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Dialogue Management & State

• Dialogue management consists of:
• State update ← we need to track dialogue state over time

• Action selection (discussed later)

• Dialogue state needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions
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U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.



Dialogue State Contents

• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)

• information requested

• Past system actions
• information provided

• slots and values 

• list of venues offered

• slots confirmed

• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.
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U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)



Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
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NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels



Belief State

• Assume we don’t know the true current dialogue state 𝑠𝑡
• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• based on observations 𝑜𝑡 & system actions 𝑎𝑡, we can estimate 
a probability distribution 𝑏 𝑠 over all possible states – belief state

• More robust than using dialogue state directly
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
• but not only them – rule-based, too
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Belief State
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no probability 
accumulation

(1-best, no state)

accumulating over
NLU n-best list
(still no state)

accumulating over 
NLU n-best + turns

this is what we need
(=belief state)

(from Milica Gašić’s slides)



Basic Discriminative Belief Tracker

• Partition the state by assuming conditional independence
• simplify – assume each slot is independent:

• state 𝐬 = [𝑠1, … 𝑠𝑁],  belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡
𝑖)

• Always trust the NLU
• this makes the model parameter-free

• …and basically rule-based

• but very fast, with reasonable performance
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𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖 )update

rule

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑝 𝑠𝑡
𝑖 =🤫 𝑝(𝑜𝑡

𝑖 =🤫) if 𝑠𝑡
𝑖 =🤫

𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ) otherwise

substitution

the belief state update rule is deterministic

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

user silent about slot 𝑖

“no change”

“user mentioned this value”

NLU output

rule | classif

http://www.aclweb.org/anthology/W13-4070


Basic Feed-forward Neural Tracker

• a simple feed-forward (fully connected) network
• input – features (w.r.t. slot-value 𝑣 & time 𝑡)

• NLU score of 𝑣

• n-best rank of 𝑣

• user & system intent (inform/request)

• … – other domain-independent, low-level NLU features

• 3 tanh layers

• output – softmax 
(= probability distribution over values)

• static – does not model dialogue as a sequence
• uses a sliding window:

current time 𝑡 + few steps back + ∑previous
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(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073

(imagine this 
part for all 𝑣’s)

𝑇 previous timesteps
sum of everything 

before then

𝑀 input 
features

softmax over 
all possible 𝑣’s + “other”

FC | classif

https://aclweb.org/anthology/W13-4073


Basic RNN Tracker

• plain sigmoid RNN with a memory vector
• not quite LSTM/GRU, but close

• memory updated separately, used in belief update

• turn-level LSTM would work similarly 

• does not need NLU
• turn features = lexicalized + delexicalized n-grams

from ASR n-best list, weighted by confidence

• delexicalization is very harsh: <slot> <value>
• you don’t even know which slot it is

• this apparently somewhat helps the system 
generalize across domains

• dynamic – explicitly models dialogue as sequence
• using the network recurrence
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turn featsmemory belief

σ

belief’

softmax

memory’

σ

+

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190

from previous turn

current turn

RNN | classif

http://arxiv.org/abs/1506.07190


Incremental Recurrent Tracker

• Simple: LSTM over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)

• classification can occur after each word, right as it comes in from ASR

• Dynamic/sequential

• Doesn’t use any NLU
• infrequent values are delexicalized (otherwise it can’t learn them)

• Slightly worse performance – possible causes: 
• only uses ASR 1-best

• very long recurrences (no hierarchy)
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LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

RNN | classif

https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471


• No delexicalization needed

• Current turn + rule-based updates 
(=static tracker)

• Pretrained word vectors (kept fixed)

• GloVe enhanced with paraphrases

• Text = n-gram sums/CNNs, summed
• same parameters + handling for all inputs

• contextual: requested/confirmed slot (+value)

• current user utterance

• candidate slot-value pair (run once for each)

• Simple combinations
• dot product, feed-forward

• binary decision: is the candidate correct?

Static & Pretrained Word Embeddings
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n-gram sums

n-gram CNNs

utterance
= sum of n-grams

Previous

feed-forward &
element-wise product

dot products

feed forward

CNN/FC | classif



Candidate Ranking

• Previous systems consider all values for each slot
• this is a problem for open-ended slots (e.g. restaurant name)

• enumerating over all takes ages, some are previously unseen

• Alternative: always consider just 𝐾 candidates
• use last 𝐾 candidates from system actions and NLU output

• NB: only way history is incorporated here (~static)

• select from them using a per-slot softmax

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

pictures assume 𝐾 = 2

representation of 
𝑖-th candidate:

utterance/slot/candidate 
features (next slide)

2 sigmoid layers

additional values to consider
(even if not mentioned in NLU)

padding (not enough 
values mentioned)

RNN + FC | rank

none 1st 2nd dontcare

https://arxiv.org/abs/1712.10224


Candidate Ranking – representation

• Using BiGRU over lexicalized & delexicalized utterance

• Features:
• utterance – last GRU state + NLU indicators for non-slot DAs (user & prev. system)

• slot – NLU indicators for DAs with this slot (user & prev. system) 
+ last turn scores for null & dontcare

• candidate – GRU states over matched value words 
+ NLU indicators for DAs with this slot & value (user & prev. system)
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bye(), affirm()

inform(slot=*), request(slot)

inform(slot=value)

candidate features

utterance 
feature

utterance 
feature

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

RNN + FC | rank

https://arxiv.org/abs/1712.10224


Candidate Ranking Extensions

• What if multiple values are true?
• previous approach picks one (softmax)

• use set of binary classifiers (log loss) instead

• Making it dynamic
• embedding previous states, system actions, text of the whole dialogue

• Hybrid classify/rank
• ranking is faster & more flexible vs. classification can be more accurate for some slots

• generally ranking better with many values, classification with fewer values

• check for performance on development data & decide which model to use
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(Goel et al., 2018)
http://arxiv.org/abs/1811.12891

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883

RNN + FC | rank

http://arxiv.org/abs/1811.12891
http://arxiv.org/abs/1907.00883


BERT & Span Selection

• BERT over previous system & current user utterance

• from 1st token’s representation, get a decision: none/dontcare/span
• per-slot (BERT is shared, but the final decision is slot-specific)

• span = need to find a concrete value as a span somewhere in the text
• predict start & end token of the span using 2 softmaxes over tokens

• rule-based update (static): 
• if none is predicted, 

keep previous value
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(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040

pre-LM| span selecta.k.a. Span Tagging
(~question answering/reading comprehension)

http://arxiv.org/abs/1907.03040


Span Selection with Modelled Update

• Also uses BERT, but not necessarily
• works slightly worse with random-initialized word embeddings

• sequence of 3 decisions
• do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)

• if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)

• if span: predict span’s start and end

16

BiLSTM

this can be BERT
slot embeddinginput: whole dialogue, 

concatenated

2 prediction softmaxes: 
1 for span start, 1 for end

final LSTM states 
in both directions

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/

pre-LM| span select

https://www.aclweb.org/anthology/W19-5932/


Span Selection & Better Copying

• “triple-copy” – gets the value from 3 sources:
• user utterance (same as previous span tagging models)

• system informs (last value the system mentioned)

• another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

• rule-based update (static)
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(Heck et al., 2020)
https://aclweb.org/anthology/2020.sigdial-1.4/

same decision as previously, just different options:
none/dontcare/span/inform/refer

boolean slots 
are handled 
separately 

(classification)

coreference –
distribution over 

slots to copy from

pre-LM| span select
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for each slot

https://www.aclweb.org/anthology/2020.sigdial-1.4/


Multi-domain Span Selection

• encode domain & slot names w. static pretrained word-embeddings (GloVe)
• adding new unseen domains & slots is easy (no retraining)

• otherwise similar as previous, BERT-based:
• decide if domain changed (BERT: yes/no/chitchat)

• if yes, detect new domain(s) (BERT + GloVe: 1/0 for domain candidate)

• for each domain, find values (BERT + GloVe span selection)
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(Dey & Desarkar, 2021)
https://aclanthology.org/2021.sigdial-1.23

pre-LM| span select

https://aclanthology.org/2021.sigdial-1.23


Generator-based Tracker

• Similar to span selection: encodes whole dialogue history (static)

• Pointer-generator seq2seq decoder produces values
• specific start token for each slot -- copies from input & generates new tokens

• Slot gate: “use generated”/dontcare/none

• same as the decisions done in span tagging, just applied after getting the value
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takes concatenated 
dialogue history

specific start token 
for each slot (& domain)

pointer-generator net
(see NLU lecture): can
generate tokens from vocabulary or
copy tokens from attention

(Wu et al., 2019)
https://www.aclweb.org/anthology/P19-1078

RNN | seq gen

https://www.aclweb.org/anthology/P19-1078


Action Selection / Policy

• Dialogue management:
• State tracking (↑)

• Action selection/Policy (↓)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal
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Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)



Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning
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Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You’d need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have

• supervised classification doesn’t plan ahead!
• RL optimizes for the whole dialogue, not just the immediate action
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RL World Model: Markov Decision Process 

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮 (~ dialogue state)

• takes actions 𝑎𝑡 ∈ 𝒜 (~ system dialogue acts)

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• rewards are typically handcrafted
• very high positive for a successful dialogue (e.g. +40)

• high negative for unsuccessful dialogue (-10)

• small negative for every turn (-1, promote short dialogues)

• Markov property – state defines everything 
• no other temporal dependency

• policy may be deterministic or stochastic
• stochastic: prob. dist. of actions, sampling
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(from Milica Gašić’s slides)

(Sutton & Barto, 2018)



Partially-observable MDPs

• POMDPs – belief states instead of dialogue states 
• true states (“what the user wants”) are not observable

• observations (“what the system hears”) depend on states

• belief – probability distribution over states

• can be viewed as MDPs with continuous-space states
• just represent 1 slot as set of binary floats ☺

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• Deep RL typically works out of the box
• function approximation approach, allows continuous states
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(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

observation

state

action

reward

https://en.wikipedia.org/wiki/Voronoi_diagram


Simulated Users

• Static datasets aren’t enough for RL
• data might not reflect our newly learned behaviour 

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE/supervised policy from data

• combination (best!)
25(from Milica Gašić’s slides)NPFL099 L6 2021



Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates 
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(from Milica Gašić’s slides)



Reinforcement learning: Definition

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return 
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𝑅𝑡 =෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated 

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)



Summary

• State tracking: track user goal over multiple turns (probabilistic – belief state)

• good NLU + rules – works well (and used frequently)

• static (sliding-window/rule-based update) vs. dynamic (explicit modelling)

• with vs. without NLU

• classification vs. candidate ranking vs. span selection vs. generation
• classifiers are more accurate than rankers but slower, limited to seen values

• span selection is the SotA approach, works nicely but probably slow

• many architectures (FC/CNN/RNN), newest mostly BERT-based

• Action selection: deciding what to do next (following a policy)
• FSM, frames, rule-based, supervised, reinforcement learning

• RL – agent in an environment, taking actions, getting rewards
• MDP formalism (+POMDP can be converted to it)

• summary states might be needed

• trained often with user simulators
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Thanks
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Contact us:
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{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
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Get these slides here:

http://ufal.cz/npfl099
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