NPFL099 Statistical Dialogue Systems 7. Dialogue Management (2) Action Selection/Policy

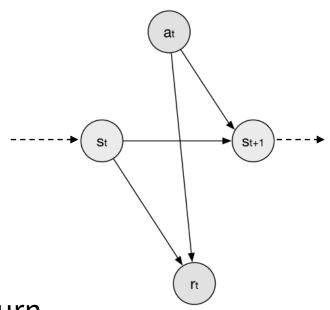
Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

http://ufal.cz/npfl099

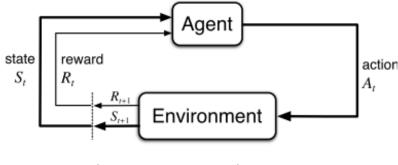
15. 11. 2020

Action selection: Recap

- Action selection: deciding what to do (or say) next
 - based on dialogue state (i.e. uses tracking output)
 - follows a **policy** towards an end goal
- FSM, frames, rule-based
- trained policies: typically with RL
 - explore more different paths than supervised
 - plan ahead optimize for the whole dialogue, not just 1 turn
- RL: MDP formalism agent in an environment, state-action-reward
 - POMDP = MDP with continuous states
 - trained with user simulator



(from Milica Gašić's slides)



(Sutton & Barto, 2018)

Reinforcement learning: Definition

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

accumulated long-term reward
$$R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}^{t+1}$$

$$\gamma \in [0,1] = \text{discount factor}$$
 (immediate vs. future reward trade-off)
$$\gamma < 1: R_t \text{ is finite (if } r_t \text{ is finite)}$$

$$\gamma = 0: \text{ greedy approach (ignore future rewards)}$$

state transition is stochastic → maximize expected return

 $\mathbb{E}[R_t|\pi,s_0]$ expected R_t if we start from state s_0 and follow policy π

NPFL099 L7 2021 3

State-value Function

- Using return, we define the **value of a state** s under policy $\pi: V^{\pi}(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (Bellman Equation):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$\underset{a \text{ from } s \text{ under } \pi}{\text{probs.}} \text{ transition probs.} \text{ expected immediate reward}$$

• $V^{\pi}(s)$ defines a **greedy policy**:

actions that look best for the next step

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg\max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) (r(s,a,s') + \gamma V^{\pi}(s')) \\ 0 \text{ otherwise} \end{cases}$$

NPFL099 L7 2021 4

Action-value (Q-)Function

- $Q^{\pi}(s,a)$ return of taking action a in state s, under policy π
 - Same principle as value $V^{\pi}(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s, a_{0} = a\right] = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left(r(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s',a') \pi(s',a')\right)$$

• $Q^{\pi}(s, a)$ also defines a greedy policy:

again, "actions that look best for the next step"

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg\max_{a} Q^{\pi}(s,a) & \text{simpler: no need to enumerate } s', \\ 0 \text{ otherwise} & \text{no need to know } p(s'|s,a) \text{ and } r(s,a,s') \end{cases}$$
 but Q function itself tends to be more complex than V

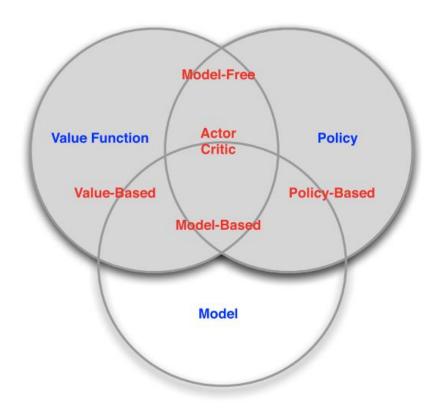
Optimal Policy in terms of V and Q

- optimal policy π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
 - $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \to \text{use it to define } \pi^*$
- π^* is a policy such that $V^{\pi^*}(s) \ge V^{\pi'}(s) \ \forall \pi', \forall s \in \mathcal{S}$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s,a) \coloneqq \max_{\pi} Q^{\pi}(s,a)$
- greedy policies with $V^*(s)$ and $Q^*(s,a)$ are optimal
 - we can search for either π^* , $V^*(s)$ or $Q^*(s,a)$ and get the same result
 - each has their advantages and disadvantages

NPFL099 L7 2021 6

RL Agents Taxonomy

- Quantity to optimize:
 - value function **critic** main focus today
 - either Q or V, typically Q in practice
 - policy actor
 - both actor-critic
- next week
- Environment model:
 - model-based (assume known p(s'|s,a), r(s,a,s))
 - nice but typically not satisfied in practice
 - model-free (don't assume anything, sample)
 - this is the usual real-world case
 - this is where using Q instead of V comes handy



(from David Silver's slides)

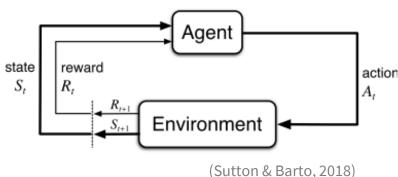
Reinforcement Learning Approaches

- How to optimize:
 - dynamic programming find the exact solution from Bellman equation
 - iterative algorithms, refining estimates
 - expensive, assumes known environment → not practical for real-world use
 - Monte Carlo learning learn from experience
 - sample, then update based on experience
 - Temporal difference learning like MC but look ahead (bootstrap)
 - sample, refine estimates as you go
- Sampling & updates:
 - on-policy improve the policy while you're using it for decisions
 - can't use that with batch learning (decision policy is changing constantly)
 - off-policy decide according to a different policy

both used in practice

Deep Reinforcement Learning

- Exactly the same as "plain" RL
 - agent & environment, actions & rewards
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- function approximation approach
 - Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 - enumerating in a table would take up too much space, be too sparse
 - the parameters θ are optimized
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states
- needs tricks to make it stable



Q-Learning

- ullet temporal difference update Q as you go
- off-policy directly estimates best Q^*
 - regardless of policy used for sampling

any policy that chooses all actions & states enough times will converge to $Q^*(s,a)$: we need to explore to converge

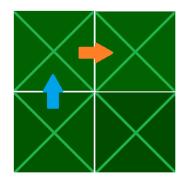
- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ -greedy policy based on Q
 - take action a, observe observe reward r and state s'

•
$$Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a')\right)$$

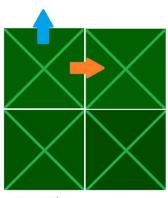
• $s \leftarrow s'$

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

TD: moving estimates



State: S
Action taken: Nort
Action with max Q
value at S': East



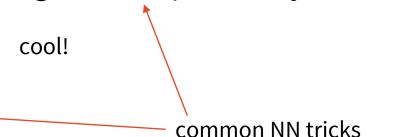
State: S'
Action taken: North (any action)

 $\arg \max_{a} Q(s, a)$ with probability $1 - \epsilon$

random action with probability ϵ

Deep Q-Networks

- Q-learning, where Q function is represented by a neural net
- "Usual" Q-learning doesn't converge well with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using Q in computing updates to Q)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- → DQN adds fixes:
 - a) minibatches (updates by averaged *n* samples, not just one)
 - b) experience replay
 - c) freezing target Q function
 - d) clipping rewards •



DQN tricks ~ making it more like supervised learning

- Experience replay break correlated samples
 - run through some episodes (dialogues, games...) —— "generate your own 'supervised' training data"
 - store all tuples (s, a, r', s') in a buffer —
 - for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

loss :=
$$\mathbb{E}_{(s,a,r',s')\in \text{buf}}\left[\left(r' + \gamma \max_{a'} Q\left(s',a';\overline{\boldsymbol{\theta}}\right) - Q(s,a;\boldsymbol{\theta})\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

NPFL099 L7 2021 12

DQN algorithm

- initialize $\boldsymbol{\theta}$ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\boldsymbol{\theta})$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \dots T$ in the episode:
 - select action a_t from ϵ -greedy policy based on $Q(\theta)$
 - take a_t , observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')'s from D
 - sample a batch B of random (S, a, r', s') s from D• update θ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\theta}\right)-Q(s,a;\theta\right)\right)^2\right]$ a. k. a. training (1 update)
 - once every λ steps (rarely):

storing experience (1 step of Q-learning exploration)

update the frozen target function

DQN for Atari

• 4-layers:

NPFL099 L7 2021

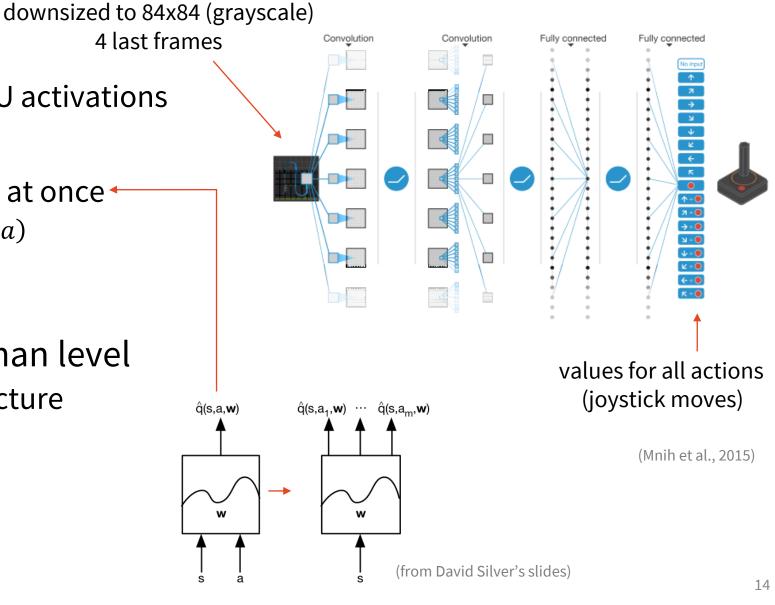
• 2x CNN

2x fully connected with ReLU activations

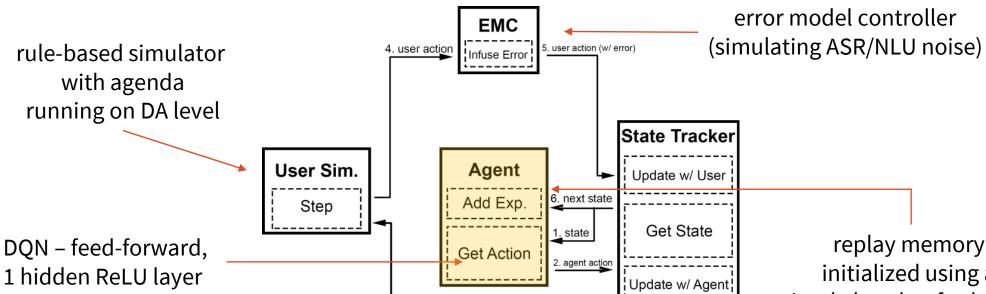
input: Atari 2600 screen,

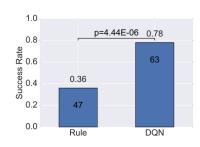
Another trick:

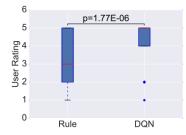
- output values for all actions at once
 - ~ vector Q(s) instead of Q(s, a)
 - *a* is not fed as a parameter
- faster computation
- Learns many games at human level
 - with the same network structure
 - no game-specific features



- DQN can drive dialogue action selection/policy
- warm start needed to make the training actually work:
 - pretrain the network using supervised learning
 - replay buffer spiking initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on







movie ticket booking: better than rule-based

initialized using a simple handcrafted policy

Policy Gradients

- Instead of value functions, train a network to represent the policy
 - allows better action sampling according to actual stochastic policy
 - no need for ϵ -greedy (which is partially random, suboptimal)
- To optimize, we need a **performance metric**: $J(\theta) = V^{\pi_{\theta}}(s_0)$
 - expected return in starting state when following $\pi_{ heta}$
 - we want to directly optimize this using gradient ascent
- Policy Gradient Theorem:

• expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s,\theta)$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) = E_{\pi} \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) \right]$$

 $\mu(s)$ is state probability under π – this is the same as expected value E_{π}

NPFL099 L7 2021 (Sutton & Barto, 2018; p. 324ff)

REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot \mid \cdot, \boldsymbol{\theta})$
 - for each $t = 0.1 \dots T$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi (a_t | s_t, \boldsymbol{\theta})$

returns
$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

variant – **advantage** instead of returns:

discounting a **baseline** b(s) (predicted by any model) $A_t = R_t - b(s_t)$ instead of R_t gives better performance

V(s) is actually a good b(s)

this is stochastic $\nabla I(\boldsymbol{\theta})$:

• from policy gradient theorem

this will guarantee

distribution/frequency $\mu(s)$

the right state

- using single action sample a_t
- expressing Q^{π} as R_t (under E_{π})
- using $\nabla \ln x = \frac{\nabla x}{x}$

NPFL099 L7 2021 (Sutton & Barto, 2018; p. 327f)

Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^{θ} , α^{w}
- loop forever:
 - set initial state *s* for the episode
 - for each step *t* of the episode:
 - sample action a from $\pi(\cdot | s, \theta)$, take a and observe reward r and new state s'
 - compute **advantage** $A \leftarrow r + \gamma \hat{V}(s', w) \hat{V}(s, w)$
 - •• update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t A \nabla \ln \pi(a|s,\boldsymbol{\theta}), \boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha^{\boldsymbol{w}} \cdot A \nabla \hat{V}(s,\boldsymbol{w})$
 - $s \leftarrow s'^{\perp}$

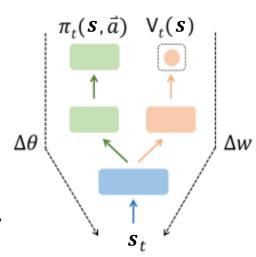
actor (policy update)

critic (value function update)

TD: update after each step

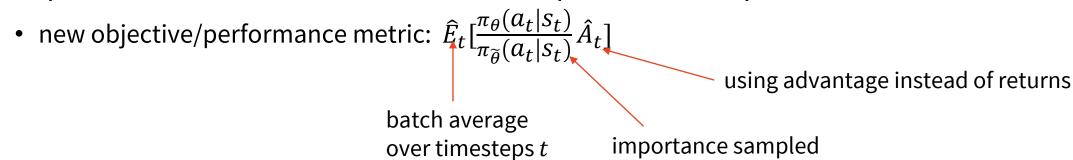
same as REINFORCE, except:

- we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)



ACER: Actor-Critic with Experience Replay

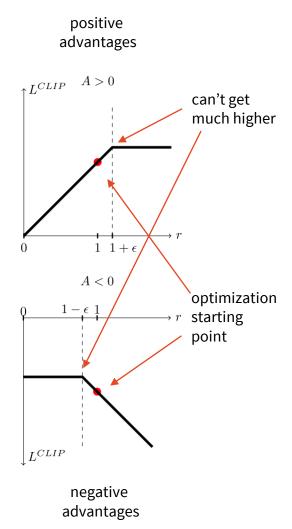
- off-policy actor-critic using experience replay buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using "old" $\hat{\theta}$), it's considered off-policy (behaviour policy $\pi_{\widetilde{\theta}} \neq \text{target policy } \pi_{\theta}$)
 - sampling behaviour from $\pi_{\widetilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias **importance sampling**: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\rho}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled



Proximal Policy Optimization

- ACER is prone to very large updates, unstable
 - to avoid going "off a cliff", it needs very low LR, trains slowly
 - → change the objective to produce more stable updates
- Basically clipping the ACER objective
 - define $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)}$ ratio to old params
 - starting from $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta) \hat{A}_t]$ (see ACER)
 - using $\hat{E}_t \Big[\min \Big(r_t(\theta) \hat{A}_t, \operatorname{clip}[r_t(\theta)]_{1-\epsilon}^{1+\epsilon} \hat{A}_t \Big) \Big]$ original clipped to stay close to 1

minimum – lower bound on the unclipped objective



Rewards in RL

- Reward function is critical for successful learning
- Handcrafting is not ideal
 - domain knowledge typically needed to detect dialogue success
 - need simulated or paid users, can't learn from users without knowing their task
 - paid users often fail to follow pre-set goals
- Having users provide feedback is costly & inconsistent
 - real users don't have much incentive to be cooperative
- Learning/optimizing the rewards is desirable

NPFL099 L7 2021 21

Turn-level Quality Estimation

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019; Ultes & Maier, 2021)

https://doi.org/10.1016/j.specom.2015.06.003

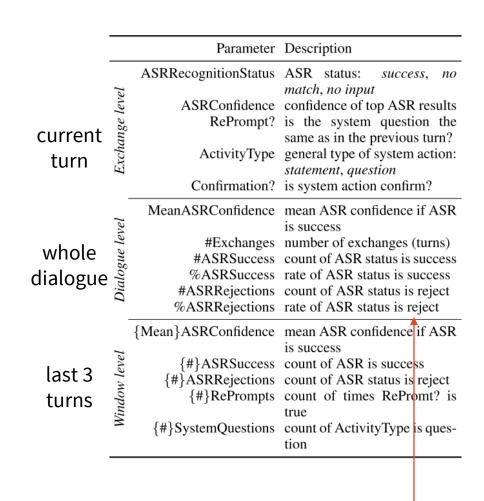
https://doi.org/10.21437/Interspeech.2017-1032

https://aclweb.org/anthology/W19-5902/

https://aclanthology.org/2021.sigdial-1.42

Interaction Quality

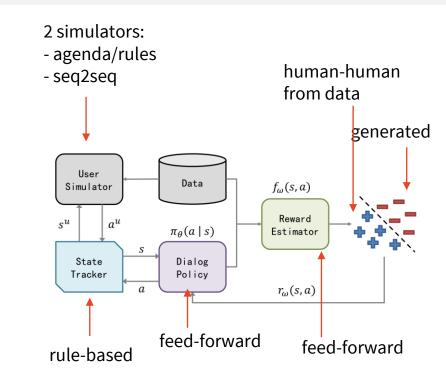
- turns annotated by experts (Likert 1-5)
- trained model (SVM/RNN)
 - very low-level features
 - mostly ASR-related
 - multi-class classification
- result is domain-independent
 - trained on a very small corpus (~200 dialogues)
 - same model applicable to different datasets
- can be used in a RL reward signal
 - works better than task success
 - can be blended with success

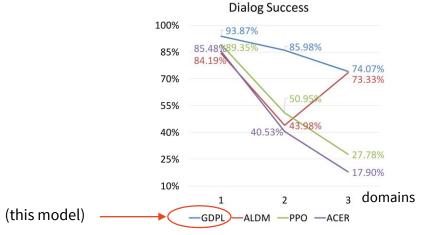


"reject" = ASR output doesn't match in-domain LM

Turn-level adversarial rewards

- discriminator: policy vs. human-human
 - irrespective of success, can be done on turn level
- training process:
 - pretrain both $\pi \& f$ using supervised learning
 - sample dialogs using π
 - update f to distinguish sampled vs. human-human
 - update π via RL using rewards provided by f
- policy π & reward estimator f are feed-forward
 - ReLU, 1 hidden layer





Alternating supervised & RL

- we can do better than just supervised pretraining
- alternate regularly
 - start with supervised more frequently
 - alleviate sparse rewards, but don't completely avoid exploring
 - later do more RL
 - but don't forget what you learned by supervised learning
- options:

- schedule supervised every N updates
- same + increase N gradually
- use supervised after RL does poorly (worse than baseline)
 - baseline = moving average over history + λ · std. error of the average
 - agent is less likely to be worse than baseline in later stages of learning

Deep Dyna-Q: learning from humans & simulator

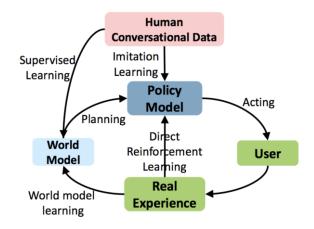
- humans are costly, simulators are inaccurate
- ⇒ learn from both, improve simulator as you go
 - direct RL = learn from users
 - world model learning = improve internal simulator
 - supervised, based on previous dialogues with users
 - planning = learn from simulator
- DQN, feed-forward policy
- simulator: feed-forward multi-task net
 - draw a goal uniformly at the start
 - predict actions, rewards, termination
 - use *K* simulated ("planning") dialogues per 1 real
- discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

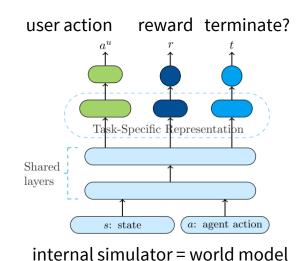
(Peng et al., 2018) (Su et al., 2018)

movie booking:

name, date, # tickets etc.

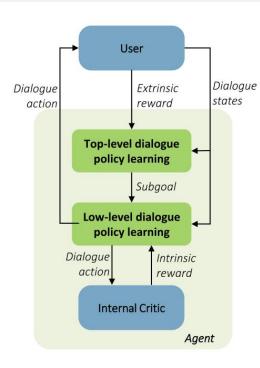
https://www.aclweb.org/anthology/P18-1203 https://www.aclweb.org/anthology/D18-1416

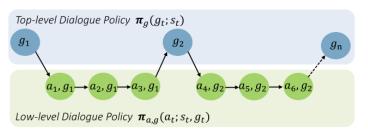


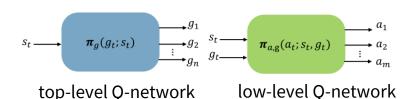


Hierarchical RL

- good for multiple subtasks
 - e.g. book a flight to London and a hotel for the same day, close to the airport
- top-level policy: select subtask g_i
- low-level policy: actions a_{j,g_i} to complete subtask g_i
 - given initiation/termination conditions
 - keeps on track until terminal state is reached
 - shared by all subtasks (subtask=parameter)
 - internal critic (=prob. that subtask is solved)
- global state tracker
 - integrates information from subtasks

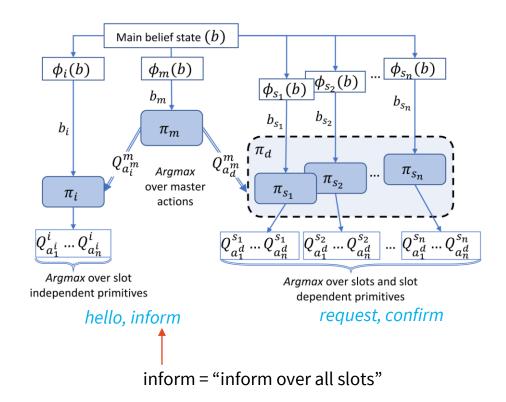






Feudal RL

- spatial (slot-based) split instead of temporal
 - doesn't need defined subtasks & sub-rewards
- belief state representation features
 - master ϕ_m , slot-independent ϕ_i , per-slot ϕ_{s_k}
 - handcrafted (could be neural nets)
 - supports sharing parameters across domains
- two-step action selection:
 - 1) master action: "slot-dependent or not"?
 - master policy
 - 2) primitive action
 - a) slot-independent policy
 - b) slot-specific policies (with shared parameters, distinguished only by belief state)
 - chooses max. Q for all slot-action pairs involves choosing the slot
 - everything is trained using the same global reward signal



Summary

- RL for action selection / dialogue policy
 - MDP / agent in an environment, taking actions, getting rewards
 - dynamic programming, Monte Carlo, Temporal Difference
 - optimizing value function V/Q (critic), policy (actor), or both (actor-critic)
 - learning on-policy or off-policy (act by the policy you learn/not)
- DQN representing & optimizing Q function with a network
 - minibatches, target function freezing, experience replay
- Policy gradients policy network & direct policy optimization
 - **REINFORCE** (MC policy gradients) + advantage
 - Actor-critic (REINFORCE + TD + V estimates) + extensions (ACER, PPO)
- rewards can be learned/estimated (supervised/GAN-style)
- learning multiple tasks: hierarchical, feudal RL

Thanks

Contact us:

https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

AIC short intro in 10 min (out of order, but will be on YouTube)

Get these slides here:

http://ufal.cz/npfl099

Next Monday: Language Generation 4th Assignment

References/Inspiration/Further:

- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.) http://incompleteideas.net/book/the-book.html
- Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf