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Machine Learning

* ML is basically function approximation /?/

 function: data (features)- labels Shtistics
« discrete labels = classification
 continuous labels = regression

* function shape w

* this is where different algorithms differ

* neural nets: complex functions, composed of simple
building blocks (linear, sigmoid, tanh...)

https://towardsdatascience.com/no-machine-
learning-is-not-just-glorified-statistics-

* training/learning = adjusting redanpranes
function parameters to minimize error
* supervised learning = based on data + labels given in advance
* reinforcement learning = based on exploration & rewards given online
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Typical machine learning problems in NLP
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» sequence labelling
 sequence of inputs, label each (~ repeated classification)
e 1-to-1 input to output

* ranking

structurecf prediction
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» Can be used for both classification & sequence models

* Non-linear functions, composed of basic building blocks
 stacked into layers

* Layers are made of activation functions:
* linear functions (~basic, default)
* nonlinearities - sigmoid, tanh, ReLU
 softmax - probability estimates:
exp(x;)
Y exp(x))
* Fully differentiable - training by gradient descent
* network output incurs loss/cost

* gradients backpropagated from loss to all parameters
(composite function differentiation)

softmax(x); =

Sigmoid

J(T) — l14+e—=

tanh |
tanh(z) = g
ReLU |

max (0, x)

https://medium.com/@shrutija
donl10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092
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Layers visualization

* https://playground.tensorflow.org/

* 2 numeric features (=2 input variables) - binary classification (=1 output, 2 classes)
* easiest case, but you can see the internals
* more complex input features (=)

» feed-forward = fully connected = multi-layer perceptron here
* easiest case: connect everything & let the network figure it out
* nice but gets too large very quickly, not good for variable-sized inputs

 added layers & power to distinguish different classes
* fits the training data Y/N ?

« different activation functions
« without them, it’s just linear - no matter how many layers!

* best NN conceptualization - pipeline / flow (computational graph)
» data flows through individual layers, gets changed
 corresponds to a math formula, but can be easier to read
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Feature representation

* technically can be anything, as long as it’s meaningful
 the network will learn to assign meaning/values itself
* 1-hot/binary
* words - numbered vocabulary
* bigrams, n-grams, positional...

 other features - especially handcrafted
* word classes
e various word combinations

» outputs of other classifiers (sentiment, part-of-speech...)
* is capitalized/is loud?

* numeric (floats)

 best for continuous inputs: vision, audio
* raw pixels, MFCCs...

 vectors (embeddings) »
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Embeddings

» distributed (word) representation
« each word = a vector of floats
* basically an easy conversion of 1-hot - numeric
* adictionary of trainable features

* part of network parameters - trained
a) random initialization

b) pretraining
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http://blog.kaggle.com/2016/05/18/home-depot-product-search-

relevance-winners-interview-1st-place-alex-andreas-nurlan/

* the network learns which words are used similarly - for the given task!

 they end up having close embedding values
* different embeddings for different tasks

* embedding size: ~100s-1000

* vocab size: ~50-100k
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http://ruder.io/word-embeddings-2017/
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Pretrained Word Embeddings

https://projector.tensorflow.org/

e Word2Vec

 Continuous Bag-of-Words (CBOW)
(~ “masked LM”)

 predicta word, given +k words window
* disregarding word order within the window

 Skip-gram: reverse
* given a word, predict its £k word window
 closerwords = higher weightin training

INPUT PROJECTION QUTPUT

wit-2)

shared
eights
wit-1) softmax
T SUM

one-hot i—. wit)
wit+1) \

embedding

wit+2)

cBOw

/V _
one-hot w(t+1)

(Mikolov et al., 2013)
http://arxiv.org/abs/1301.3781

Input projection output

wit-2)

skip-gram

wit-1)

\

wit)

embedding soAfEmax

wit+2)

A

different weights

* GloVe
* optimized directly from corpus co-occurrences (= wy close to Wy) oimeioneiat. 200

¢ target 61 . 62 = log(#CO—OCCU rrences) http://aclweb.org/anthology/D14-1162
* number weighted by distance, weighted down for low totals

* trained by minimizing reconstruction loss on a co-occurrence matrix
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http://arxiv.org/abs/1301.3781
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http://aclweb.org/anthology/D14-1162
https://projector.tensorflow.org/

 Vocabulary is unlimited, embedding matrix isn’t
* +the bigger the embedding matrix, the slower your models

 Special out-of-vocabulary token <unk>
» “default” / older option
« all words not found in vocabulary are assigned this entry
 can be trained using some rare words in the data
* problem for generation - you don’t want these on the output

* Using limited sets

 characters - very small set

« works, but makes for very long sequences
(20 words ~ 80-100 characters)

* slower, might be less accurate
* subwords - compromise »



Subwords

* group of characters that:

* make shorter sequences than using individual characters
* cover everything

* byte-pair encoding (sennrich et al, 2016
. .. https://www.aclweb.org/anthology/P16-1162/
e start from individual characters

* iteratively merge most frequent bigram,
until you get desired # of subwords

. _ « Y fast_ faster
sub@@ word - the @@ marks “no space after faster o
* SentencePiece - don’t pre-tokenize tall_ slower_

o oy .. taller_ tallest
e criterium: likelihood of joined vs. separate B

* subword_ -the_ marks a space

* 20_50k SUbwordS for l language https://github.com/google/sentencepiece
° ~250k su bWO rds to cover them all https://blog.floydhub.com/tokenization-nlp/

https://d2l.ai/chapter natural-language-processing-pretraining/subword-embedding.html
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https://blog.floydhub.com/tokenization-nlp/
https://d2l.ai/chapter_natural-language-processing-pretraining/subword-embedding.html
https://github.com/google/sentencepiece

* Designed for computer vision - inspired by human vision

» works for language in 1D, too!

* less parameters than fully connected - filter/kernel

o o ] o —_

* Apply filter repeatedly over the input

|l ol o] m | =

=)

 element-wise multiply window of input x filter

* sum + apply non-linearity (ReLU) to result o

1x0

1x1

1x1

1x0

« =>produce 1 element of output -

0x0

1x1

* can have more dimensions (~“set of filters”) 0

=) — —_ —_ ()

o o [ o o

1

1

* Stride - how many steps to skip
* less overlap, reducing output dimension .
* Pooling - no filter, pre-set operation

* maximum/average on each window
* typical CNN architecture alternates convolution & pooling

::Si_im il

input x filter

4

output

Pool FC FC Softmax

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2



https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Recurrent Neural Networks

* Identical layers with shared parameters (cells)

* ~the same layer is applied multiple times, taking its own outputs as input
« ~same number of layers as there are tokens
» output = hidden state - fed to the next step

« additional input - next token features

* basic RNN: linear + tanh
* tanh: squashes everything to [—1,1]
» good for repeated application
* very simple structure

* numeric problem: vanishing gradients
* training updates get too small

hidden state
out (h;)
=output

hidden state
in(he_q)

linear
& tanh

input embedding

« can’t hold long sequences well
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https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
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LSTMs & GRUs

* GRU, LSTM: more complex,
to make training more stable
» “oates” to keep old values
* 0~[0,1] decisions:
* forget stuff from previous?
 take inputinto account?

 put stuff onto output?

» overindividual dimensions
(e.g. input has 100 dims,

forget gate forgets dims 1-3 & 4-25)

 all based on current input & state
LSTM is older & more complex
GRU almost as good but faster
both slower than base RNN
both handle long recurrences

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

LSTM cell

GRU cell

e previous cell state

o forget gate output

cell state

input gate

hidden state = output
output gate

reset gate

--——-

> hidden state

=output

standard output ~ base RNN

[ ' L ; tanh

update gate 13



https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Encoder-Decoder Networks (Sequence-to-sequence)

» Default RNN paradigm for sequences/structure prediction
« encoder RNN: encodes the input token-by-token into hidden states h;

* next step: last hidden state + next token as input —_— h =0
0=

» decoder RNN: constructs the output token-by-token h, = cell(x,, hy_,)
* initialized by last encoder hidden state
 output: hidden state & softmax over output vocabulary + argmax \

Sso=h
* next step: last hidden state + last generated token as input ° '

\ T
P(Vely1, - Ye—1,X) = softmax(s;)
* LSTM/GRU cells over vectors of ~embedding size \St/=cell(>yt-pst-1)

* used in MT, dialogue, parsing...
* more complex structures linearized to sequences

ENCODER DECODER Encoder She — |S —> eating —> a " gl’een > apple

1 Y2 Y3
T md Context vector (length: 5)
hl hz h3 h'4- So Isl
[RN@—[RNI\D—[RNNHRNN RNN 4( [0.1,-0.2,0.8, 1.5, -0.3] )
I .

Decoder M > FE P I e = O ER

( Embedding

I I ! T

how are you ? https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

“mem' ] I 2 . 3 L 2 b 5 . 6 1 ) : https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13¢c578ba9129



https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

* Encoder-decoder is too crude for complex sequences
* the whole input is crammed into a fixed-size vector (last hidden state)

* Attention = “memory” of all encoder hidden states

» weighted combination, re-weighted for every decoder step
> can focus on currently important part of input

 fed into decoder inputs + decoder softmax layer

 Self-attention - over previous decoder steps
* increases consistency when generating long sequences

Attention Mechanism



https://skymind.ai/wiki/attention-mechanism-memory-network

Seq2seq RNNs with Attention

probability distribution

attention = weighted combination over the whole vocabulary

token representation: embeddings - )
(weights different for each step)

=vectors of ~100-1000 numbers

encoder outputs
- “hidden states”
(=again, vectors of numbers)

10 = which

target word embeddings

vocabulary is numbered cells: identical (compound) neural layers

input: prev. output + token embedding
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source “word” embeddings
att) [N
0 <pad> 4 O - 0 <pad>
1 inform 1 <start>
2 request 2 <stop>
3 food 3 the
4 area 4 restaurant|
5 price 0|:|—» LSTM LSTM + 5 area
6 [name] 6 is
5 4 E 10 which
request area E <start>
encoder i decoder



http://arxiv.org/abs/1409.0473

Bahdanau & Luong Attention

(Bahdanau et al., 2015)
http://arxiv.org/abs/1409.0473

» different combination with decoder state  (ongera 2015 contextvector
. http://arxiv.org/abs/1508.04025 - """"""""" ~ N
* Bahdanau: use on input to decoder cell alignment Yy i Y41
. . a :
* Luong: modify final decoder state ' .
encoder :
* different weights computation hll* *I*I* s o
: o !
* both work well - exact formula not important i 0Ty,
Bahdanau attention
)7
attention weights = alignment model decoder state [
Bahdanau: { I - trained parameters Luong attention 501 .
a;; = softmax(v, - tanh(W, - s;_1 + U, - hf))—— encoder hidden state | yffl
context vector
Luong;: a;; = softmax(h; - s;.})— decoder state = alignment
encoder hidden state / u
. encoder St St+1
attention value = context vector . — z o h I_' _'I Iﬁ _:I_r' I_'
same for both - sum encoder hidden states £ o A eCQ-q‘—?‘ry
-1 i

Weighted by At http://cnyah.com/2017/08/01/attention-variants/



http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://cnyah.com/2017/08/01/attention-variants/

Qutput
Probabilities

| Softmax |

Tra nSfO rmer (Waswani et al., 2017)

https://arxiv.org/abs/1706.03762 one of these
for each word

decoder

* getting rid of (encoder) recurrences \ .
* making it faster to train, allowing bigger nets e |CEEED '_t_—'; attention over encoder output
* replace everything with attention [ by = |
+ feed-forward networks M | =1 N | = R | ———
* = needs more layers D = B U =20
* = needs to encode positions eroang O Q) Ercoang

* positional encoding i T
<-\

each input word Inputs Outputs
. o, o (shifted right)
* adding position-dependent \ e Neos(—— )
patterns to the input \ Boooosiins 1000071

+ attention - dot-product (Luong style) R e B
1 O ® ® ®

V#dims p T '

* more heads (attentions in parallel) FA

~ focus on multiple inputs decoder ] 7
o> ® ® o

NPFLO99 L3 2021 http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htm| 18

* scaled by (so values don’t get too big)



https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer

feed-forward (fully connected) network

ReLU activations
tricks for better training

attention over all of input

0 <pad>
1 inform
2 request
3 food
4 area
5 price
6 [name]

positional encoding
(indicate position in sentence)
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(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762

<pad>
<start>
<stop>
the
restaurant
area
is

Nk WNaOC

10 which

attention over all of input
& output generated so far (self-attention)
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http://arxiv.org/abs/1706.03762

ContEXtual Word Embeddings https://github.com/jessevig/bertviz

* Beyond pretrained word embeddings
» words have different meanings based on context

* static word embeddings (word2vec/GloVe) don’t reflect that

* ELMo

* LSTMs trained for language modelling

* ELMo embeddings = weighted sum of
input static embeddings & LSTM outputs

» the weights are trained for a specific downstream task

* BERT

* huge Transformer encoder trained for:
* masked word prediction
 adjacent sentences detection (does B come right after A?)

* BERT embeddings
= any combination of the Transformer layers
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http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/
https://github.com/jessevig/bertviz

* ML as a function mappingin > out

* input features - 1-hot, numeric, embeddings
 pretrained embeddings
» contextual embeddings

* function: layers ~ pipeline, data flows through (= complicated function)

* outputs: classification (category), regression (float)
* structured prediction - sequence tagging, ranking, generation

* Neural networks (~function shapes)
« feed-forward/fully connected
CNNs (filters, pooling)
RNNs (LSTMs, GRUSs)
 encoder-decoder (seg2seq)
attention, Transformer (positional encoding & feed-forward & attention)

 Next week: how to train this stuff



Thanks

No lab today
Contact us: .
https://ufaldsg.slack.com/ Next week: lecture & lab
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz Monday 15:40

Troja N231/N233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)

Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:
 https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
 https://minitorch.github.io/index.html

* https://objax.readthedocs.io/en/latest/
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