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Abstract

This paper describes our system used for the
end-to-end (E2E) natural language genera-
tion (NLG) challenge. The challenge col-
lects a novel dataset for spoken dialogue sys-
tem in the restaurant domain, which shows
more lexical richness and syntactic variation
and requires content selection (Novikova et al.,
2017). To solve this challenge, we em-
ploy the CAEncoder-enhanced sequence-to-
sequence learning model (Zhang et al., 2017)
and propose an attention regularizer to spread
attention weights across input words as well as
control the overfitting problem. Without any
specific designation, our system yields very
promising performance. Particularly, our sys-
tem achieves a ROUGE-L score of 0.7083, the
best result among all submitted primary sys-
tems.

1 Task Definition

This task aims at generating an adequate natu-
ral language (NL) description for a dialogue act-
based meaning representation (MR). An instance
is illustrated below1:

MR:
name[The Eagle],
eatType[coffee shop],
food[French],
priceRange[moderate],
customerRating[3/5],
area[riverside],
kidsFriendly[yes],
near[Burger King]
NL:
‘‘The three star coffee shop, The
Eagle, gives families a mid-priced
dining experience featuring a
variety of wines and cheeses. Find

1Example comes from the official website:
http://www.macs.hw.ac.uk/InteractionLab/E2E/.

The Eagle near Burger King.’’

where the input MR consists of several attributes
(slots), such as name, food or near, and their val-
ues, and the output NL summarizes the main in-
formation from the MR into a faithful and fluent
natural language.

We formulate this task as a sequence-to-
sequence problem. Concretely, we treat the out-
put NL as a language sequence, and we flatten the
attribute-value structural MR input directly into a
key-value sequence as follows:

name[The Eagle], eatType[coffee s
hop], food[French], priceRange[mo
derate], customerRating[3/5], are
a[riverside], kidsFriendly[yes],
near[Burger King]

By doing so, we are able to apply adequate
sequence-to-sequence models to transform the
MR into its corresponding NL.

2 The Approach

In this paper, we employ the CAEncoder-
enhanced sequence-to-sequence learning
model2 (Zhang et al., 2017) as the transformer
between MR and NL. Unlike conventional en-
coder, CAEncoder leverages a two-level hierarchy
to jointly summarize the history and future in-
formation so as to better model source semantics
into the source word representations. Formally,
given a source sequence x = {x1, x2, . . . , xn},
CAEncoder learns the representation for word xi
recurrently as follows:
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2Source code is available at
https://github.com/DeepLearnXMU/CAEncoder-NMT



where GRU(·) represents the Gated Recurrent
Unit model (Chung et al., 2014), Exi ∈ Rdw de-
notes the embedding for word xi, and h∗

i ∈ Rdh

indicates the corresponding hidden representation.
We regard the resulted

←−
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i as the final representa-
tion for word xi. In addition, the two-level hierar-
chy in CAEncoder(·) operates as follows,
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Intuitively,
−→
h c

i encodes the semantics of history
source words, while

←−
h a

i+1 captures the future in-
formation. The GRU function acts as a bridge to
fuse these two kinds of information flow.

Upon the learned source word representations,
we stack an attentional recurrent decoder for target
sequence decoding. Basically, this is a conditional
language model:

p(y|x) =
m∏
j=1

p(yj |x,y<j) (5)

where y = {y1, y2, . . . , ym} is the ground-truth
target sequence, and y<j denotes the partial se-
quence from beginning to position j. The proba-
bility of target word yj is computed as follows:

p(yj |x,y<j) = softmax
(
g(Eyj−1 , sj , cj)

)
(6)

where g(·) is a feed-forward layer, Eyj−1 ∈ Rdw

is the embedding for word yj−1, sj ∈ Rdh denotes
the decoder hidden state, and cj ∈ Rdh is the at-
tention vector that summarizes the source-side rel-
evant information.

The attention vector is obtained by the vanilla
attention mechanism proposed by Bahdanau et al.
(2015):
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where attention weights αji reflects the match-
ing degree between the source word xi and tar-
get word yj . For unfamiliar readers, we refer to
the previous work (Bahdanau et al., 2015; Zhang
et al., 2017).

3 Attention Regularizer

The above framework is actually proposed for ma-
chine translation task. However, the E2E NLG

challenge task differs from it in that the MR input
has no linguistic order, and each input attribute and
value has its corresponding aligned target output.3

And in practice, attention weights tend to focus on
a few number of input words, resulting in incom-
plete target output. To alleviate this phenomenon
as well as avoid overfitting, we introduce the fol-
lowing attention regularizer (AttReg):

Latt = −
n∑

i=1

log

 m∑
j=1

αji

 (9)

With this regularizer, we expect the attention
weight αji can be spread across each input word.
In this way, the target output could include all at-
tributes and values without omitting any potential
input information.

During optimization, we directly sum both Latt
and Lseq2seq as our final objective. We didn’t ap-
ply any weighting factor to Latt for simplicity,
and leave this operation in the future. Notice that
Lseq2seq is the vanilla negative log likelihood loss.

4 Experiments

Datasets We used the official training, develop-
ment and test dataset. We first converted the MR
inputs into sequences, and then tokenized both
MR and NL using the script “tokenizer.perl” in
Moses4. The resulted source and target word se-
quences are further split into sub-words via BPE
algorithm5 (Sennrich et al., 2016).6 We limited
the sub-word number to be 1000, and shared this
vocabulary for both source and target sequence.
We didn’t apply any delexicalization. We em-
ployed the BLEU score produced by the official
script7 as the metric to select the best model pa-
rameters according to the performance on devel-
opment dataset. We performed paired bootstrap
sampling (Koehn, 2004) for significance test.

Model Setting We set the dimensionality of
word embedding to 620, and that of hidden states
to 1000. Sequences longer than 100 were pruned.
We initialized all model parameters with an uni-
form distribution that ranges from -0.08 to 0.08,

3For MT, some source words can have no aligned target
word.

4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt
6Notice that we didn’t compare the use of sub-word

against word. Although the vocabulary in this task is quite
limited, we expect the sub-words can deal better with possi-
ble unlimited named entities, such as restaurant names.

7https://github.com/tuetschek/e2e-metrics



Dataset Model BLEU NIST ROUGE-L METEOR CIDEr

Dev
Baseline 0.6925 8.4781 0.7257 0.4703 2.3987

Our 0.7157 8.6367 0.7350 0.4660 2.3414
Our+AttReg 0.7409 8.7964 0.7610 0.4837 2.5506

Test Baseline 0.6593 8.6094 0.6850 0.4483 2.2338
Our+AttReg (ensemble) 0.6545 8.1804 0.7083 0.4392 2.1012

Table 1: Performance of baseline and our models. The Baseline denotes official result.

and tuned these parameters using Adam optimizer
under its default hyperparameters (β1 = 0.9, β2 =
0.999). The gradient was clipped when its norm
exceeds 5. We used an initial learning rate of
0.0005, and halved it after each epoch. The
batch size during training was 80, and we applied
dropout on the final prediction layer with a rate
of 0.2. For decoding, we used the general beam
search algorithm with a beam size of 10. The
maximum number of training epoch was set to 5.
Notice that we set these hyperparameters mainly
by empirical experiences from machine translation
tasks (Zhang et al., 2017), rather than intuition or
grid search.

Table 1 summarizes the performance of differ-
ent models. Our final submitted result was an en-
semble of two models, which were trained with
two different random initializations. On the devel-
opment, our model equipped with the AttReg sig-
nificantly outperforms the Baseline. However, our
model performs relatively worse than the Baseline
on the test set. We contribute this to the mismatch
between the development and test set, where, ac-
cording to the official statement, the test set “is
very similar to the development set (e.g. no un-
known attributes, values or restaurant names) but
the combination of attributes is unique (previously
unseen).”

5 Conclusion and Future Work

This paper presents our system submitted to the
E2E NLG Challenge. We propose an attention
regularizer to control the overfitting problem, and
obtain significant improvements over baseline on
the development set. However, our final model
fails to outperform the Baseline in terms of vari-
ous evaluation metrics. We believe this is because
the style difference between the development and
test inputs, and future efforts will be spent on the
adaption between these two styles and the gener-
alization of our model.
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