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« complex functions, composed of simple functions (=layers)
* linear, ReLU, tanh, sigmoid, softmax

* fully differentiable

* different arrangements:
« feed forward / multi-layer perceptron
* CNNs
 RNNs (LSTM/GRU)
* attention
* Transformer

* input: binary, float, embedding
* tasks/problems: classification, regression, structured (sequences/ranking)



Supervised Training: Gradient Descent

* supervised training- gradient descent methods

* minimizing a cost/loss function
(notion of error - given system output, how far off are we?)

* calculus: derivative = steepness/slope
* follow the slope to find the minimum - derivative gives the direction
* learning rate = how fast we go (needs to be tuned)

» gradient typically computed (=averaged) over mini-batches
* random bunches of a few training instances

* not as erratic as using just 1 instance,
not as slow as computing over whole data

 stochastic gradient descent

 batches may be accumulated to fit into memory

 e.g.your GPU only fits one instance
> compute forward pass multiple times, then do 1 update

NPFL099 L4 2021 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
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Cost/Loss Functions

» differ based on what we’re trying to predict

* logistic [ log loss (“cross entropy”)

* for classification / softmax - including word prediction
* classes from the whole dictionary

* pretty stupid for sequences, but works
* sequence shifted by 1 = everything wrong

* squared error loss - for regression
» forcing the predicted float value to be close to actual one

* hinge loss - for binary classification (SVMs), ranking
* forcing the correct sign

* many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9

https://en.wikipedia.org/wiki/Hinge loss
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Backpropagation

https://www.mathsisfun.com/calculus/derivatives-rules.html

Rules Function Derivative

Multiplication by constant cf cf’

* network ~ computational graph - o e
* reflects function/layer composition
» composed function derivatives - simple rules O

Reciprocal Rule 1/f —f/f2

* basically summing over different paths
» factoring ~ merging paths at every node

* backpropagation = reverse-mode differentiation
 going back from output to input
* ~how every node affects the output
 output = cost function
* > derivatives of all parameters w. r. t. cost
* one pass through the network only »> easy & fast
* NN frameworks do this automatically
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Chain Rule
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* a: most important parameter in (stochastic) gradient descent

e tricky to tune:
* too higha
* too low «a

= may not find optimum

= may take forever

loss

N

low learning rate

high learning rate

* Learning rate decay: start high, lower a gradually
* make bigger steps (to speed learning) good earning rate -
» slow down when you’re almost there (to avoid overshooting) ke i aseuminenmoric
e linear, stepwise, exponential

* reduce-on-plateau - check every now and then
if we’re still improving, reduce LR if not

 Momentum: moving average of gradients

* make learning less erratic i

*m= :8 m + (1 — ﬁ) - A, update bym instead of A base SGD momentum

https://ruder.io/optimizing-gradient-descent/



http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Optimizers

http://kaeken.hatenablog.com/entry/2016/11/10/203151

1.0

* Better LR management = tomeom|
* change LR based on gradients E—
* much less sensitive to user setting

0.4

* AdaGrad - all history
« remember sum of total gradients squared: };, Az

» divide LR by /Y, A%
* variants: Adadelta, RMSProp -slower LR drop

021

0.0

momentum  fim
Y A

« Adam - per-parameter momentum (nemaéea 2019

https://arxiv.org/abs/1412.6980
* moving averages for A & A?: Adany”
m=p;-m+1-pB)Av=p0-v+ (1= B)A
« use minstead of A, divide LR by /v
 used as default in most applications
(Loshchilov & Hutter, 2019)

e variant: AdamW - deCOUpled LR drOp https://arxiv.org/abs/1711.05101

https://ruder.io/optimizing-gradient-descent/
NPFL099 L4 2021 . : : : : 7
_ https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
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Schedulers

* more fiddling with LR - warm-ups
* start learning slowly, then increase LR, then reduce again

* may be repeated (warm restarts),
with lowered maximum LR

* allow to diverge slightly - work around local minima
* multiple options:
* cyclical - linear, cosine annealing

* ohe cyc

* Noam scheduler - linear warm-up, decay by +/steps
* combine with base SGD or Adam/Adadelta etc.

le - same, just don’

 momentum updated inversely to LR
* may have less effect with optimizers

* trade

-off: speed vs. sensitivity to parameter settings

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADmM6F
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https://nn.labml.ai/optimizers/noam.html
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When to stop training

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

* generally, when cost stops improving
* despite all the LR fiddling

* problem: overfitting
 costis low on training set, high on validation set -

* network essentially memorized the training set

* > check on validation set after each epoch
(pass through data)

* stop when cost goes up on validation set
* regularization (see -) helps delay overfi

 bias-variance trade-off
* smaller models may underfit (highbias, low variance = not flexi
* larger models likely to overfit (too flexible, memorize
« XXL models: overfit soo much they actually interpolate data > good (&) ?)

(Dar et al., 2021) https://arxiv.org/abs/2109.02355

NPFL099 L4 2021 9
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Bias-variance
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Regularization: Dropout

(Srivastava et al., 2014)
http://imlr.org/papers/v15/srivastaval4a.html

* regularization: preventing overfitting
* making it harder for the network to learn, adding noise

* Dropout - simple regularization technique
* more effective than e.g. weight decay (L2)

e zero out some neurons/connections
in the network at random

technically: multiply by dropout layer

* 0/1 with some probability (typically 0.5-0.8)
at training time only - full network for prediction
weights scaled down after training

 they end up larger than normal because there’s fewer nodes
» done by libraries automatically

* may need larger networks to compensate £
5

layer

dropped-out

inputs
NPFL099 L4 2021 (b) Dropout network
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(Ruder, 2017)
° ° ° o http://arxiv.org/abs/1706.05098
Regularization: Multi-task Learning (Fan et 2019
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114

* achieve better generalization by learning more things at once
* aform of regularization

Task Al [Task B [Task C] Task-
spe

* implicit data augmentation — s
* biasing/focusing the model , |
* e.g. by explicitly training for an important subtask | : ayers.
. | |
* parts of network shared, parts task-specific
* hard sharing = parameters truly shared (most common) | % g E g = |
* soft sharing = regularization by parameter distance N = S & R
. g=reg yp — - ]
* different approaches w. r. t. what to share N t2ondistoee
* training - alternating between tasks T = ]
e so the network doesn’t “forget” =
nglish (unsupervised) — H . |—’W

Tags (parsing) '_,l renton |_.| e

English (unsupervised) Task2
NPFL099 L4 2021
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Self-supervised training

e train supervised, but don’t provide labels
* use naturally occurring labels

 create labels automatically somehow
» corrupt data & learn to fix them
* learn from rule-based annotation (not ideal!)

* use specific tasks that don’t require manually created labels

 good to train on huge amounts of data

* language modelling

* next-word prediction
¢ MLM - masked word prediction (~like word2vec)

 autoencoding: predict your own input (see -»)
 good to pretrain the network for a final task

* unsupervised, but with supervised approaches

NPFL099 L4 2021

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
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MNIST digits autoencoder

 Using NNs as generative models fatentspace

* more than just classification - modelling the whole distribution
 (of e.g. possible texts, images)

sevens

7
»

* generate new instances that look similar to training data 0 ideawhatf.?\
the output wi '\ ones
* Autoencoder: input > encoding > input etk

* encoding ~ “embedding” in latent space

(i.e. some vector) 0 ++EL. 0

* trained by reconstruction loss
» problem: can’t easily get valid embeddings for generating new outputs

 parts of embedding space might be unused - will generate weird stuff
* no easy interpretation of embeddings - no idea what the model will generate

 extension - denoising autoencoder:
 add noise to inputs, train to generate clean outputs
e use in multi-task learning, representations for use in downstream tasks

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf



https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Autoencoders -

Dense - 500

]
Dense - 120

 Making the encoding latent space more useful —

* using Gaussians - continuous space by design e

* encoding input into vectors of means u & std. deVW v ‘
v

« sampling encodings from N (u, o) for generation

l Output

* samples vary a bit even for the same input
 decoder learns to be more robust )

* model can degenerate into normal AE (o — 0) :
« we need to encourage some o, smoothness, overlap (u ~ 0) S

* add 2nd loss: KL divergence from N(0,1)

* VAE learns a trade-off between
using unit Gaussians & reconstructing inputs

* Problem: still not too much control of the embeddings
* we can only guess what kind of output the model will generate

v

what can happen without regularisation

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 T :
Classical music sample vector

NPFL099 L4 2021 http://kvfrans.com/variational-autoencoders-explained/
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* VAE objective:

“AE”+* reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
“\/” { latent loss (KL-divergence from ideal p(z)~N(0,1) in the encoder)

L=—E,[logp(x|z)] + KL[q(z|x)||p(2)]

* This is equivalent to maximizing true log p(x) with some error
* i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

errorincurred

Eqllogp(x|2)] — KL[q(z|x)||p(2)] = logp(x) - KL[q(ZIx)IIp(ZIx)]<— by using q

instead of true
| ! distribution p

“evidence” ELBO
Normal noise (i.e. data)

* Sidestepping szimpling - reparameterization trick

e z~u+ o -N(0,1), then differentiatew.r.t. uand o
« differentiating w. r. t. u & o still works, no hard sampling on that path

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/



https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

Discrete VAE: Gumbel-Softmax e oo

» “reparameterization trick for discrete distributions”
* same idea, just with a discrete/categorial distribution

 this makes the latent space better interpretable Gumbel noise:

« Gumbel-max trick: gi = —log(—log(Uniform(0,1)))
* categorial distribution r with probabilities m; /
)

* sampling from m: z = onehot(arg miax(log T; + 9g; exp<log(ni)+gi)

T

» Swap argmax for softmax with temperature T— =z;-V=1e>qo(l"g(”f)+g")

« differs from r if T > 0, but may be close
* approx. sample of the true distribution T — 0: more like one-hot T — oo: more like uniform
« fully differentiable ) ”

* g; bypassed in differentiation,
same as V'(0,1) in Gaussian sampling

T =101 =105 T=11 T = 10.0)

_l.l_-l_ -.l.l_-.l_
l_ i, I ke N
NPEL099 L4 2021 https://anotherdatum.com/gumbel-gan.html 16
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https://arxiv.org/abs/1611.01144
https://anotherdatum.com/gumbel-gan.html

Conditional Variational Autoencoders

* Direct control over types of things to generate

* Additional conditioning on a given label/type/class c

* ¢ can be anything (discrete, continuous...)
* image class: MNIST digit
* sentiment
* “isthis a good reply?”
* coherence level
* just concatenate to input

* given to both encoder & decoder at training time

* Generation - need to providec
* CVAE will generate a sample of type ¢

» Latent space is partitioned by c
* same latent input with different c will give different results

NPFL099 L4 2021 https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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Pretraining & Finetuning

* 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
2. Fine-tune for your own task on your smaller data (supervised)

» ~pretrained embeddings, many variants et et ol 2015
* mostly Transformer architecture ttpngihabcorm Soos o et
° pretraining tasks Va ry and make a difference (Rogers et al., 2020) http://arxiv.org/abs/2002.12327
. . . ] (Liu et al., 2019) http://arxiv.org/abs/1907.11692
* BERT + variants: multilingual, ROBERTa (optimized) (Radford etal, 2019)
https://openai.com/blog/better-language-models/
* GPT(-2/-3): Transformer decoder only, next-word prediction otz
e BART: BERT as denoising autoencoder (more below) (Lewis et al., 2019) http://arxiv.org/abs/1910.13461
e T5: genera[izatign, many va rianNts  (Raffeletal,2019) http://aniv.org/abs/1910.10683
* a lot of pretrained models released plug-and-play -

 you only need to finetune (and sometimes, not even that)

https://github.com/huggingface/transformers



http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
https://github.com/huggingface/transformers
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165

Generative Adversarial Nets

* Training generative models to generate believable outputs
* to do so, they necessarily get a better grasp on the distribution

* Getting loss from a 2nd model:

* discriminator D - “adversary” classifying real vs. generated samples

« generator G - trained to fool the discriminator
* the best chance to fool the discriminator is to generate likely outputs

* Training iteratively (EM style)
* generate some outputs
* classify + update discriminator

* update generator
based on classification

* this will reach a stable point

NPFL099 L4 2021

(Goodfellow et al, 2014)
http://papers.nips.cc/paper/
5423-generative-adversarial-
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https://en.wikipedia.org/wiki/K-means_clustering

[ J
C '.u Ste rl n g https://www.displayr.com/what-is-hierarchical-clustering/

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

* Unsupervised, finding similarities in data

* basic algorithms

* k-means: assign into k clusters randomly, iterate:
e compute means (centroids)
* reassign to nearest centroid N ® °
» Gaussian mixture: similar, but soft & variance N(GETee g @y ) B oo
* clusters = multivariate Gaussian distributions
 estimating probabilities of belonging to each cluster
 cluster mean/variance based on data weighted by probabilities
* hierarchical (bottom up):
start with one cluster per instance, iterate:
* merge 2 closest clusters
* end when you have k clusters / distance is too big

* hierarchical top-down (reversed )
* distance metrics & features decide what ends up together

https://www.youtube.com/watch?v=9YA2t78Ha68

Dendrogram

[ —

20
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* Learning from weaker supervision

* only get feedback once in a while, not for every output . lOdel
» good for globally optimizing sequence generation
* you know if the whole sequenceis good ;| Agent |
* you don’t know if step X is good o P et
* sequence =e.g. sentence, dialogue *f zEnuironment |<7
* Framing the problem as states & actions & rewards Vsutton&sarto,zma
* “robot moving in space”, but works for dialogue too some definition

of rewards

» state = generation so far (sentence, dialogue state)
* action = one generation output (word, system dialogue act)
* defining rewards might be an issue

* Training: maximizing long-term reward

e via state/action values (Q function)
* directly - optimizing policy



* Supervised training
* cost function
« stochastic gradient descent — minibatches
* backpropagation
* learning rate tricks - optimizers (Adam), schedulers
* regularization: dropout, multi-task training

* Self-supervised learning (~kinda unsupervised)
* autoencoders, denoising, variational autoencoders
* (masked) language models

* Unsupervised
* generative adversarial nets
* clustering

* Reinforcement learning (more to come later)



Thanks

Contact us: Labsin 10 mins

https://ufaldsg.slack.com/ .
{odusek,hudecek,nekvindal@ufal.mff.cuni.cz Next Monday 15:40

Troja N230/231/233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)

Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:
 https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
 https://minitorch.github.io/index.html

* https://objax.readthedocs.io/en/latest/
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