
NPFL099 Statistical Dialogue Systems 1. Introduction

https://ufal.cz/npfl099

Ondřej Dušek, Vojtěch Hudeček & Tomáš Nekvinda 4. 10. 2021

Organizational: 2/1 Z+ZK – 4 Credits

- Lecture (Mon 15:40) + labs (Mon 17:20, bi-weekly)
 - S10 + Zoom + https://ufaldsg.slack.com/
 - Lecture: theory
 - Labs: practical projects: training a neural system & how-tos for experiments
- To pass the course:
 - written/spoken exam freeform questions (covered by the lectures)
 - general ideas, not specifics of a random system we show for 5 minutes
 - question pool will be published by the end of the semester
 - (50%+) lab homework on time (typically 2-3 weeks' deadline)
 - note that assignments depend on each other!
- Slides, news etc. at http://ufal.cz/npfl099
- vs. NPFL123: no ASR/TTS, more advanced (focus: neural nets)
 - but also covering the basics, i.e. there's some overlap

About Us

Ondřej Dušek: lectures, course guarantor

- PhD at ÚFAL '17, 2 years at Heriot-Watt Uni Edinburgh, now back
- worked mostly on language generation
- also chatbots (HWU Alexa Prize team)

Vojtěch Hudeček: labs, a bit of lectures

- PhD student at ÚFAL (5th year)
- working on dialogue management & language understanding
- internships at Uber AI & UC Davis on dialogue systems

Tomáš Nekvinda: labs

- PhD student at ÚFAL (2nd year)
- working on end-to-end dialogue, merging chitchat & task
- experience with speech synthesis

Course Syllabus

- 1. Introduction (today) ***
- 2. Evaluating dialogue systems **
- 3. Machine learning basics (2 parts) *
- 4. Natural language understanding *
- 5. Dialogue state tracking *
- 6. Dialogue management *
- 7. Natural language generation *
- 8. End-to-end dialogue models
- 9. Chatbots **
- 10. Multimodal/visual dialogue
- 11. Ethics & Linguistics & Problems **

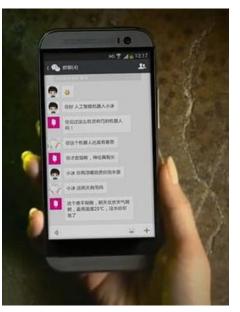
*/**/*** = little/some/lot of overlap with NPFL123

Recommended Reading

Primary:

- Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2019, Chap. 26 (https://web.stanford.edu/~jurafsky/slp3/) – basic, brief intro
- McTear: Conversational AI. Morgan & Claypool 2021.
 (https://doi.org/10.2200/S01060ED1V01Y202010HLT048) bit more advanced, very new
- Gao et al.: Neural Approaches to Conversational AI, 2019 (http://arxiv.org/abs/1809.08267) – more advanced

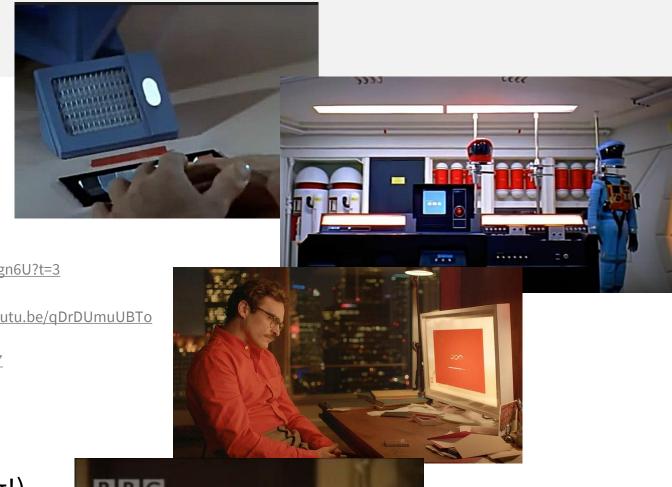
Other (see also website):


- McTear et al.: The Conversational Interface: Talking to Smart Devices. Springer 2016.
- Jokinen & McTear: Spoken dialogue systems. Morgan & Claypool 2010.
- Lemon & Pietquin: Data-Driven Methods for Adaptive Spoken Dialogue Systems. Springer 2012.
- Rieser & Lemon: Reinforcement learning for adaptive dialogue systems. Springer 2011.
- recent papers from the field (will be linked on slides)

NPFL099 L1 2020 5

What's a dialogue system?

Definition:


- A (spoken) dialogue system is a computer system designed to interact with users in (spoken) natural language
- Wide definition covers lots of different cases
 - "smart speakers" / phone OS assistants
 - phone hotline systems (even tone-dial ones)
 - in-car systems
 - assistive technologies: therapy, elderly care, companions
 - entertainment: video game NPCs, chatbots

Where are we now?

- Lots of talk about AI now
- Hype around Siri/Alexa/Google
- Sci-fi expectations AI-complete
 - Star Trek know-it-all https://youtu.be/1ZXugicgn6U?t=3
 - 2001 Space Oddyssey mutiny https://youtu.be/qDrDUmuUBTo
 - Her personality https://youtu.be/6QRvTv tpw0?t=27
- We're not there probably for long
 - main bottleneck: understanding (not speech comprehension, meaning!)
 - ... more like the Red Dwarf talkie toaster

https://youtu.be/LRq_SAuQDec?t=71

Example - Smart Speakers

- Google, Amazon, Apple & others, Mycroft: open-source
- Really good microphones
 - and not much else they work online only
- Huge knowledge bases
 - Google: combined with web search
- Lots of domains programmed in, but all by hand
 - integration with a lot of services (calendar, music, shopping, weather, news...)
 - you can add your own (with limitations)
- Can keep some context
- Conversational capabilities limited

https://www.lifehacker.com.au/2018/02/ specs-showdown-google-home-vsamazon-echo-vs-apple-homepod/

Why take interest in Dialogue Systems?

- It's *the* ultimate natural interface for computers
- Exciting & active research topic
 - some stuff works, but there's a long way to go
 - potential in many domains
 - integrates many different technologies
 - lots of difficult AI problems dialogue is hard!
 - Turing test by dialogue "proof" of general AI
- Commercially viable
 - interest & investment from major IT companies

Basic Dialogue System Types

Task-oriented

- focused on completing a certain task/tasks
 - booking restaurants/flights, finding bus schedules, smart home...
- most actual DS in the wild
 - also our main focus in this course
- "backend access" vs. "agent/assistant"

Non-task-oriented

- chitchat social conversation, entertainment
 - getting to know the user, specific persona
- gaming the Turing test

Communication Domains

• "domain" = conversation topic / area of interest

- traditional: single/closed-domain
 - one well-defined area, small set of specific tasks
 - e.g. banking system on a specific phone number
- multi-domain
 - basically joining several single-domain systems (Google/Alexa/Siri)
- open-domain
 - "responds to anything" the goal, but now mostly chitchat-only

Modes of Communication

text

- most basic/oldest
- easiest to implement, most robust
- not completely natural

voice

- more difficult, but can be more natural
 - emotions, tone, personality
- easy to deploy over the phone
- hands-free

multimodal

- voice/text + graphics
- additional modalities: video gestures, mimics; touch
- most complex

(Johnston et al., ACL 2002) https://www.aclweb.org/anthology/P02-1048/

(Al Moubayed et al., 2012) https://dl.acm.org/doi/10.1007/978-3-642-34584-5_9 https://www.eitdigital.eu/typo3temp/assets/_processed_/a/6/csm_FURHAT_ea50ba2bf9.jpg

Dialogue Initiative

system-initiative

- "form-filling" ("Hello. Please tell me your date of birth.")
- system asks questions, user must reply in order to progress
- traditional, most robust, but least natural

user-initiative

• user asks, machine responds ("Alexa, set the timer for two minutes")

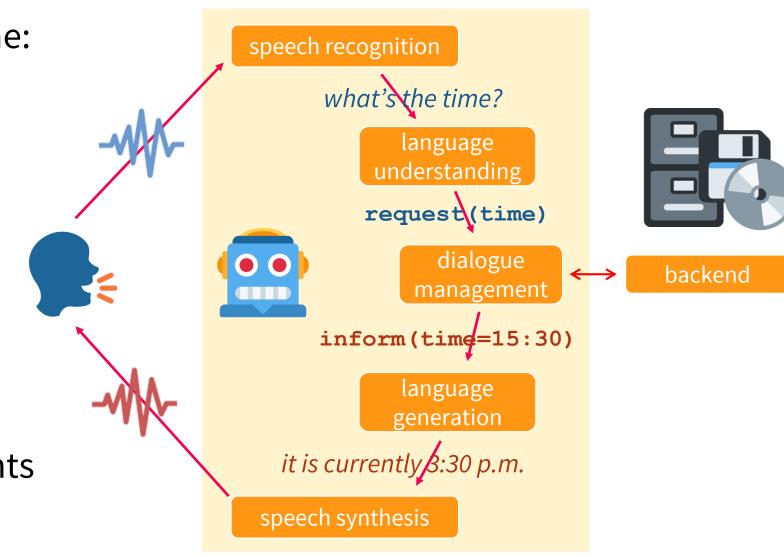
mixed-initiative

- system and user both can ask & react to queries
- most natural, but most complex

S: Hello. How may I help you?

U: I'm looking for a restaurant.

S: What price do you have in mind?

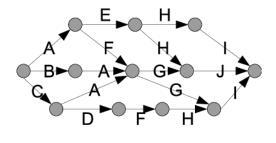

U: Something in the city center please.

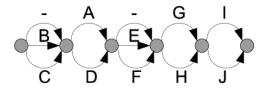
S: OK, city center. What price are you looking for?

Dialogue Systems Architecture

traditional main DS pipeline:

- voice → text
- text → meaning
- meaning → reaction
- reaction → text
- text → voice
- access to backend
 - for anything better than basic chit-chat
- multimodal systems need additional components

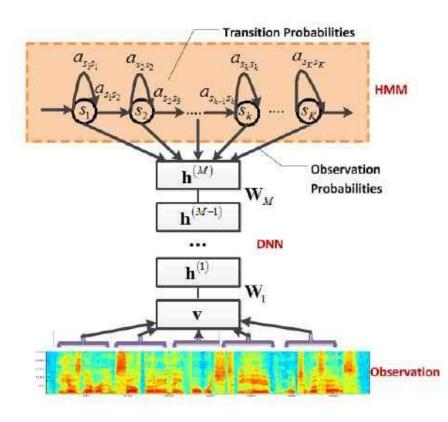

Automatic Speech Recognition (ASR)


- Converting speech signal (acoustic waves) into text
- Typically produces several possible hypotheses with confidence scores
 - n-best list
 - lattice
 - confusion network
- Very good in ideal conditions
- Problems:
 - noise, accents, longer distance, echo cancellation, channel (phone)...

0.8 I'm looking for a restaurant

0.4 *uhm looking for a restaurant*

0.2 looking for a rest tour rant



(Kazemian et al., ICMR 2008) https://doi.org/10.1145/1460096.1460112

Speech Recognition

- Also: voice activity detection
 - detect when the user started & finished speaking
 - wake words ("OK, Google")
- ASR implementation: mostly neural networks
 - take acoustic features (frequency spectrum)
 - compare with previous
 - emit phonemes/letters
- Limited domain: use of language models
 - some words/phrases more likely than others
 - previous context can be used
 - this can improve the experience a lot!
 - problem: out-of-vocabulary

https://www.i-programmer.info/images/stories/News/2011/AUG/DNNspeech.jpg

Natural/Spoken Language understanding (NLU/SLU)

- Extracting the meaning from the (now textual) user utterance
- Converting into a structured semantic representation
 - dialogue acts:
 - act type/intent (inform, request, confirm)
 - slot/attribute (*price*, *time*...)
 - value (11:34, cheap, city center...)
 - typically intent detection + slot-value tagging
 - other, more complex e.g. syntax trees, predicate logic
- Specific steps:
 - named entity resolution (NER)
 - identifying task-relevant names (London, Saturday)
 - coreference resolution
 - ("it" -> "the restaurant")

NPFL099 L1 2020

inform(food=Chinese, price=cheap)

request(address)

Language Understanding

- Implementation varies
 - (partial) handcrafting viable for limited domains
 - keyword spotting
 - regular expressions
 - handcrafted grammars
 - machine learning various methods
 - intent classifiers + slot/value extraction
- Can also provide n-best outputs
- Problems:
 - recovering from bad ASR
 - ambiguities
 - variation

S: Leaving Baltimore. What is the arrival city?

U: fine Portland [ASR error]

S: Arriving in Portland. On what date?

U: No not Portland Frankfurt Germany

[On a Tuesday]

U: I'd like to book a flight from London to New York for <u>next Friday</u>

U: Chinese city center

U: uhm I've been wondering if you could find me a restaurant that has Chinese food close to the city center please

Dialogue Manager (DM)

- Given NLU input & dialogue so far, responsible for deciding on next action
 - keeps track of what has been said in the dialogue
 - keeps track of user profile
 - interacts with backend (database, internet services)
- Dialogue so far = dialogue history, modelled by dialogue state
 - managed by dialogue state tracker
- System actions decided by dialogue policy

Dialogue state / State tracking

- Stores (a summary of) dialogue history
 - User requests + information they provided so far
 - Information requested & provided by the system
 - User preferences
- Implementation
 - handcrafted e.g. replace value per slot with last-mentioned
 - good enough in some circumstances
 - **probabilistic** keep an estimate of per-slot preferences based on SLU output
 - more robust, more complex

price: cheap food: Chinese

area: riverside

price: 0.8 cheap

0.1 moderate

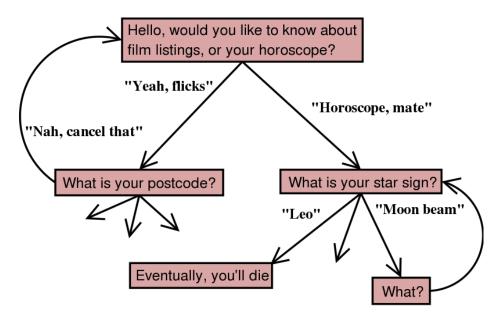
0.1 < null>

food: 0.7 Chinese

0.3 Vietnamese

area: 0.5 riverside

0.3 < null>


0.2 city center

Dialogue Policy

- Decision on next system action, given dialogue state
- Involves backend queries
- Result represented as system dialogue act
- Handcrafted:
 - if-then-else clauses
 - flowcharts (e.g. VoiceXML)
- Machine learning
 - often trained with reinforcement learning
 - POMDP (Partially Observable Markov Decision Process)
 - recurrent neural networks

confirm(food=Chinese)

inform(name=Golden Dragon, food=Chinese, price=cheap)

Natural Language Generation (NLG) / Response Generation

- Representing system dialogue act in natural language (text)
 - reverse NLU
- How to express things might depend on context
 - Goals: fluency, naturalness, avoid repetition (…)
- Traditional approach: templates
 - Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 - Works well for limited domains

=

Golden Dragon is a cheaply priced restaurant serving Chinese food.

Natural Language Generation

- Grammar-based approaches
 - grammar/semantic structures instead of templates
 - NLG realizes them (=converts to linear text) by applying syntactic transformation rules
- Statistical approaches
 - most prominent: recurrent neural networks
 - generating word-by-word
 - input: encoded semantics + previous words

<TENSE>pres <Arg1> point <NUM>ss (White, 2011) s[dcl]\np/(s[to]\np) https://www.aclweb.org/anthology/W11-2827 want.01 <TENSE>pre <Arg1> <Arg0> Inform(name=EAT, food=British) dialog act 1-hot representation 0, 0, 1, 0, 0, ..., 1, 0, 0, ..., 1, 0, 0, 0, 0, 0... } s[b]\np/np SLOT NAME SLOT FOOD serves **RNN** cells (Wen et al. 2015) http://aclweb.org/anthology/W15-4639 SLOT FOOD </s> SLOT NAME serves </s> EAT British serves

MARY

(Kozlowski, 2002)

have.03

s/2002/Kozlowski-ACL-Stu.ps

Adv ◆

hard

Mary

HARD

http://www.eecis.udel.edu/~mccoy/publication

Text-to-speech (TTS) / Speech Synthesis

- Generate a speech signal corresponding to NLG output
 - text → sequence of **phonemes**
 - minimal distinguishing units of sound (e.g. [p], [t], [ŋ] "ng", [ə] "eh/uh", [i:] "ee")
 - + pitch/intonation, speed, pauses, volume/accents
- Standard pipeline:
 - text normalization
 - abbreviations
 - punctuation

 - numbers, dates, times
 - pronunciation analysis (grapheme → phoneme conversion)
 - intonation/stress generation
 - waveform synthesis

take bus number 3 at 5:04am take bus number three at five o four a m teik bas nambə θriz æt faiv əʊ fozr ei εm

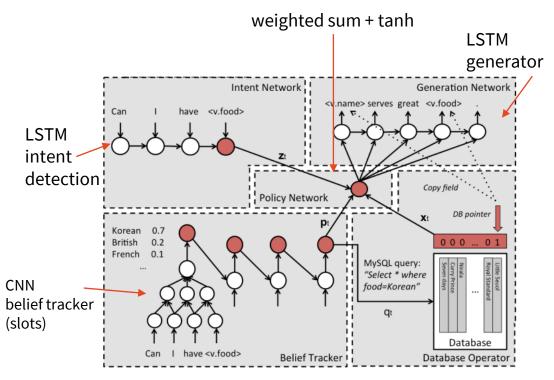
Speech Synthesis

• TTS Methods:

Formant-based: phoneme-specific frequencies

http://www.festvox.org/history/klatt.html (example 35)

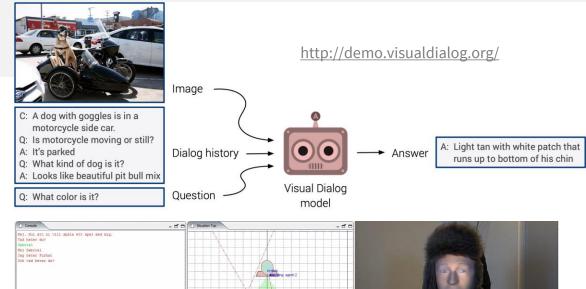
- oldest, not very natural, but works on limited hardware
- - record a single person, cut into phoneme transitions (diphones), glue them together
- Hidden Markov Models
 http://homepages.inf.ed.ac.uk/jyamagis/

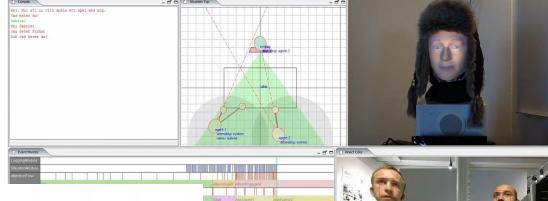

- phonemes in context modelled as hidden Markov models
- Model parameters estimated from data (machine learning)
- Neural networks https://google.github.io/tacotron/
 - HMMs swapped for a recurrent neural network
 - also can go directly from text, no need for phoneme conversion

Organizing the Components

- Basic: pipeline
 - ASR → NLU → DM → NLG → TTS
 - components oblivious of each other
- Interconnected
 - read/write changes to dialogue state
 - more reactive (e.g. incremental processing), but more complex
- Joining the modules (experimental)
 - ASR + NLU
 - NLU + state tracking
 - NLU & DM & NLG

End-to-End Systems


- now typical for non-task-oriented
 - single network, trained e.g. on movie subtitles
- task oriented very experimental
- the whole system (NLU/DM/NLG) is a single neural network
 - joint training ("end-to-end")
 - more elegant
 - potentially easily retrainable
- typically still needs annotation
 - same as individual modules
 - can be less predictable
- connecting the database is a problem



(Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042/

Multimodal/Visual Dialogue

- adding other modalities
- specific components
 - parallel to NLU
 - vision image classification networks
 - face identification/tracking
 - parallel to NLG
 - mimics/gesture generation
 - gaze
 - image retrieval
 - vision typically CNN
 - often off-the-shelf stuff
 - specific classifiers/rules

and what is your name?

My name is Raveesh

SHOPPER: Hello

AGENT: Hi, please tell me what i can help you with today?

SHOPPER: show me few of your top large sized rubber type upper material clogs that is mostly light pink in colored that i would like.

AGENT: Of course. Just wait a few seconds while i browse through my catalog

AGENT: Sorry i dont have any in pink but would you like to see some in

other color

SHOPPER: Please show me something similar to the 1st image but in a different upper material

AGENT: The similar looking ones are

aterial

https://youtu.be/5fhjuGu3d0I?t=137 https://vimeo.com/248025147

(Agarwal et al., 2018) http://aclweb.org/anthology/W18-6514

Further Research Areas

- Multi/open domains
 - reusability, domain transfer
 - training from little data
 - pretraining with "generic" data
 - connecting task-oriented systems and chatbots
- Context dependency
 - understand/reply in context (grounding, speaker alignment)
- Incrementality
 - don't wait for the whole sentence to start processing
 - not much stuff going on at the moment, but would help
- Evaluation
 - checking if the system does well is actually non-trivial

Summary

- We're far from AI sci-fi dreams, but it still works a bit
 - dialogue is hard
- DSs have many forms & usage areas
 - task-oriented vs. non-task-oriented
 - closed vs. open domain
 - system vs. user initiative
- Main components: ASR → NLU → DM → NLG → TTS
 - implementation varies
 - sometimes things are joined together
- It's an active and interesting research topic!
- Next week: evaluation methods (with Vojta)

Thanks

Contact us:

https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Zoom/Slack/Troja (by agreement)

Get the slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

Apart from materials referred directly, these slides are based on slides and syllabi by:

- Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Filip Jurčíček (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
- Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
- Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/

1st Lab in 10 mins

Next Monday: lecture 15:40, no lab