Two-step: content selection & realization

• explicit content planning step (selection & ordering)
• designed for sports report generation – longer texts, selection needed

• records (team / entity / type / value) → summary

• record encoder: feed-forward + attention gate

• content selection: pointer network
• decode records with top attention

• generation: pointer-generator net
• generating/copying tokens

• attending over selected records

• two-stage training
• selected records extracted

automatically from texts

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

col1 col2 col3 col4

input
sigmoid

NPFL099 L8 2021

seq2seq + copy | seq gen

http://arxiv.org/abs/1809.00582

Two-step: content selection & realization

21NPFL099 L8 2021

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

source statistics target text
content plan
• automatic conversion
• content selection is done here

(shown for 1st sentence)

team ID – home/visiting

seq2seq + copy | seq gen

http://arxiv.org/abs/1809.00582

Two-step: content planning & realization

• create explicit text plans by aggregating inputs
• RDF triples → list of trees (one per sentence)

• joining + ordering (←→)

• create all possibilities + rank
• product of experts for given features:

• individual arrow directions

• % of reversed

• sentence split + # of triplets in each

• relation bigrams (e.g. p(capital|residence))

• can select the best plan, or a random highly-rated one
• most plans beyond a certain threshold are fine

• training plans extracted automatically
• text is consistent with a plan if it has the right sentence split & assignment + order of entities

• relations are not checked (this is much harder than for entities)

• sentence-by-sentence generation: pointer-generator net
• more faithful than generating everything in one step 22

(Moryossef et al., 2019)
http://arxiv.org/abs/1904.03396

John | residence | London
John | occupation | bartender
England | capital | London

John lives in London, the capital of England,
and works as a bartender.

input RDF

text plan

Π of cond.
distributions

seq2seq + copy | seq gen

http://arxiv.org/abs/1904.03396

Realizing from Trees

• Input: tree-shaped MRs
• hierarchy: discourse relation ↓ dialogue act ↓ slot

• can be automatically induced, much flatter than usual syntactic trees
• discourse connectives, sentence splits

• could potentially use other tree-like structures (such as the text plans made from RDF)

• Output: annotated responses
• generate trees parallel to MRs – more guidance for the generator

• less ambiguity, the MR shows a sentence plan as well

• can use standard seq2seq/pointer-generator, with linearized trees

(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220

Parker is not expecting any snow, but today there’s a very likely chance of
heavy rain showers and it’ll be partly cloudy

23NPFL099 L8 2021

seq2seq + copy | seq gen

http://arxiv.org/abs/1906.07220

Realizing from Trees

• Consistency checks – constrained decoding
• when decoding, check any non-terminal against the MR

• disallow any opening tokens not covered by MR

• disallow any closing brackets until all children from MR are generated

• Tree-aware model
• n-ary TreeLSTM encoder – copies the input MR tree structure bottom-up

• LSTM conditioned not on just previous, but all child nodes
• all LSTM equations sum 𝑁 nodes (padded with zeros for fewer children)

• Tree-aware decoder
• nothing special, just use both current & previous hidden state in final prediction

(Luong attention + previous hidden state)
• previous state is often the parent tree node

• all of this improves consistency & data-efficiency

• can be used for self-training → even more perf. gain
NPFL099 L8 2021

(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220
(Rao et al., 2019) https://www.aclweb.org/anthology/W19-8611/
(Li et al., 2021) https://aclanthology.org/2021.inlg-1.10

OK

this token will be disallowed

(Luong et al., 2015)
http://arxiv.org/abs/1508.04025

tree/seq2seq + copy | seq gen

http://arxiv.org/abs/1906.07220
https://www.aclweb.org/anthology/W19-8611/
https://aclanthology.org/2021.inlg-1.10
http://arxiv.org/abs/1508.04025

Summary

• NLG: system DA → text
• templates work pretty well

• seq2seq & similar = best data-driven
• problems: hallucination, not enough diversity

• fixes: reranking, delexicalization/copy nets, ensembling

• improvements:
• GPT-2 + RoBERTa reranking

• data manipulation: cleaning, augmentation

• NLG-NLU joint training
• for data cleaning, augmentation, semi-supervised

• 2-step: planning & realization

• more supervision – tree decoding

• “unsupervised” NLG – denoising (incl. BART – pretrained for denoising)

25NPFL099 L8 2021

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

26NPFL099 L8 2021

Next week: End-to-end models

Labs in 10 minutes
Assignment 4

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

