NPFL099 Statistical Dialogue Systems **4. Training Neural Nets**

http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda 25. 10. 2021

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Recap: Neural Nets

complex functions, composed of simple functions (=layers)

• linear, ReLU, tanh, sigmoid, softmax

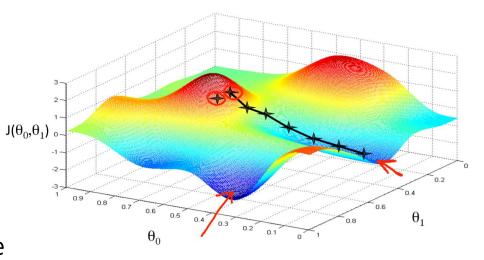
fully differentiable

- different arrangements:
 - feed forward / multi-layer perceptron
 - CNNs
 - RNNs (LSTM/GRU)
 - attention
 - Transformer
- input: binary, float, embedding
- tasks/problems: classification, regression, structured (sequences/ranking)

Supervised Training: Gradient Descent

- supervised training- gradient descent methods
 - minimizing a cost/loss function

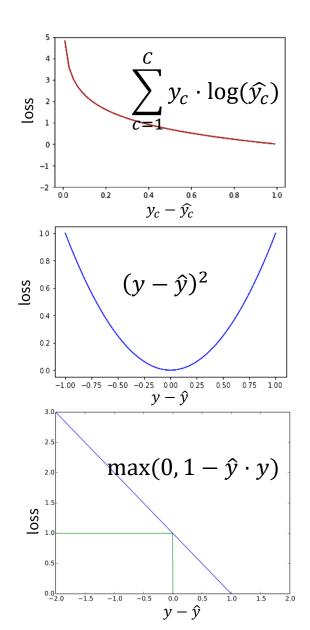
 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast we go (needs to be tuned)
- gradient typically computed (=averaged) over mini-batches
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not as slow as computing over whole data
 - stochastic gradient descent
 - batches may be accumulated to fit into memory
 - e.g. your GPU only fits one instance
 → compute forward pass multiple times, then do 1 update



Cost/Loss Functions

- differ based on what we're trying to predict
- logistic / log loss ("cross entropy")
 - for classification / softmax including word prediction
 - classes from the whole dictionary
 - pretty stupid for sequences, but works
 - sequence shifted by $1 \Rightarrow$ everything wrong
- squared error loss for regression
 - forcing the predicted float value to be close to actual one
- hinge loss for binary classification (SVMs), ranking
 - forcing the correct sign
- many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9 https://en.wikipedia.org/wiki/Hinge_loss

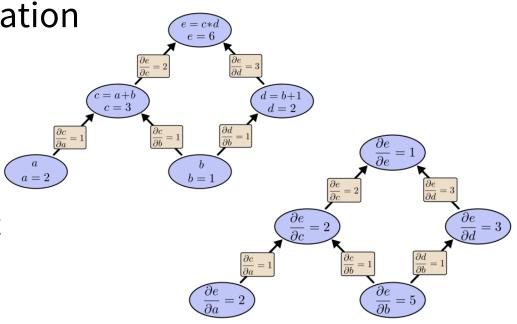


https://www.mathsisfun.com/calculus/derivatives-rules.html

Backpropagation

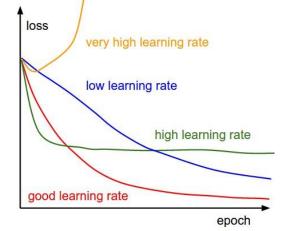
- network ~ computational graph
 - reflects function/layer composition
- composed function derivatives simple rules
 - basically summing over different paths
 - factoring ~ merging paths at every node
- backpropagation = reverse-mode differentiation
 - going back from output to input
 - ~ how every node affects the output
 - output = cost function
 - \rightarrow derivatives of all parameters w. r. t. cost
 - one pass through the network only \rightarrow easy & fast
 - NN frameworks do this automatically

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	$\frac{f' g - g' f}{g^2}$
Reciprocal Rule	1/f	$-f'/f^2$
Chain Rule (as <u>"Composition of Functions")</u>	f°g	$(f' \circ g) \times g'$

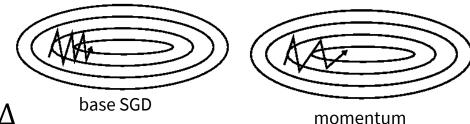


Learning Rate (α) & Momentum

- *α*: most important parameter in (stochastic) gradient descent
- tricky to tune:
 - too high α = may not find optimum
 - too low α = may take forever
- Learning rate decay: start high, lower α gradually
 - make bigger steps (to speed learning)
 - slow down when you're almost there (to avoid overshooting)
 - linear, stepwise, exponential
 - **reduce-on-plateau** check every now and then if we're still improving, reduce LR if not
- Momentum: moving average of gradients
 - make learning less erratic
 - $m = \beta \cdot m + (1 \beta) \cdot \Delta$, update by m instead of Δ



http://cs231n.github.io/neural-networks-3/

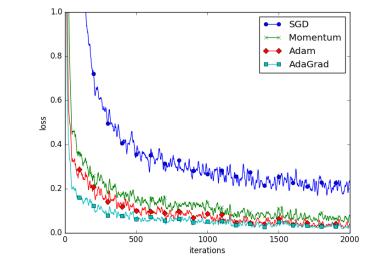


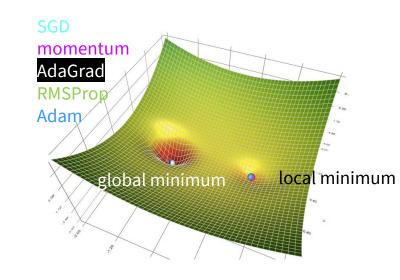
Optimizers

- Better LR management
 - change LR based on gradients
 - much less sensitive to user setting
- AdaGrad all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide LR by $\sqrt{\sum \Delta_t^2}$
 - variants: Adadelta, RMSProp –slower LR drop
- <u>Adam</u> per-parameter momentum (Kingma & Ba, 2015) https://arxiv.org/abs/1412.6980
 - moving averages for $\Delta \& \Delta^2$:

 $m = \beta_1 \cdot m + (1 - \beta_1)\Delta, v = \beta_2 \cdot v + (1 - \beta_2)\Delta^2$

- use m instead of Δ , divide LR by \sqrt{v}
- used as default in most applications
- variant: **AdamW** decoupled LR drop





https://ruder.io/optimizing-gradient-descent/

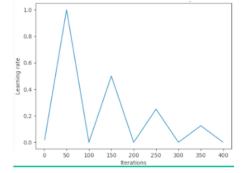
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

https://arxiv.org/abs/1711.05101

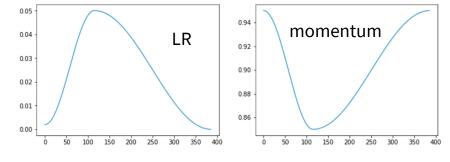
(Loshchilov & Hutter, 2019)

Schedulers

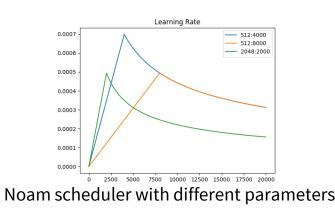
- more fiddling with LR warm-ups
 - start learning slowly, then increase LR, then reduce again
 - may be repeated (warm restarts), with lowered maximum LR
 - allow to diverge slightly work around local minima
- multiple options:
 - cyclical linear, cosine annealing
 - one cycle same, just don'
 - Noam scheduler linear warm-up, decay by \sqrt{steps}
- combine with base SGD or Adam/Adadelta etc.
 - momentum updated inversely to LR
 - may have less effect with optimizers
 - trade-off: speed vs. sensitivity to parameter settings



cyclical scheduler (warm restarts)

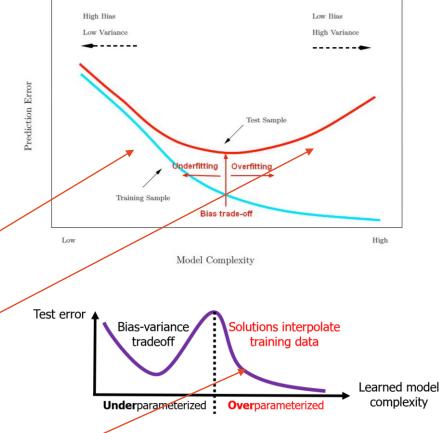


one cycle with cosine annealing



When to stop training

- generally, when cost stops improving
 - despite all the LR fiddling
- problem: overfitting
 - cost is low on training set, high on validation set
 - network essentially memorized the training set
 - → check on validation set after each epoch (pass through data)
 - stop when cost goes up on validation set
 - regularization (see \rightarrow) helps delay overfitting
- bias-variance trade-off
 - smaller models may underfit (high bias, low variance = not flexible enough)
 - larger models likely to overfit (too flexible, memorize data)
 - XXL models: overfit soo much they actually interpolate data → good ((?)?)



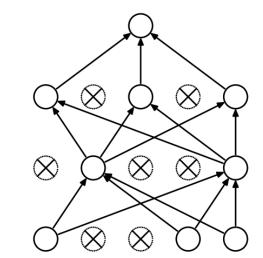
https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

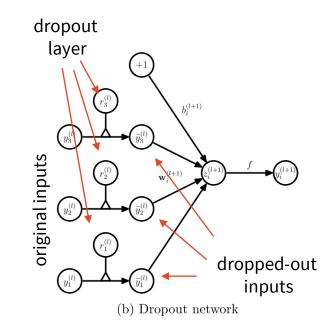
⁽Dar et al., 2021) <u>https://arxiv.org/abs/2109.02355</u>

Regularization: Dropout

- regularization: preventing overfitting
 - making it harder for the network to learn, adding noise
- **Dropout** simple regularization technique
 - more effective than e.g. weight decay (L2)
 - zero out some neurons/connections in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there's fewer nodes
 - done by libraries automatically
 - may need larger networks to compensate

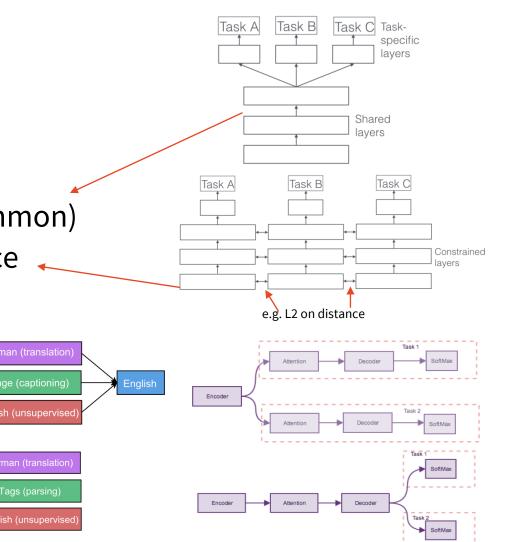
(Srivastava et al., 2014) http://jmlr.org/papers/v15/srivastava14a.html





Regularization: Multi-task Learning

- (Ruder, 2017) <u>http://arxiv.org/abs/1706.05098</u> (Fan et al., 2017) <u>http://arxiv.org/abs/1706.04326</u> (Luong et al., 2016) <u>http://arxiv.org/abs/1511.06114</u>
- achieve better generalization by learning more things at once
 - a form of regularization
 - implicit data augmentation
 - biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training alternating between tasks
 - so the network doesn't "forget"



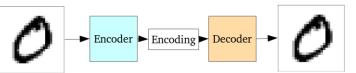
Self-supervised training

• train supervised, but don't provide labels

- use naturally occurring labels
- create labels automatically somehow
 - corrupt data & learn to fix them
 - learn from rule-based annotation (not ideal!)
- use specific tasks that don't require manually created labels
- good to train on huge amounts of data
 - language modelling
 - next-word prediction
 - MLM masked word prediction (~like word2vec)
 - **autoencoding**: predict your own input (see \rightarrow)
- good to **pretrain** the network for a final task
- unsupervised, but with supervised approaches

Autoencoders

- Using NNs as generative models
 - more than just classification modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data
- Autoencoder: input → encoding → input
 - encoding ~ "embedding" in latent space (i.e. some vector)
 - trained by reconstruction loss
 - problem: can't easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused will generate weird stuff
 - no easy interpretation of embeddings no idea what the model will generate
- extension denoising autoencoder:
 - add noise to inputs, train to generate clean outputs
 - use in multi-task learning, representations for use in downstream tasks



MNIST digits autoencoder

latent space

no idea what the output will

be from here

) ones

Variational Autoencoders

- Making the encoding latent space more useful
 - using **Gaussians** continuous space by design
 - encoding input into vectors of means μ & std. deviations σ

Input

Dense - 500

Dense - 120

Sample - 30

Dense - 120

Dense - 500

what can happen without regularisation

Output

want to obtain with regularisati

Difference

Half-dassical, half-rock

Classical music sample vector

- sampling encodings from $N(\mu, \sigma)$ for generation
 - samples vary a bit even for the same input
 - decoder learns to be more robust
- model can degenerate into normal AE ($\sigma \rightarrow 0$)
 - we need to encourage some $\sigma,$ smoothness, overlap $(\mu \sim 0)$
 - add **2nd loss: KL divergence** from *N*(0,1)
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs
- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate

<u>https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf</u> <u>https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73</u> <u>http://kvfrans.com/variational-autoencoders-explained/</u>

VAE details

- VAE objective:
- "AE" [• reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
- "v" latent loss (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

 $\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]$

- This is equivalent to maximizing true $\log p(x)$ with some error
 - i.e. maximizing **evidence lower bound** (ELBO) / variational lower bound:

$$\mathbb{E}_{q}[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)]$$

wreak instead of true distribution p

Normal noise

• Sidestepping sampling - **reparameterization trick**

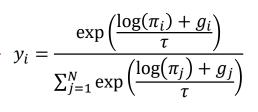
• $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ

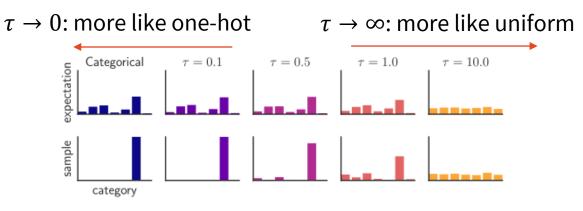
• differentiating w. r. t. $\mu \& \sigma$ still works, no hard sampling on that path

Discrete VAE: Gumbel-Softmax

- "reparameterization trick for discrete distributions"
 - same idea, just with a discrete/categorial distribution
 - this makes the latent space better interpretable
- Gumbel-max trick:
 - categorial distribution π with probabilities π_i
 - sampling from $\pi: z = \text{onehot}(\arg\max_i (\log \pi_i + g_i))$
- Swap argmax for softmax with temperature au
 - differs from π if $\tau > 0$, but may be close
 - approx. sample of the true distribution
 - fully differentiable
 - g_i bypassed in differentiation, same as $\mathcal{N}(0,1)$ in Gaussian sampling

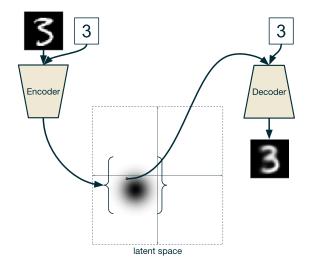
Gumbel noise: $g_i = -\log(-\log(\text{Uniform}(0,1)))$





Conditional Variational Autoencoders

- Direct control over types of things to generate
- Additional conditioning on a given label/type/class *c*
 - *c* can be anything (discrete, continuous...)
 - image class: MNIST digit
 - sentiment
 - "is this a good reply?"
 - coherence level
 - just concatenate to input
 - given to both encoder & decoder at training time
- Generation need to provide *c*
 - CVAE will generate a sample of type *c*
 - Latent space is partitioned by *c*
 - same latent input with different *c* will give different results



Pretraining & Finetuning

- 2-step training:
 - 1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
 - 2. Fine-tune for your own task on your smaller data (supervised)
- ~pretrained embeddings, many variants
 - mostly Transformer architecture
 - pretraining tasks vary and make a difference
- **BERT** + variants: multilingual, **RoBERTa** (optimized)
- **GPT**(-2/-3): Transformer decoder only, next-word prediction
- **BART**: BERT as denoising autoencoder (more below)
- T5: generalization, many variants (Raffel et al., 2019) http://arxiv.org/abs/1910.10683
- a lot of pretrained models released plug-and-play
 - you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423 https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

(Liu et al., 2019) <u>http://arxiv.org/abs/1907.11692</u>

(Radford et al., 2019)

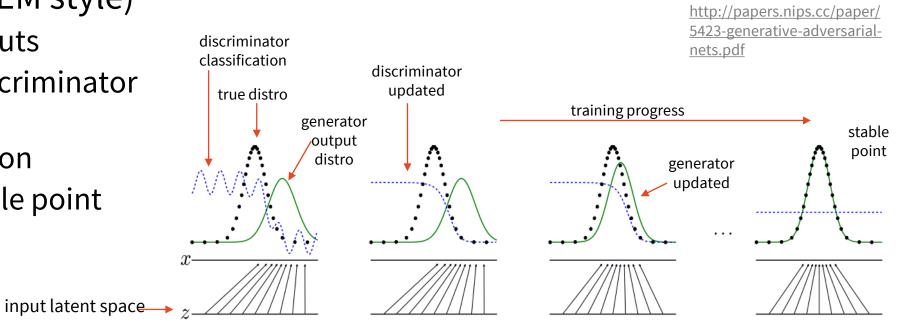
https://openai.com/blog/better-language-models/

(Brown et al., 2020) http://arxiv.org/abs/2005.14165

(Lewis et al., 2019) http://arxiv.org/abs/1910.13461

Generative Adversarial Nets

- Training generative models to generate **believable** outputs
 - to do so, they necessarily get a better grasp on the distribution
- Getting loss from a 2nd model:
 - **discriminator D** "adversary" classifying real vs. generated samples
 - generator G trained to fool the discriminator
 - the best chance to fool the discriminator is to generate likely outputs
- Training iteratively (EM style)
 - generate some outputs
 - classify + update discriminator
 - update generator based on classification
 - this will reach a stable point

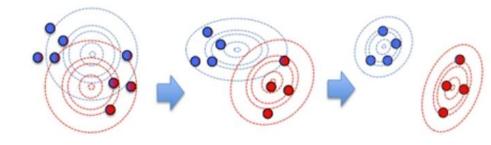


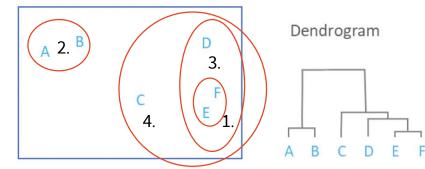
(Goodfellow et al, 2014)

Clustering

- Unsupervised, finding similarities in data
- basic algorithms
 - **k-means**: assign into *k* clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
 - Gaussian mixture: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
 - **hierarchical** (bottom up): start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have k clusters / distance is too big
 - hierarchical top-down (reversed →)
- distance metrics & features decide what ends up together

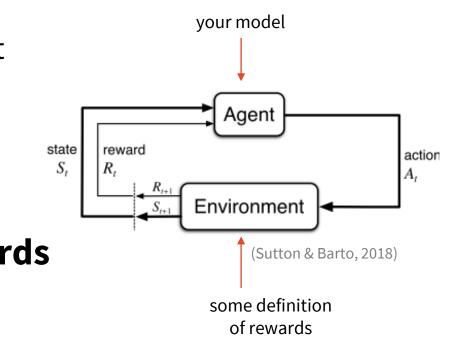
https://www.youtube.com/watch?v=9YA2t78Ha68





Reinforcement Learning

- Learning from weaker supervision
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don't know if step X is good
 - sequence = e.g. sentence, dialogue
- Framing the problem as states & actions & rewards
 - "robot moving in space", but works for dialogue too
 - state = generation so far (sentence, dialogue state)
 - action = one generation output (word, system dialogue act)
 - defining rewards might be an issue
- Training: maximizing long-term reward
 - via state/action values (Q function)
 - directly optimizing policy



Summary

- Supervised training
 - cost function
 - stochastic gradient descent minibatches
 - backpropagation
 - learning rate tricks optimizers (Adam), schedulers
 - regularization: dropout, multi-task training
- Self-supervised learning (~kinda unsupervised)
 - autoencoders, denoising, variational autoencoders
 - (masked) language models
- Unsupervised
 - generative adversarial nets
 - clustering
- Reinforcement learning (more to come later)

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek,nekvinda}@ufal.mff.cuni.cz Troja N230/231/233 (by agreement)

Labs in 10 mins Next Monday 15:40

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (<u>http://www.deeplearningbook.org</u>) Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language (<u>http://arxiv.org/abs/1812.06834</u>)

Milan Straka's Deep Learning slides: <u>http://ufal.mff.cuni.cz/courses/npfl114/1819-summer</u> Neural nets tutorials:

- <u>https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0</u>
- https://minitorch.github.io/index.html
- <u>https://objax.readthedocs.io/en/latest/</u>