NPFL099 Statistical Dialogue Systems 3. Neural Nets Basics

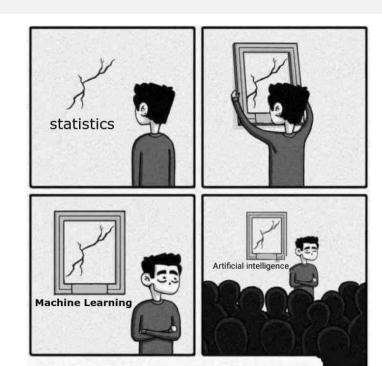
http://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda 18. 10. 2021



Machine Learning

- ML is basically function approximation
- function: data (**features**) → **labels**
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)
- training/learning = adjusting function parameters to minimize error
 - supervised learning = based on data + labels given in advance
 - reinforcement learning = based on exploration & rewards given online



https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

NPFL099 L3 2021

ructured prediction

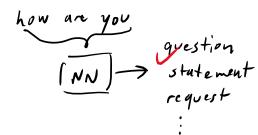
Typical machine learning problems in NLP

regression

many inputs, 1 float output

classification

• many inputs, 1 categorial output (k classes)



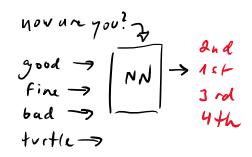
sequence labelling

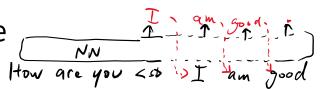
- sequence of inputs, label each (~ repeated classification)
- 1-to-1 input to output

How are you?

ranking

- multiple inputs, choose best one (~ diff regression)
- sequence prediction (autoregressive generation)
 - some inputs (sequence/something else)
 - generate outputs, use previous output in predicting next one



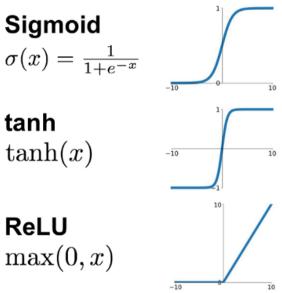


Neural networks

- Can be used for both classification & sequence models
- Non-linear functions, composed of basic building blocks
 - stacked into layers
- Layers are made of activation functions:
 - linear functions (~basic, default)
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

softmax(
$$\mathbf{x}$$
)_i = $\frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$

- Fully differentiable training by gradient descent
 - network output incurs loss/cost
 - gradients **backpropagated** from loss to all parameters (composite function differentiation)



https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Layers visualization

- https://playground.tensorflow.org/
 - 2 numeric features (=2 input variables) → binary classification (=1 output, 2 classes)
 - easiest case, but you can see the internals
 - more complex input features (→)
 - feed-forward = fully connected = multi-layer perceptron here
 - easiest case: connect everything & let the network figure it out
 - nice but gets too large very quickly, not good for variable-sized inputs
 - added layers & power to distinguish different classes
 - fits the training data Y/N?
 - different activation functions
 - without them, it's just linear no matter how many layers!
- best NN conceptualization pipeline / flow (computational graph)
 - data flows through individual layers, gets changed
 - corresponds to a math formula, but can be easier to read

NPFL099 L3 2021 5

Feature representation

- technically can be anything, as long as it's meaningful
 - the network will learn to assign meaning/values itself

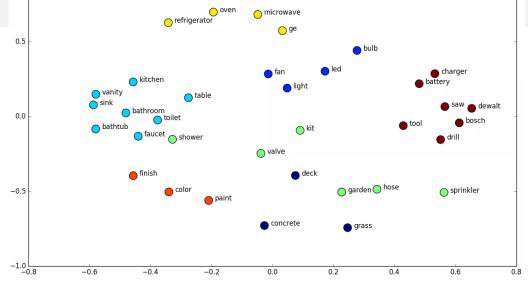
• 1-hot/binary

- words numbered vocabulary
 - bigrams, n-grams, positional...
- other features especially handcrafted
 - word classes
 - various word combinations
 - outputs of other classifiers (sentiment, part-of-speech…)
 - is capitalized/is loud?
- numeric (floats)
 - best for continuous inputs: vision, audio
 - raw pixels, MFCCs...
- vectors (embeddings) →

NPFL099 L3 2021 6

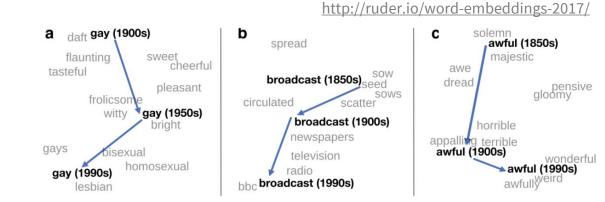
Embeddings

- distributed (word) representation
 - each word = a vector of floats
 - basically an easy conversion of 1-hot → numeric
 - a dictionary of trainable features
- part of network parameters trained
 - a) random initialization
 - b) pretraining



http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

- the network learns which words are used similarly for the given task!
 - they end up having close embedding values
 - different embeddings for different tasks
- embedding size: ~100s-1000
- vocab size: ~50-100k

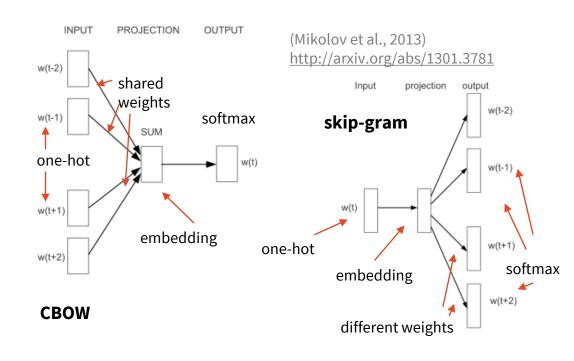


Pretrained Word Embeddings

Word2Vec

https://projector.tensorflow.org/

- Continuous Bag-of-Words (CBOW) (~ "masked LM")
 - predict a word, given $\pm k$ words window
 - disregarding word order within the window
- Skip-gram: reverse
 - given a word, predict its $\pm k$ word window
 - closer words = higher weight in training



GloVe

- optimized directly from corpus co-occurrences (= w_1 close to w_2)
- (Pennington et al., 2014) http://aclweb.org/anthology/D14-1162

- target: $e_1 \cdot e_2 = \log(\#\text{co-occurrences})$
 - number weighted by distance, weighted down for low totals
- trained by minimizing reconstruction loss on a co-occurrence matrix

Word Embeddings

- Vocabulary is unlimited, embedding matrix isn't
 - + the bigger the embedding matrix, the slower your models
- Special out-of-vocabulary token <unk>
 - "default" / older option
 - all words not found in vocabulary are assigned this entry
 - can be trained using some rare words in the data
 - problem for generation you don't want these on the output
- Using limited sets
 - characters very small set
 - works, but makes for very long sequences (20 words ~ 80-100 characters)
 - slower, might be less accurate
 - **subwords** compromise →

Subwords

- group of characters that:
 - make shorter sequences than using individual characters
 - cover everything
- byte-pair encoding
 - start from individual characters
 - iteratively merge most frequent bigram, until you get desired # of subwords
 - sub@@ word the @@ marks "no space after"
- SentencePiece don't pre-tokenize
 - criterium: likelihood of joined vs. separate
 - *sub word_* the _ marks a space
- 20-50k subwords for 1 language
 - ~250k subwords to cover them all

(Sennrich et al., 2016) https://www.aclweb.org/anthology/P16-1162/

```
fast_
faster_
faster_
tall_
taller_
taller_
taller_
faster_
taller_
taller_
faster_
taller_
taller_
```

https://github.com/google/sentencepiece

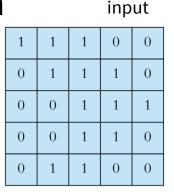
https://blog.floydhub.com/tokenization-nlp/

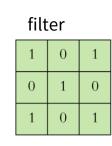
https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html

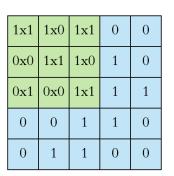
NPFL099 L3 2021

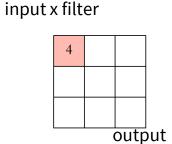
Convolutional Networks

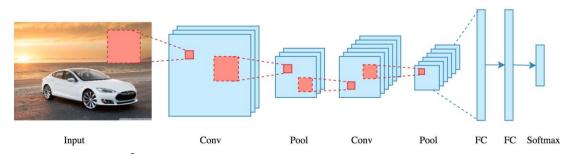
- Designed for computer vision inspired by human vision
 - works for language in 1D, too!
- less parameters than fully connected filter/kernel
- Apply filter repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - => produce 1 element of output
 - can have more dimensions (~"set of filters")
- Stride how many steps to skip
 - less overlap, reducing output dimension
- Pooling no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling





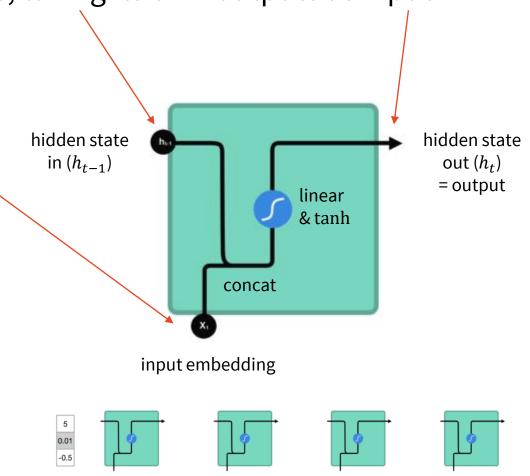






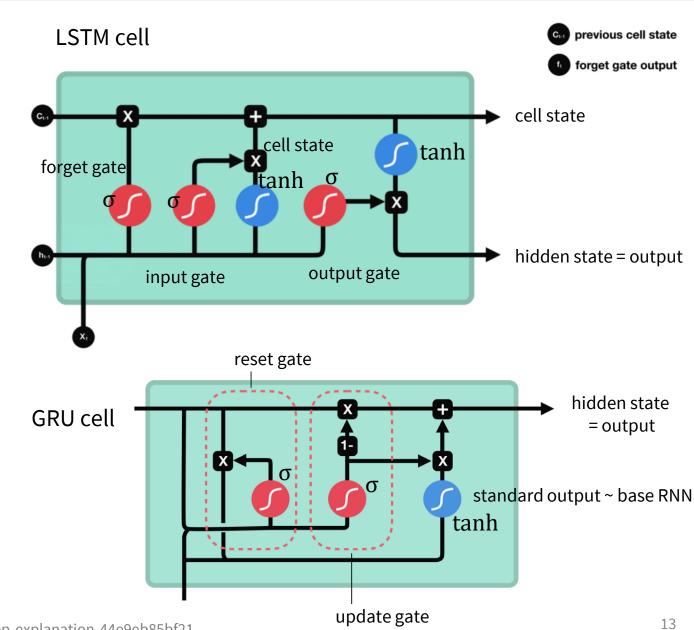
Recurrent Neural Networks

- Identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = hidden state fed to the next step
 - additional input next token features
- basic RNN: linear + tanh
 - tanh: squashes everything to [-1,1]
 - good for repeated application
 - very simple structure
 - numeric problem: vanishing gradients
 - training updates get too small
 - can't hold long sequences well



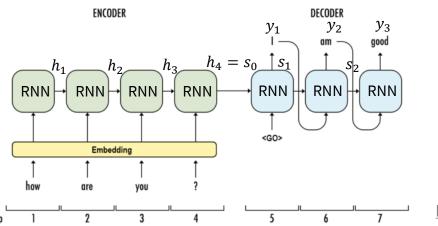
LSTMs & GRUs

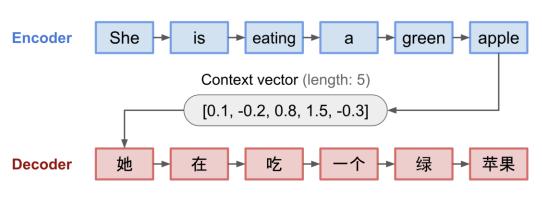
- **GRU, LSTM**: more complex, to make training more stable
 - "gates" to keep old values
 - $\sigma \sim [0,1]$ decisions:
 - forget stuff from previous?
 - take input into account?
 - put stuff onto output?
 - over individual dimensions
 (e.g. input has 100 dims,
 forget gate forgets dims 1-3 & 4-25)
 - all based on current input & state
 - LSTM is older & more complex
 - GRU almost as good but faster
 - both slower than base RNN
 - both handle long recurrences



Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - ullet encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax.
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - used in MT, dialogue, parsing...
 - more complex structures linearized to sequences





 $\mathbf{h}_0 = \mathbf{0}$ $\mathbf{h}_t = \operatorname{cell}(\mathbf{x}_t, \mathbf{h}_{t-1})$

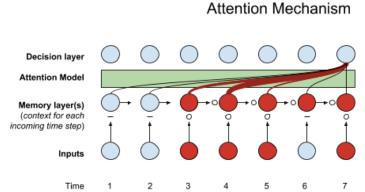
 $p(y_t|y_1, \dots y_{t-1}, \mathbf{x}) = \operatorname{softmax}(\mathbf{s}_t)$

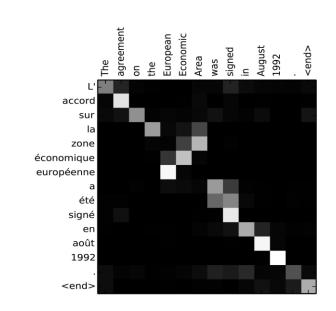
 $\mathbf{s}_t = \text{cell}(\mathbf{y}_{t-1}, \mathbf{s}_{t-1})$

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- Self-attention over previous decoder steps
 - increases consistency when generating long sequences

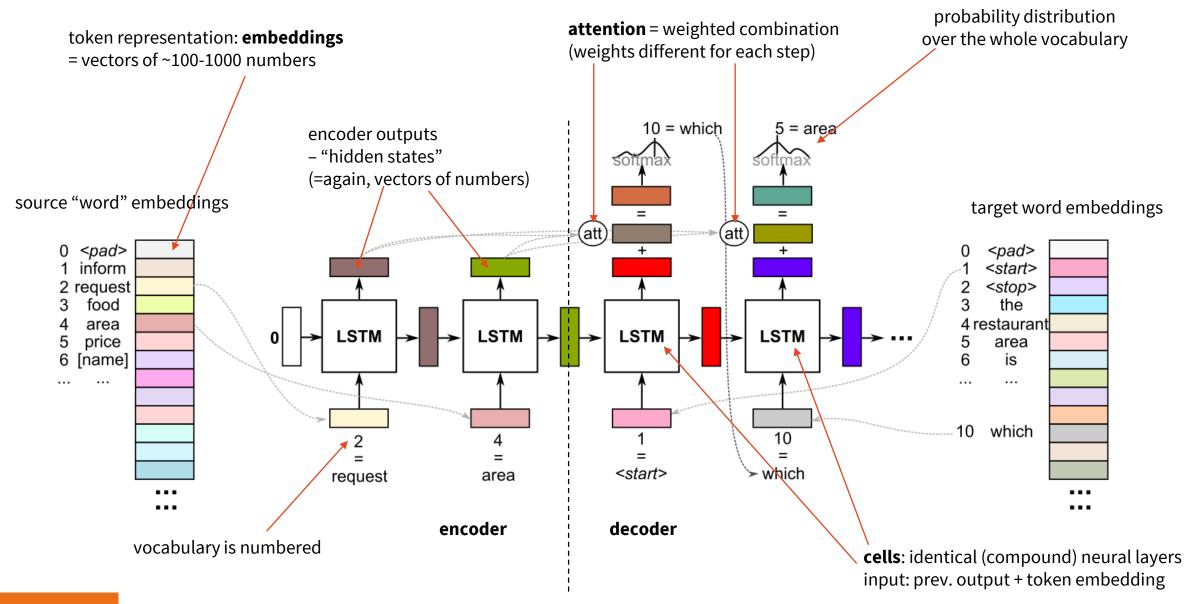




https://skymind.ai/wiki/attention-mechanism-memory-network

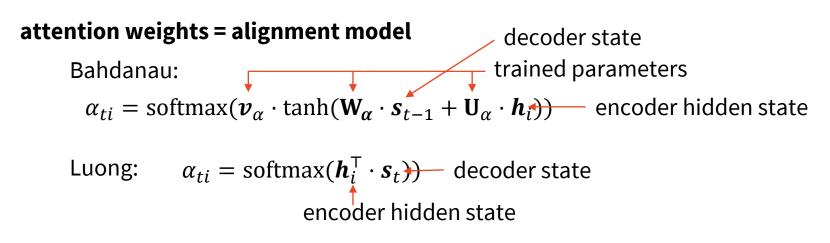
NPFL099 L3 2021 15

Seq2seq RNNs with Attention



Bahdanau & Luong Attention

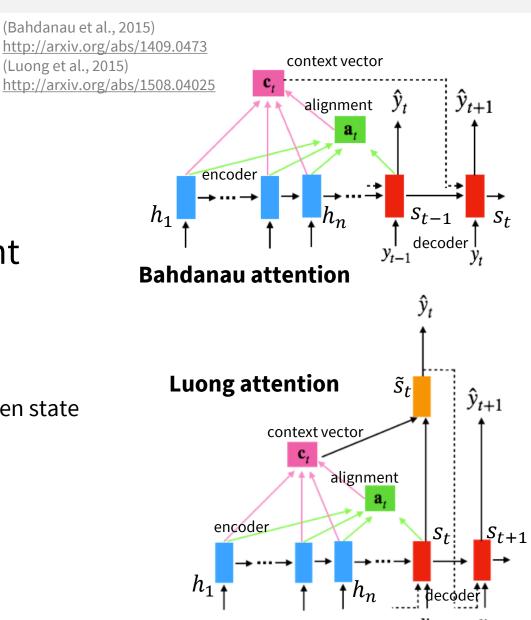
- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation
- both work well exact formula not important



attention value = context vector

same for both – sum encoder hidden states weighted by α_{ti}

$$\boldsymbol{c}_t = \sum_{i=1}^n \alpha_{ti} \boldsymbol{h}_i$$

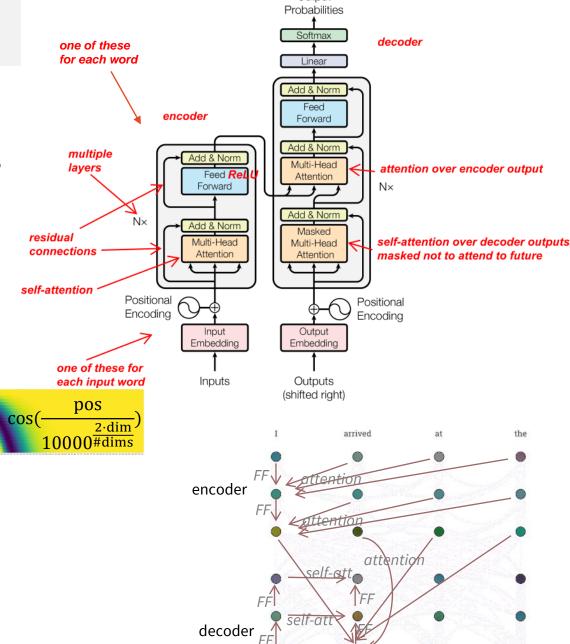


http://cnvah.com/2017/08/01/attention-variants/

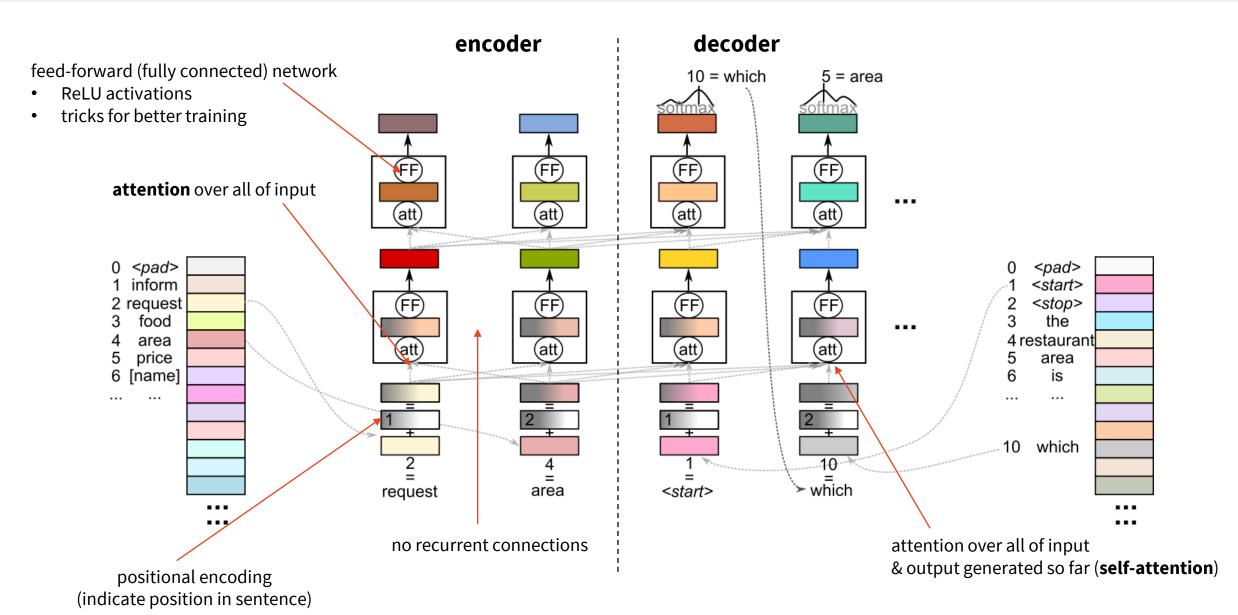
Transformer

(Waswani et al., 2017) https://arxiv.org/abs/1706.03762

- getting rid of (encoder) recurrences
 - making it faster to train, allowing bigger nets
 - replace everything with attention
 - + feed-forward networks
 - ⇒ needs more layers
 - ⇒ needs to encode positions
- positional encoding
 - adding position-dependent patterns to the input
- attention dot-product (Luong style)
 - scaled by $\frac{1}{\sqrt{\#\text{dims}}}$ (so values don't get too big)
 - more heads (attentions in parallel)
 - focus on multiple inputs



Transformer



Contextual Word Embeddings

https://github.com/jessevig/bertviz

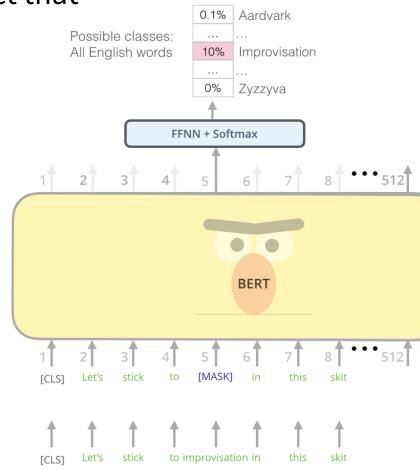
- Beyond pretrained word embeddings
 - words have different meanings based on context
 - static word embeddings (word2vec/GloVe) don't reflect that

ELMo

- LSTMs trained for language modelling
- ELMo embeddings = weighted sum of input static embeddings & LSTM outputs
 - the weights are trained for a specific downstream task

BERT

- huge Transformer encoder trained for:
 - masked word prediction
 - adjacent sentences detection (does B come right after A?)
- BERT embeddings
 any combination of the Transformer layers



Summary

- ML as a function mapping in → out
 - input features 1-hot, numeric, **embeddings**
 - pretrained embeddings
 - contextual embeddings
 - function: layers ~ pipeline, data flows through (= complicated function)
 - outputs: classification (category), regression (float)
 - structured prediction sequence tagging, ranking, generation
- Neural networks (~function shapes)
 - feed-forward/fully connected
 - CNNs (filters, pooling)
 - RNNs (LSTMs, GRUs)
 - encoder-decoder (seq2seq)
 - attention, **Transformer** (positional encoding & feed-forward & attention)
- Next week: how to train this stuff

Thanks

Contact us:

https://ufaldsg.slack.com/ {odusek,hudecek,nekvinda}@ufal.mff.cuni.cz Troja N231/N233 (by agreement)

No lab today Next week: lecture & lab Monday 15:40

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka's Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:

- https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
- https://minitorch.github.io/index.html
- https://objax.readthedocs.io/en/latest/

NPFL099 L3 2021