
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

6. Dialogue Management (1)
mostly Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda

8. 11. 2021

http://ufal.cz/npfl099

Dialogue Management & State

• Dialogue management consists of:
• State update ← we need to track dialogue state over time

• Action selection (discussed later)

• Dialogue state needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions

2NPFL099 L6 2021

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

Dialogue State Contents

• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)

• information requested

• Past system actions
• information provided

• slots and values

• list of venues offered

• slots confirmed

• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.

3NPFL099 L6 2021

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)

Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

4NPFL099 L6 2021

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels

Belief State

• Assume we don’t know the true current dialogue state 𝑠𝑡
• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• based on observations 𝑜𝑡 & system actions 𝑎𝑡, we can estimate
a probability distribution 𝑏 𝑠 over all possible states – belief state

• More robust than using dialogue state directly
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
• but not only them – rule-based, too

5NPFL099 L6 2021

Belief State

6NPFL099 L6 2021

no probability
accumulation

(1-best, no state)

accumulating over
NLU n-best list
(still no state)

accumulating over
NLU n-best + turns

this is what we need
(=belief state)

(from Milica Gašić’s slides)

Basic Discriminative Belief Tracker

• Partition the state by assuming conditional independence
• simplify – assume each slot is independent:

• state 𝐬 = [𝑠1, … 𝑠𝑁], belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡
𝑖)

• Always trust the NLU
• this makes the model parameter-free

• …and basically rule-based

• but very fast, with reasonable performance

7NPFL099 L6 2021

𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖)update

rule

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑝 𝑠𝑡
𝑖 =🤫 𝑝(𝑜𝑡

𝑖 =🤫) if 𝑠𝑡
𝑖 =🤫

𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖) otherwise

substitution

the belief state update rule is deterministic

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

user silent about slot 𝑖

“no change”

“user mentioned this value”

NLU output

rule | classif

http://www.aclweb.org/anthology/W13-4070

Basic Feed-forward Neural Tracker

• a simple feed-forward (fully connected) network
• input – features (w.r.t. slot-value 𝑣 & time 𝑡)

• NLU score of 𝑣

• n-best rank of 𝑣

• user & system intent (inform/request)

• … – other domain-independent, low-level NLU features

• 3 tanh layers

• output – softmax
(= probability distribution over values)

• static – does not model dialogue as a sequence
• uses a sliding window:

current time 𝑡 + few steps back + ∑previous

8NPFL099 L6 2021
(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073

(imagine this
part for all 𝑣’s)

𝑇 previous timesteps
sum of everything

before then

𝑀 input
features

softmax over
all possible 𝑣’s + “other”

FC | classif

https://aclweb.org/anthology/W13-4073

Basic RNN Tracker

• plain sigmoid RNN with a memory vector
• not quite LSTM/GRU, but close

• memory updated separately, used in belief update

• turn-level LSTM would work similarly

• does not need NLU
• turn features = lexicalized + delexicalized n-grams

from ASR n-best list, weighted by confidence

• delexicalization is very harsh: <slot> <value>
• you don’t even know which slot it is

• this apparently somewhat helps the system
generalize across domains

• dynamic – explicitly models dialogue as sequence
• using the network recurrence

9NPFL099 L6 2021

turn featsmemory belief

σ

belief’

softmax

memory’

σ

+

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190

from previous turn

current turn

RNN | classif

http://arxiv.org/abs/1506.07190

Incremental Recurrent Tracker

• Simple: LSTM over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)

• classification can occur after each word, right as it comes in from ASR

• Dynamic/sequential

• Doesn’t use any NLU
• infrequent values are delexicalized (otherwise it can’t learn them)

• Slightly worse performance – possible causes:
• only uses ASR 1-best

• very long recurrences (no hierarchy)

10NPFL099 L6 2021

LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

RNN | classif

https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

• No delexicalization needed

• Current turn + rule-based updates
(=static tracker)

• Pretrained word vectors (kept fixed)

• GloVe enhanced with paraphrases

• Text = n-gram sums/CNNs, summed
• same parameters + handling for all inputs

• contextual: requested/confirmed slot (+value)

• current user utterance

• candidate slot-value pair (run once for each)

• Simple combinations
• dot product, feed-forward

• binary decision: is the candidate correct?

Static & Pretrained Word Embeddings

11NPFL099 L6 2021 (Mrkšić et al., 2017) https://www.aclweb.org/anthology/P17-1163

n-gram sums

n-gram CNNs

utterance
= sum of n-grams

Previous

feed-forward &
element-wise product

dot products

feed forward

CNN/FC | classif

Candidate Ranking

• Previous systems consider all values for each slot
• this is a problem for open-ended slots (e.g. restaurant name)

• enumerating over all takes ages, some are previously unseen

• Alternative: always consider just 𝐾 candidates
• use last 𝐾 candidates from system actions and NLU output

• NB: only way history is incorporated here (~static)

• select from them using a per-slot softmax

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

pictures assume 𝐾 = 2

representation of
𝑖-th candidate:

utterance/slot/candidate
features (next slide)

2 sigmoid layers

additional values to consider
(even if not mentioned in NLU)

padding (not enough
values mentioned)

RNN + FC | rank

none 1st 2nd dontcare

https://arxiv.org/abs/1712.10224

Candidate Ranking – representation

• Using BiGRU over lexicalized & delexicalized utterance

• Features:
• utterance – last GRU state + NLU indicators for non-slot DAs (user & prev. system)

• slot – NLU indicators for DAs with this slot (user & prev. system)
+ last turn scores for null & dontcare

• candidate – GRU states over matched value words
+ NLU indicators for DAs with this slot & value (user & prev. system)

13NPFL099 L6 2021

bye(), affirm()

inform(slot=*), request(slot)

inform(slot=value)

candidate features

utterance
feature

utterance
feature

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

RNN + FC | rank

https://arxiv.org/abs/1712.10224

Candidate Ranking Extensions

• What if multiple values are true?
• previous approach picks one (softmax)

• use set of binary classifiers (log loss) instead

• Making it dynamic
• embedding previous states, system actions, text of the whole dialogue

• Hybrid classify/rank
• ranking is faster & more flexible vs. classification can be more accurate for some slots

• generally ranking better with many values, classification with fewer values

• check for performance on development data & decide which model to use

NPFL099 L6 2021

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883

RNN + FC | rank

http://arxiv.org/abs/1811.12891
http://arxiv.org/abs/1907.00883

BERT & Span Selection

• BERT over previous system & current user utterance

• from 1st token’s representation, get a decision: none/dontcare/span
• per-slot (BERT is shared, but the final decision is slot-specific)

• span = need to find a concrete value as a span somewhere in the text
• predict start & end token of the span using 2 softmaxes over tokens

• rule-based update (static):
• if none is predicted,

keep previous value

15NPFL099 L6 2021

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040

pre-LM| span selecta.k.a. Span Tagging
(~question answering/reading comprehension)

http://arxiv.org/abs/1907.03040

Span Selection with Modelled Update

• Also uses BERT, but not necessarily
• works slightly worse with random-initialized word embeddings

• sequence of 3 decisions
• do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)

• if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)

• if span: predict span’s start and end

16

BiLSTM

this can be BERT
slot embeddinginput: whole dialogue,

concatenated

2 prediction softmaxes:
1 for span start, 1 for end

final LSTM states
in both directions

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/

pre-LM| span select

https://www.aclweb.org/anthology/W19-5932/

Span Selection & Better Copying

• “triple-copy” – gets the value from 3 sources:
• user utterance (same as previous span tagging models)

• system informs (last value the system mentioned)

• another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

• rule-based update (static)

17NPFL099 L6 2021

(Heck et al., 2020)
https://aclweb.org/anthology/2020.sigdial-1.4/

same decision as previously, just different options:
none/dontcare/span/inform/refer

boolean slots
are handled
separately

(classification)

coreference –
distribution over

slots to copy from

pre-LM| span select

sl
o

t
in

fo
rm

ed

al
re

ad
y?

sl
o

t
fi

ll
ed

al
re

ad
y?

for each slot

https://www.aclweb.org/anthology/2020.sigdial-1.4/

Multi-domain Span Selection

• encode domain & slot names w. static pretrained word-embeddings (GloVe)
• adding new unseen domains & slots is easy (no retraining)

• otherwise similar as previous, BERT-based:
• decide if domain changed (BERT: yes/no/chitchat)

• if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)

• for each domain, find values (BERT + GloVe span selection)

18NPFL099 L6 2021

(Dey & Desarkar, 2021)
https://aclanthology.org/2021.sigdial-1.23

pre-LM| span select

https://aclanthology.org/2021.sigdial-1.23

Generator-based Tracker

• Similar to span selection: encodes whole dialogue history (static)

• Pointer-generator seq2seq decoder produces values
• specific start token for each slot -- copies from input & generates new tokens

• Slot gate: “use generated”/dontcare/none

• same as the decisions done in span tagging, just applied after getting the value

19NPFL099 L6 2021

takes concatenated
dialogue history

specific start token
for each slot (& domain)

pointer-generator net
(see NLU lecture): can
generate tokens from vocabulary or
copy tokens from attention

(Wu et al., 2019)
https://www.aclweb.org/anthology/P19-1078

RNN | seq gen

https://www.aclweb.org/anthology/P19-1078

Action Selection / Policy

• Dialogue management:
• State tracking (↑)

• Action selection/Policy (↓)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal

20NPFL099 L6 2021

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning

21NPFL099 L6 2021

Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You’d need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have

• supervised classification doesn’t plan ahead!
• RL optimizes for the whole dialogue, not just the immediate action

22

RL World Model: Markov Decision Process

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮 (~ dialogue state)

• takes actions 𝑎𝑡 ∈ 𝒜 (~ system dialogue acts)

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• rewards are typically handcrafted
• very high positive for a successful dialogue (e.g. +40)

• high negative for unsuccessful dialogue (-10)

• small negative for every turn (-1, promote short dialogues)

• Markov property – state defines everything
• no other temporal dependency

• policy may be deterministic or stochastic
• stochastic: prob. dist. of actions, sampling

23

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)

Partially-observable MDPs

• POMDPs – belief states instead of dialogue states
• true states (“what the user wants”) are not observable

• observations (“what the system hears”) depend on states

• belief – probability distribution over states

• can be viewed as MDPs with continuous-space states
• just represent 1 slot as set of binary floats ☺

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• Deep RL typically works out of the box
• function approximation approach, allows continuous states

NPFL099 L6 2021

(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

observation

state

action

reward

https://en.wikipedia.org/wiki/Voronoi_diagram

Simulated Users

• Static datasets aren’t enough for RL
• data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE/supervised policy from data

• combination (best!)
25(from Milica Gašić’s slides)NPFL099 L6 2021

Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates

26NPFL099 L6 2021

(from Milica Gašić’s slides)

Reinforcement learning: Definition

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return

27NPFL099 L6 2021

𝑅𝑡 =෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

Summary

• State tracking: track user goal over multiple turns (probabilistic – belief state)

• good NLU + rules – works well (and used frequently)

• static (sliding-window/rule-based update) vs. dynamic (explicit modelling)

• with vs. without NLU

• classification vs. candidate ranking vs. span selection vs. generation
• classifiers are more accurate than rankers but slower, limited to seen values

• span selection is the SotA approach, works nicely but probably slow

• many architectures (FC/CNN/RNN), newest mostly BERT-based

• Action selection: deciding what to do next (following a policy)
• FSM, frames, rule-based, supervised, reinforcement learning

• RL – agent in an environment, taking actions, getting rewards
• MDP formalism (+POMDP can be converted to it)

• summary states might be needed

• trained often with user simulators

28NPFL099 L6 2021

Thanks

29NPFL099 L6 2021

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.)

http://incompleteideas.net/book/the-book.html
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

Labs in 10 minutes
DailyDialog training

Next Mon 15:40
rest of Dialogue Policy

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://ai.google/research/pubs/pub44018
http://incompleteideas.net/book/the-book.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

