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Recap: Neural Nets

• complex functions, composed of simple functions (=layers)
• linear, ReLU, tanh, sigmoid, softmax

• fully differentiable

• different arrangements:
• feed forward / multi-layer perceptron

• CNNs

• RNNs (LSTM/GRU)

• attention

• Transformer

• input: binary, float, embedding

• tasks/problems: classification, regression, structured (sequences/ranking)
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Supervised Training: Gradient Descent

• supervised training– gradient descent methods
• minimizing a cost/loss function 

(notion of error – given system output, how far off are we?)

• calculus: derivative = steepness/slope

• follow the slope to find the minimum – derivative gives the direction

• learning rate = how fast we go (needs to be tuned)

• gradient typically computed (=averaged) over mini-batches
• random bunches of a few training instances

• not as erratic as using just 1 instance,
not as slow as computing over whole data

• stochastic gradient descent

• batches may be accumulated to fit into memory
• e.g. your GPU only fits one instance 

→ compute forward pass multiple times, then do 1 update
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https://hackernoon.com/gradient-descent-aynk-7cbe95a778da


Cost/Loss Functions

• differ based on what we’re trying to predict

• logistic / log loss (“cross entropy”)
• for classification / softmax – including word prediction

• classes from the whole dictionary

• pretty stupid for sequences, but works
• sequence shifted by 1 ⇒ everything wrong

• squared error loss – for regression
• forcing the predicted float value to be close to actual one

• hinge loss – for binary classification (SVMs), ranking
• forcing the correct sign

• many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss
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Backpropagation
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https://www.mathsisfun.com/calculus/derivatives-rules.html

• network ~ computational graph
• reflects function/layer composition

• composed function derivatives – simple rules
• basically summing over different paths

• factoring ~ merging paths at every node

• backpropagation = reverse-mode differentiation
• going back from output to  input

• ~ how every node affects the output

• output = cost function

• → derivatives of all parameters w. r. t. cost

• one pass through the network only → easy & fast

• NN frameworks do this automatically

http://colah.github.io/posts/2015-08-Backprop/
https://www.mathsisfun.com/calculus/derivatives-rules.html


• 𝜶: most important parameter in (stochastic) gradient descent

• tricky to tune:
• too high 𝛼 = may not find optimum

• too low 𝛼 = may take forever

• Learning rate decay: start high, lower 𝛼 gradually
• make bigger steps (to speed learning)

• slow down when you’re almost there (to avoid overshooting)

• linear, stepwise, exponential

• reduce-on-plateau – check every now and then
if we’re still improving, reduce LR if not

• Momentum: moving average of gradients
• make learning less erratic

• 𝑚 = 𝛽 ⋅ 𝑚 + (1 − 𝛽) ⋅ Δ, update by 𝑚 instead of Δ

Learning Rate (α) & Momentum

6

http://cs231n.github.io/neural-networks-3/

base SGD
momentum

https://ruder.io/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/


Optimizers

• Better LR management
• change LR based on gradients

• much less sensitive to user setting

• AdaGrad – all history
• remember sum of total gradients squared: σ𝑡 Δ𝑡

2

• divide LR by σΔ𝑡
2

• variants: Adadelta, RMSProp –slower LR drop

• Adam – per-parameter momentum
• moving averages for Δ & Δ2:

𝑚 = 𝛽1 ⋅ 𝑚 + 1 − 𝛽1 Δ, 𝑣 = 𝛽2 ⋅ 𝑣 + 1 − 𝛽2 Δ2

• use 𝑚 instead of Δ, divide LR by 𝑣

• used as default in most applications

• variant: AdamW – decoupled LR drop
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http://kaeken.hatenablog.com/entry/2016/11/10/203151

https://ruder.io/optimizing-gradient-descent/

(Loshchilov & Hutter, 2019)
https://arxiv.org/abs/1711.05101

(Kingma & Ba, 2015)
https://arxiv.org/abs/1412.6980

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD
momentum
AdaGrad
RMSProp
Adam

local minimumglobal minimum

http://kaeken.hatenablog.com/entry/2016/11/10/203151
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Schedulers

• more fiddling with LR – warm-ups
• start learning slowly, then increase LR, then reduce again

• may be repeated (warm restarts),
with lowered maximum LR
• allow to diverge slightly – work around local minima

• multiple options:
• cyclical – linear, cosine annealing

• one cycle – same, just don’ 

• Noam scheduler – linear warm-up, decay by steps

• combine with base SGD or Adam/Adadelta etc.
• momentum updated inversely to LR

• may have less effect with optimizers
• trade-off: speed vs. sensitivity to parameter settings
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https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F

cyclical scheduler (warm restarts)

LR momentum

one cycle with cosine annealing

https://nn.labml.ai/optimizers/noam.html
Noam scheduler with different parameters

https://spell.ml/blog/lr-schedulers-and-adaptive-optimizers-YHmwMhAAACYADm6F
https://nn.labml.ai/optimizers/noam.html


When to stop training

• generally, when cost stops improving
• despite all the LR fiddling

• problem: overfitting
• cost is low on training set, high on validation set

• network essentially memorized the training set

• → check on validation set after each epoch 
(pass through data)

• stop when cost goes up on validation set

• regularization (see →) helps delay overfitting 

• bias-variance trade-off
• smaller models may underfit (high bias, low variance = not flexible enough)

• larger models likely to overfit (too flexible, memorize data)

• XXL models: overfit soo much they actually interpolate data → good (🤔?)
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(Dar et al., 2021) https://arxiv.org/abs/2109.02355

https://www.andreaperlato.com/theorypost/bias-variance-trade-off/

https://arxiv.org/abs/2109.02355
https://www.andreaperlato.com/theorypost/bias-variance-trade-off/


Regularization: Dropout

• regularization: preventing overfitting
• making it harder for the network to learn, adding noise

• Dropout – simple regularization technique
• more effective than e.g. weight decay (L2)

• zero out some neurons/connections 
in the network at random

• technically: multiply by dropout layer
• 0/1 with some probability (typically 0.5–0.8)

• at training time only – full network for prediction

• weights scaled down after training
• they end up larger than normal because there’s fewer nodes

• done by libraries automatically

• may need larger networks to compensate
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(Srivastava et al., 2014)
http://jmlr.org/papers/v15/srivastava14a.html
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e.g. L2 on distance

Regularization: Multi-task Learning

• achieve better generalization by learning more things at once
• a form of regularization

• implicit data augmentation

• biasing/focusing the model
• e.g. by explicitly training for an important subtask

• parts of network shared, parts task-specific
• hard sharing = parameters truly shared (most common)

• soft sharing = regularization by parameter distance

• different approaches w. r. t. what to share

• training – alternating between tasks
• so the network doesn’t “forget”
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(Ruder, 2017)
http://arxiv.org/abs/1706.05098
(Fan et al., 2017)
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.04326
http://arxiv.org/abs/1511.06114


Self-supervised training

• train supervised, but don’t provide labels
• use naturally occurring labels

• create labels automatically somehow
• corrupt data & learn to fix them

• learn from rule-based annotation (not ideal!)

• use specific tasks that don’t require manually created labels

• good to train on huge amounts of data
• language modelling

• next-word prediction

• MLM – masked word prediction (~like word2vec)

• autoencoding: predict your own input (see →)

• good to pretrain the network for a final task

• unsupervised, but with supervised approaches

12NPFL099 L4 2021 https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning


Autoencoders

• Using NNs as generative models
• more than just classification – modelling the whole distribution 

• (of e.g. possible texts, images)

• generate new instances that look similar to training data

• Autoencoder: input → encoding → input
• encoding ~ “embedding” in latent space

(i.e. some vector)

• trained by reconstruction loss

• problem: can’t easily get valid embeddings for generating new outputs
• parts of embedding space might be unused – will generate weird stuff

• no easy interpretation of embeddings – no idea what the model will generate

• extension – denoising autoencoder:
• add noise to inputs, train to generate clean outputs

• use in multi-task learning, representations for use in downstream tasks
13https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

MNIST digits autoencoder
latent space
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sevens

no idea what 
the output will
be from here

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational Autoencoders

• Making the encoding latent space more useful
• using Gaussians – continuous space by design

• encoding input into vectors of means 𝜇 & std. deviations 𝜎

• sampling encodings from 𝑁 𝜇, 𝜎 for generation
• samples vary a bit even for the same input

• decoder learns to be more robust

• model can degenerate into normal AE (𝜎 → 0)
• we need to encourage some σ, smoothness, overlap (μ ∼ 0)

• add 2nd loss: KL divergence from 𝑁(0,1)

• VAE learns a trade-off between 
using unit Gaussians & reconstructing inputs

• Problem: still not too much control of the embeddings
• we can only guess what kind of output the model will generate
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/


VAE details

• VAE objective: 
• reconstruction loss (maximizing 𝑝(𝑥|𝑧) in the decoder), MLE as per usual

• latent loss (KL-divergence from ideal 𝑝 𝑧 ~𝒩(0,1) in the encoder)

• This is equivalent to maximizing true log 𝑝(𝑥) with some error
• i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

• Sidestepping sampling – reparameterization trick
• 𝑧~𝜇 + 𝜎 ⋅ 𝒩 0,1 , then differentiate w. r. t. 𝜇 and 𝜎

• differentiating w. r. t. 𝜇 & 𝜎 still works, no hard sampling on that path
15NPFL099 L4 2021

ℒ = − 𝔼𝑞 log 𝑝 𝑥 𝑧 + 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧)

𝔼𝑞 log 𝑝(𝑥|𝑧) − 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧) = log 𝑝(𝑥) − 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧|𝑥)

ELBO“evidence”
(i.e. data)

error incurred
by using 𝑞

instead of true 
distribution 𝑝

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

Normal noise

“AE”

“V”

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/


Discrete VAE: Gumbel-Softmax

• “reparameterization trick for discrete distributions”
• same idea, just with a discrete/categorial distribution

• this makes the latent space better interpretable

• Gumbel-max trick:
• categorial distribution 𝜋 with probabilities 𝜋𝑖
• sampling from 𝜋: 𝑧 = onehot(argmax

𝑖
log 𝜋𝑖 + 𝑔𝑖 )

• Swap argmax for softmax with temperature 𝜏
• differs from 𝜋 if 𝜏 > 0, but may be close

• approx. sample of the true distribution

• fully differentiable

• 𝑔𝑖 bypassed in differentiation,
same as 𝒩(0,1) in Gaussian sampling
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𝑦𝑖 =
exp

log 𝜋𝑖 + 𝑔𝑖
𝜏

σ𝑗=1
𝑁 exp

log 𝜋𝑗 + 𝑔𝑗
𝜏

Gumbel noise:

𝑔𝑖 = − log − log Uniform 0,1

𝜏 → 0: more like one-hot 𝜏 → ∞: more like uniform

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144

16https://anotherdatum.com/gumbel-gan.html

https://arxiv.org/abs/1611.01144
https://anotherdatum.com/gumbel-gan.html


Conditional Variational Autoencoders

• Direct control over types of things to generate

• Additional conditioning on a given label/type/class 𝑐
• 𝑐 can be anything (discrete, continuous…)

• image class: MNIST digit

• sentiment

• “is this a good reply?”

• coherence level

• just concatenate to input

• given to both encoder & decoder at training time

• Generation – need to provide 𝑐
• CVAE will generate a sample of type 𝑐

• Latent space is partitioned by 𝑐
• same latent input with different 𝑐 will give different results

17NPFL099 L4 2021 https://ijdykeman.github.io/ml/2016/12/21/cvae.html

https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Pretraining & Finetuning

• 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)

2. Fine-tune for your own task on your smaller data (supervised)

• ~pretrained embeddings, many variants
• mostly Transformer architecture

• pretraining tasks vary and make a difference

• BERT + variants: multilingual, RoBERTa (optimized)

• GPT(-2/-3): Transformer decoder only, next-word prediction

• BART: BERT as denoising autoencoder (more below)

• T5: generalization, many variants

• a lot of pretrained models released plug-and-play
• you only need to finetune (and sometimes, not even that)
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(Liu et al., 2019) http://arxiv.org/abs/1907.11692

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

https://github.com/huggingface/transformers

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Lewis et al., 2019) http://arxiv.org/abs/1910.13461

(Radford et al., 2019) 
https://openai.com/blog/better-language-models/

(Brown et al., 2020)
http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
https://github.com/huggingface/transformers
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165


Generative Adversarial Nets

• Training generative models to generate believable outputs
• to do so, they necessarily get a better grasp on the distribution

• Getting loss from a 2nd model:
• discriminator 𝑫 – “adversary” classifying real vs. generated samples

• generator 𝑮 – trained to fool the discriminator
• the best chance to fool the discriminator is to generate likely outputs

• Training iteratively (EM style)
• generate some outputs

• classify + update discriminator

• update generator 
based on classification

• this will reach a stable point
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training progress
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true distro

generator
output
distro

input latent space

discriminator
classification

(Goodfellow et al, 2014)
http://papers.nips.cc/paper/
5423-generative-adversarial-
nets.pdf

discriminator
updated

generator
updated

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


Clustering

• Unsupervised, finding similarities in data

• basic algorithms
• k-means: assign into 𝑘 clusters randomly, iterate:

• compute means (centroids)

• reassign to nearest centroid

• Gaussian mixture: similar, but soft & variance
• clusters = multivariate Gaussian distributions

• estimating probabilities of belonging  to each cluster

• cluster mean/variance based on data weighted by probabilities

• hierarchical (bottom up): 
start with one cluster per instance, iterate:
• merge 2 closest clusters

• end when you have 𝑘 clusters / distance is too big

• hierarchical top-down (reversed ⬏)

• distance metrics & features decide what ends up together
20

1.

2.
3.

4.

https://www.youtube.com/watch?v=9YA2t78Ha68

https://en.wikipedia.org/wiki/K-means_clustering
https://www.displayr.com/what-is-hierarchical-clustering/
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

https://www.youtube.com/watch?v=9YA2t78Ha68
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e


Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence = e.g. sentence, dialogue

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for dialogue too

• state = generation so far (sentence, dialogue state)

• action = one generation output (word, system dialogue act)

• defining rewards might be an issue

• Training: maximizing long-term reward
• via state/action values (Q function)

• directly – optimizing policy
21

(Sutton & Barto, 2018)

your model

some definition
of rewards



Summary

• Supervised training
• cost function

• stochastic gradient descent – minibatches

• backpropagation

• learning rate tricks – optimizers (Adam), schedulers

• regularization: dropout, multi-task training

• Self-supervised learning (~kinda unsupervised)

• autoencoders, denoising, variational autoencoders

• (masked) language models

• Unsupervised
• generative adversarial nets

• clustering

• Reinforcement learning (more to come later)
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Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Troja N230/231/233 (by agreement)

Get the slides here:

http://ufal.cz/npfl099

References/Further:
Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org )
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language 

(http://arxiv.org/abs/1812.06834)
Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/
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Labs in 10 mins
Next Monday 15:40
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http://ufal.cz/npfl099
http://www.deeplearningbook.org/
http://arxiv.org/abs/1812.06834
http://ufal.mff.cuni.cz/courses/npfl114/1819-summer
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
https://minitorch.github.io/index.html
https://objax.readthedocs.io/en/latest/

