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Abstract

Natural Language Generation plays an impor-
tant role in the domain of dialogue systems
as it determines how the users perceive the
system. Recently, deep-learning based sys-
tems have been proposed to tackle this task, as
they generalize better and do not require large
amounts of manual effort to implement them
for new domains. However, deep learning
systems usually produce monotonous sound-
ing texts. In this work, we present our sys-
tem for Natural Language Generation where
we control the first word of the surface re-
alization. We show that with this simple
control mechanism it is possible to increase
the lexical variability and the complexity of
the generated texts. For this, we apply a
character-based version of the Semantically
Controlled Long Short-term Memory Network
(SC-LSTM), and apply its specialized cell to
control the first word generated by the system.
To ensure that the surface manipulation does
not produce semantically incoherent texts we
apply a semantic control component, which
we also use for reranking purposes. We show
that our model is capable of generating texts
that are more sophisticated while decreasing
the number of semantic errors made during the
generation.

1 Introduction

In this paper, we describe our end-to-end trainable
neural network for producing natural language
descriptions from meaning representations (MR).
We focus on generating more diverse and inter-
esting texts since the texts generated by state-of-
the-art systems produce rather monotonous texts.
Recently, data-driven natural language generation
(NLG) systems have shown great promise, espe-
cially as they can be easily adapted to new data
or domains. End-to-end systems based on deep
learning can jointly learn sentence planning and

sentence realization from unaligned data. How-
ever, deep-learning based approaches require large
amounts of data to be trained efficiently which
is not always readily available. For this reason,
we train our system on the publicly available E2E
dataset provided by (Novikova et al., 2017) for the
E2E NLG Challenge 20171 which provides pairs
of MRs and several human generated reference ut-
terance for the restaurant domain. This dataset is
the first to provide large amounts of training data
with an open vocabulary and complex syntactic
structures. These properties pose a further chal-
lenge for training the system as the large variety
of formulations for an attribute-value pair does not
allow to simply replacing the attribute with a to-
ken.
A recurrent problem, which we found with
the existing solutions for NLG, are the rather
monotonous texts they generate. Most generated
sentences follow the same structure, i.e. they start
with the restaurant name and they use the same
formulation to express each attribute value.
In this work, we focus on how to exploit the open
vocabulary and the complex syntactic structures
to generate sentences that are more sophisticated.
For this, we extend the Semantically Conditioned
Long Short-term Memory Network (SC-LSTM)
proposed by (Wen et al., 2015b) with surface fea-
tures as well as an additional semantic control
mechanism similar to (Hu et al., 2017). Further-
more, we train the SC-LSTM on character tokens
instead of word tokens to avoid sampling over a
potentially large vocabulary. Since the E2E data
expresses a single attribute value pair with a larger
variety of possible formulations, a simple delex-
icalization of the utterance is not possible. This
fact also increases the difficulty of evaluating the
utterances for their correctness. Thus, we intro-

1http://www.macs.hw.ac.uk/InteractionLab/E2E/



duce a semantic reranking procedure based on the
classifiers that are trained as part of the semantic
control mechanism.
We report the evaluation results provided by the
E2E NLG Challenge 2017, these includes auto-
matic metrics as well as a human evaluation. The
evaluation showed, that the automatic metrics rate
the more sophisticated sentences lower than the
standard sentences. In the human evaluation our
approach ranked in the 2nd out of four clusters for
quailty and in the 3rd out of five clusters for natu-
ralness.

2 Task Definition

Natural language generation for dialogue systems
describes the task of converting a meaning repre-
sentation (MR) into an utterance in a natural lan-
guage. In the context of a dialogue system, the
dialogue manager returns the output in the form
of structured data called meaning representations.
For a more in depth treatment of dialogue sys-
tems refer to (Rieser and Lemon, 2011). Usually,
they contain a dialogue act which defines the ac-
tion (e.g. inform, recommend) and a list of slot
(or attribute) value pairs which define the content
of the utterance. The E2E training data consist of
50k instances in the restaurant domain (see Table
1 for an example), where one instance is a pair of
a MR and an example utterance or reference.

MR name[Alimentum], food[Chinese], priceRange[20-25],
area[riverside], familyFriendly[yes]

REF1 You can find average-priced Chinese food by the river
at the kid-friendly Alimentum.

REF2 Alimentum is a Chinese restaurant located in the riverside area.
Meals are in the 20-25 pound range and it is kid friendly.

REF3 Alimentum provides Chinese food in the 20-25 price range.
It is located in the riverside.

Table 1: Example of one meaning representation (MR) with
three corresponding references (REF) from the training data.

The data is split into training, development and
test in a 76.5%-8.5%-15%-ratio. Each MR con-
sists of 3-8 attributes and their values, see Ta-
ble 2 for the domain ontology. The split ensures
that the MRs in the different dataset-splits are dis-
tinct. The dataset contains an open vocabulary
and more complex syntactic structures than other
similar datasets, as shown in the dataset definition
(Novikova et al., 2017).

Attribute Type Example Values

name verbatim string Alimentum, ..
eatType dictionary restaurant, pub, coffee shop
familyFriendly boolean yes, no
food dictionary Italian, French, English, ...
near verbatim string Burger King
area dictionary riverside, city center

customerRating dictionary
1 of 5, 3 of 5, 5 of 5,
low, average, high

priceRange dictionary
<£20, £20-25, >£30
cheap, moderate, high

Table 2: Domain ontology of the E2E dataset.

3 Model

The goal of our model is to generate a text while
providing the ability of controlling various seman-
tic and syntactic properties of this text. Our model
has two components: i) the generator and ii) mul-
tiple semantic control classifiers. An overview of
the model is given in Figure 1.
We use the Semantically Conditioned Long Short-
term Momory Network (SC-LSTM) proposed by
(Wen et al., 2015b) as our generator which has
a specialized cell to process the one-hot encoded
MR-vector. A semantic control classifier for an
attribute is a classifier trained to detect which of
its possible values is rendered in the text. We pre-
train the classifiers on the provided labelled data;
we provide an extra label that represents the pres-
ence or absence of the attribute. During the train-
ing phase of the generator, we fix the classifier pa-
rameters, and their loss signal is back-propagated
through the generator alongside the reconstruction
loss. During the testing phase, we use the classi-
fiers to rerank the generated sentences.

Semantically Conditioned LSTM The SC-
LSTM (Wen et al., 2015b) extends the original
LSTM (Hochreiter and Schmidhuber, 1997) cell
with a specialized cell which processes the MR.
The MR is represented as a one-hot encoded MR-
vector d0 which represents the value for each at-
tribute. This cell assumes the task of the sentence
planner, as it treats the MR-vector as a checklist to
ensure the information is fully represented in the
utterance. The cell acts as a forget gate keeping
track of which information has already been con-
sumed. Let wt ∈ RM be the input vector at time
t, dt ∈ RD the MR-vector at time t, and N be
the number of units of an SC-LSTM cell, then the
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ct = it ∗ gt + ft ∗ ct−1 + tanh(Wddt)

ht = ot ∗ tanh(ct)

where σ is the sigmoid function, and it, ft, ot, rt ∈
[0, 1]N are the input, forget, output, and MR-
reading gates. The weights W5n,2n, and Wd ∈
RD×M are the model parameters to be learned.
The prediction of the next token is performed by
sampling from the probability distribution:

wt ∼ P (wt|w0:t−1, dt) = softmax(Wsht)

where Ws ∈ RN×M is a weight matrix to be
learned during training. During the training pro-
cedure the inputs to the SC-LSTM are the original
tokens wt from the training set. On the other hand,
when generating new utterances we use the previ-
ously generated token as input to generate the next
token.
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Figure 1: Overview of the system. The MR-vector along
with the correct reference sentence are used as input to the
SC-LSTM during training. The output of the SC-LSTM is
fed into the semantic control classifiers, and their loss is used
during back-propagation alongside the reconstruction loss.

Loss To ensure that the SC-LSTM consumes the
MR correctly two conditions are defined: i) the
MR-vector at the last time step dT has to be zero,
which ensures that all the required information has
been rendered, and ii) the gate should not con-
sume too much of the dialogue act in one time

step, i.e. the difference ‖dt − dt−1‖ should be
minimised. From these criteria, the reconstruction
loss is adapted to:

F (θ) =
∑
t

pTt log(yt) + ‖dT ‖+
T−1∑
t=0

ηξ‖dt−dt−1‖

where the first term is the reconstruction error
which sums the cross-entropy loss for each time
step and the following two terms ensure the two
criteria defined above.

Semantic Control For each attribute a we train
a CNN-based classifier Da that classifies which of
the possible values for the attribute a is rendered
in the utterance or if the attribute is present in the
utterance at all. We pretrain the classifier on the
training set. During the training of the generator,
we fix the classifier weights and pass the output of
the generator into the classifier, which return the
loss. Let F (θa) be the categorical cross entropy
loss of the classifier for attribute a. We further
adapt the reconstruction loss for the generator to:

F (θ) =
∑
t

pTt log(yt) + ‖dT ‖

+
T−1∑
t=0

ηξ‖dt−dt−1‖ +
∑
a∈A

F (θa)

Thus, the generator receives feedback on the se-
mantic correctness of its output.

4 First Word Control

We observe that the vanilla SC-LSTM produces
utterances that express the same syntactic struc-
ture, especially all the generated utterances start
with the “X-name” token. There are two main rea-
sons for this behaviour. First, from the formulation
of the sequence inference it is obvious that the pre-
diction of the next token is dependent on the pre-
viously produced tokens. Thus, the first word used
in an utterance determines how the rest of the ut-
terance is produced. The second reason is that in
the training set 59% of the utterances start with the
“X-name” token and only 7% start with the word
“There” (see Figure 2).

Without additional information, the model op-
timizes to generate the utterance which yields the
lowest average loss, which are the most common
utterances in the training set. To generate more
uncommon utterances, we provide the model with
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Figure 2: Number of occurrences of the ten most frequent
first words in the training set.

the information about the first word in the utter-
ance. For this, we select all the words that appear
more than t = 60 times as first word, which results
in a list of n = 26 different words. We then ex-
tend the MR-vector by adding a one-hot encoded
vector f0 ∈ Rn+1:

f0 =

{
f0[first word index] = 1, first word in list

f0[n+ 1] = 1, first word not in list

5 Experimental Setting

The goal for our application is to generate de-
scriptions for restaurants. The dataset contains
50k utterances for 5,751 different MRs. On av-
erage, each MR is composed of 5.43 attributes
and there are 8.1 different references for each
MR on average. Refer to Table 3 for the data-
split. For the evaluation, we report various corpus-

Training Validation Testing
REF 42,067 4,672 4,693
MR 4574 547 630

Table 3: Data split by number of references and number of
MRs.

based metrics: BLEU-4 (Papineni et al., 2002),
which computes the precision of the n-grams in
the generated candidate with multiple reference
utterances; NIST (Doddington, 2002) which ex-
tends the BLEU score by taking into account the
informativeness of an n-gram; METEOR (Lavie
and Agarwal, 2007), which is based on the har-
monic mean of unigram precision and recall and
takes into account synonyms; ROUGE-L (Lin,
2004), which compares the longest co-occurring
subsequence; and CIDEr (Vedantam et al., 2015),
which is based on TF-IDF scoring on n-grams.
To assess the complexity of the generated utter-
ances, we employ the Lexical Complexity Anal-
yser (Lu, 2012).

Preprocessing Since we work on character
level, we treat each utterance as a string of char-
acter, where each character is represented as a
one-hot encoded vector. Since the training set
expresses a high diversity in the formulations of
some attribute value pairs, we can only replace the
name and near values with the tokens ‘X-name”
and “X-near” respectively. To generate the first-
word features, we apply the Spacy-API2 for tok-
enization.

System Setup We train the SC-LSTM and the
classifiers using AdaDelta (Zeiler, 2012) to opti-
mize the loss function. The classifiers are pre-
trained on the training set using early stopping to
avoid over-fitting. To train the SC-LSTM, we fix
the weights of the classifiers and feed the output of
the SC-LSTM into the classifiers. Since the classi-
fiers are trained on one-hot encoded character rep-
resentations but the SC-LSTM returns softmax-
probabilities, we apply a softmax with decreasing
temperature as proposed in (Hu et al., 2017) to
approximate the discrete representation. For the
LSTM cell we use a hidden state of size 1024 and
apply dropout as suggested in (Yarin and Ghahra-
mani, 2016). For the classifier we use a 2-layer
CNN with 256 kernels of length 3.
We use our character-based version of the SC-
LSTM by (Wen et al., 2015b) as baseline (Base
Model) and the models where we control the first
word (primary 1 GAN, primary 2 Vanilla). To
assess the impact of the semantic control clas-
sifiers we compare a model trained by back-
propagating the classifier-losses primary 1 GAN
and a model trained without back-propagating the
classifier losses primary 2 Vanilla.

Output Selection Through the syntactic manip-
ulations of the utterances there are cases where
the manipulation contradicts the MR. For exam-
ple, if the MR has no information about the area or
near restaurants, beginning the sentence with “Lo-
cated” or “Near” would result in the generation of
redundant information. To ensure that the final ut-
terance for a given MR is correct, we produce one
output for each of the 26 possible first words and
select those, which received the highest correct-
ness score from the classifiers. From this set of
”most correct” utterances, we sample uniformly at
random the final output utterance.

2https://spacy.io/



System Name BLEU NIST METEOR ROUGE-L CIDEr
Base Model 0.65 8.34 0.44 0.67 2.14
primary 1 GAN 0.58 8.02 0.43 0.59 1.81
primary 2 Vanilla 0.60 8.13 0.43 0.61 1.91

Table 4: Results of the automatic metrics for the five tested
systems.

System Name BLEU NIST METEOR ROUGE-L CIDEr
Base Model 0.69 8.31 0.47 0.71 2.22
primary 1 GAN 0.59 7.85 0.44 0.61 1.84
primary 2 Vanilla 0.60 7.99 0.45 0.62 1.93

Table 5: Validation results of the automatic metrics for the
five tested systems.

System Name ERR Missing Redundant
Base Model 7.3% 5.3% 2.0%
primary 1 GAN 5.0% 3.8% 0.12%
primary 2 Vanilla 4.6% 4.5% 0.01%

Table 6: Error analysis based on the ERR score, the number
of missing and redundant attribute values.

name eatType price rating near food area fam.
1.0 0.97 0.90 0.84 0.99 0.95 0.94 0.91

Table 7: Validation Accuracy scores for each classifier.

6 Results

In this section we present the results of the evalu-
ation. We apply the metrics used by the E2E-NLG
challenge. Additionally we evaluate the lexical
complexity to assess the impact of our proposed
control mechanism.

6.1 Evaluation Metrics
We report the scores for the automatic evaluation.
This includes the metrics BLEU, ROUGE-L, ME-
TEOR, NIST, and CIDEr score. Table 4 and Ta-
ble 5 show that the surface manipulation leads to
a decrease in all of these scores. The best score is
achieved by the Base Model. The models achieve
significantly lower scores when we manipulate the
first word: in both cases the BLEU score drops by
5 − 7 points and other scores accordingly. Only
the METEOR score, which takes semantic simi-
larity among words into account, remains stable.
The reason for this drop is that in 59% of the train-
ing references the first word is the “X-name” to-
ken, thus, generating an utterance that starts with
the “X-name” token yields a higher token overlap
with the reference. On the other hand, the utter-
ances where we controlled the first word make less
use of the “X-name” token for the first word. In
fact, the “X-name” token was only used in 3% of
the cases as the first word. Thus, there is a lower

probability that the generated utterance overlaps
with one of the references, hence, the evaluation
metrics yield lower results.

6.2 Classifier Performance
Since we use the classifiers to evaluate the gener-
ated sentences, it is important to assess the quality
of these classifiers. Table 7 shows the validation
accuracy score for each of the classifiers. We note
that all classifiers have a score greater than 0.9 ex-
cept for the customer rating. The errors of the cus-
tomer rating and the price classifiers stem from the
semantic equivalence between the numerical and
the verbal values which were used interchangeably
in the references.

6.3 Correctness
We evaluate the semantic correctness using the
ERR = p+q

N score proposed by (Wen et al.,
2015a), where p is the number of redundant or
incorrect values, q the number of missing values
and N the number of attributes in the MR. We re-
port the scores for the missing and redundant val-
ues separately. Table 6 shows that the use of First
Word Control reduces the error rate, and in partic-
ular, the rate of missing values is greatly reduced.
The reason is that with manipulation of the first
word, the model has more possibilities for making
the utterance. Thus, the reranking has the possibil-
ity to select from multiple utterances. We also note
that the SC-LSTM with semantic control classi-
fier extensions generates significantly more redun-
dant information than without the extensions. The
largest part of the errors arise when the eatType at-
tribute is not specified, but the model renders this
information regardless, see Table 10.

6.4 Lexical Complexity Analysis
To assess the lexical richness we use the Lexi-
cal Complexity Analyser (Lu, 2012), which is a
collection of metrics to measure various aspects
of lexical richness. Table 8 displays the various
scores for the different systems and metrics.
We observe that the number of different words
(NDW) increases when we control for the first
word. We also note that the primary 1 GAN has
a higher NDW than the Base Model. In fact, when
controlling the first word we almost double the
NDW w.r.t the Base Model.
The lexical sophistication (LS) computes the pro-
portion of word types that do not appear in the
2000 most frequent words generated from the



System Name NDW LS CVS TTR MSTTR LV VV NV
Base Model 98 0.11 0.02 5e−3 0.57 5e−3 6e−3 5e−3

primary 1 GAN 162 0.09 0.08 9e−3 0.61 12e−3 28e−3 9e−3

primary 2 Vanilla 135 0.08 0.04 8e−3 0.61 8e−3 18e−3 7e−3

Table 8: Results of the lexical complexity analysis.

British National Corpus. We observe that all the
models have a ratio of about 10%, with the un-
controlled models having the highest percentages.
However, when reporting on the verb sophistica-
tion (CVS, verbs not in the list of the 200 most fre-
quent verbs), we observe that the controlled mod-
els perform slightly better than the Base Model.
To explore the lexical variation we use various
metrics: the type-token ratio (TTR) measures the
ratio between number of tokens and number of
words in a text. It is sensitive to the size of the
text, thus, we also report the mean segmental TTR
(MSTTR), which divides the text into successive
segments and computes the average TTR of these
segments. The results show that for both TTR and
MSTTR the controlled models have higher scores
with values of 0.61 each. We also report the lexi-
cal word-variation (LV), which computes the ratio
between number of different lexical tokens and to-
tal number of lexical tokens (lexical words: nouns,
adjectives, verbs and adverbs). We observe again
that the controlled models display a higher LV. The
same pattern is notable for the verb-variation score
and the noun variation score, which are the ratio of
number of different verbs to total number of verbs
and nouns, respectively.

6.5 Human Evaluation

We submitted both the primary 1 GAN and the
primary 2 Vanilla systems to the E2E NLG Chal-
lenge 2017 challenge, where they were evaluated
by humans. The human subjects evaluated the sys-
tem outputs for quality (grammatical correctness,
fluency, adequacy, etc.) and naturalness (extent
to which the utterance could have been produced
by a native speaker). Both our submitted systems
rank 2nd out of four clusters for quailty and in the
3rd out of five clusters for naturalness. For a com-
plete analysis of the evaluation procedure consult
(Dušek et al., 2018).

6.6 Qualitative Evaluation

To highlight the potential and the limitations of our
approach, we look at some representative exam-
ples. In Table 9, we compare the outputs of the

Base Model and the First Word Control. We ob-
serve that the structure of the utterances generated
by the Base Model remains the same as we adapt
one attribute. For instance, the utterance generated
with the rating-attribute set to 1/5 is the same as
when the attribute is set to 3/5. On the other hand,
through the manipulation of the first word the out-
put becomes more diverse.

However, controlling the first word can lead to
conflicting situations where the MR and the first
word contradict each other. We see in Table 10 two
examples where no information about the area or
near was asked, but since we controlled the first
word to be “Located” or “Near”, the model ren-
dered redundant information. We avoid this prob-
lem by generating an utterance for each first word
and use the reranking to choose the most correct
utterance.

7 Conclusion

In this work, we presented an end-to-end trainable
deep-learning based system for natural language
generation. We showed that it is possible to gen-
erate texts that are more sophisticated with a sim-
ple control mechanism. The evaluation revealed
that the measured lexical diversity, the syntactic
complexity as well as the semantic correctness sig-
nificantly increased when manipulating the first
word of an utterance. Furthermore, the evaluation
showed that the standard metrics for evaluating an
NLG system are not able to capture these manip-
ulations. We observed a decrease in these met-
rics when controlling the surface realization, even
though the utterances are semantically equivalent.



name[The Punter], area[riverside]
familyFriendly[yes]
rating[1/5]

V The Punter is a kid friendly restaurant in the riverside area with a customer
rating of 1 out of 5.

F A kid friendly restaurant called The Punter is located in the riverside area
and has a customer rating of 1 out of 5.

name[The Punter], area[riverside]
familyFriendly[yes]
rating[3/5]

V The Punter is a kid friendly restaurant in the riverside area with a customer
rating of 3 out of 5.

F With a customer rating of 3 out of 5, The Punter is a kid friendly restaurant
located in the riverside area.

name[Alimentum], area[riverside]
familyFriendly[yes]
near[N/A]

V Alimentum is a family-friendly restaurant in the riverside area.

F If you are looking for a family friendly place there is a restaurant called
Alimentum in the riverside area.

name[Alimentum], area[riverside]
familyFriendly[yes]
near[Burger King]

V
Alimentum is a family-friendly restaurant in the riverside area near Burger
King.

F A family friendly place is Alimentum. It is located near Burger King in the
riverside area.

Table 9: Sample output of the vanilla SC-LSTM (V) and the First Word Control (F) for four different MRs where one
attribute-value is changed.

name[The Wrestlers]
rating[1/5]
familyFriendly[yes]

Children friendly The Wrestlers rates 1 out of 5.
Near the riverside is a kid friendly place called The Wrestlers with a rating of 1 out of 5.
Located near the river, The Wrestlers is a kid friendly restaurant with a cus-
tomer rating of 1 out of 5.

Table 10: Utterances generated for the same MRs by controlling the first word highlighting some of the problems that arise
when the MR and the first word are contradicting each other. The red colour denotes redundant information.

References

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, HLT ’02, pages 138–
145.
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