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Abstract

This paper describes one of Thomson Reuters’
primary submissions to the E2E NLG
Challenge-2017 shared task. The challenge
is focused on end-to-end data-driven natural
language generation to learn sentences from
non-aligned data. We used a state-of-the-art
sequence-to-sequence method to generate
natural language sentences from meaning
representations. Our automatically generated
sentences were evaluated both intrinsically
and extrinsically.

1 Introduction

In this paper, we report on the development and
results of one of our meaning representation to
natural language sentences (MR-to-NL) systems
for the E2E NLG Challenge 2017 shared task1.
We utilized a neural network architecture that per-
forms a sequence-to-sequence translation from an
MR template to a natural language output tem-
plate.

Traditionally, the task of generating human-
readable sentences from meaning representations
(MR) has focused on two main aspects of lan-
guage: (1) syntax, and (2) lexicalization. In or-
der to formally formulate this problem, the sen-
tence planning subtask focuses on the sentence
structure and the surface realization subtask corre-
sponds to choosing proper word forms (Reiter and
Dale, 2000). An end-to-end NLG model cannot be
achieved if any of these subtasks fail. These two
subtasks can either be considered as two indepen-
dent components of an NLG model (Walker et al.,
2001; Rieser et al., 2010; Dethlefs et al., 2013),
or they can be combined to jointly form one com-
ponent of the model (Wong and Mooney, 2007;
Konstas and Lapata, 2013).

1The other primary system is described in (Smiley et al.,
2018).

The growing interest in applying deep learn-
ing methods to natural language technologies
drew our attention to exploring a potential end-
to-end deep learning-based solution for this NLG
task. Thus, we avoid doing the semantic align-
ment between the meaning representations and
the corresponding sentences in natural languages
(NL). Sequence-to-sequence deep learning mod-
els (Sutskever et al., 2014) generate an output se-
quence directly from an input sequence. Machine
translation is an example application where these
models have shown to outperform traditional ap-
proaches (Britz et al., 2017).

2 The E2E Dataset

The E2E dataset (Novikova et al., 2017) contains
42,061 pairs of <meaning representation, natu-
ral language sentence(s)> in the training set, and
4,672 pairs in the development set. In this dataset,
there are eight different attributes, including name,
eat type, price range, customer rating, near, food,
area, and family friendly. Each meaning represen-
tation can contain 3 to 8 of these attributes.

3 Model Architecture

As shown in Figure 1, our system consists of three
main components:

• De-lexicalization: both the meaning repre-
sentation and the corresponding target sen-
tences are de-lexicalized.

• Seq-to-Seq model: a de-lexicalized mean-
ing representation is used to generate de-
lexicalized natural language sentence(s).

• Re-lexicalization: the generated de-
lexicalized sentences are re-lexicalized.



Figure 1: Overview of our MR-to-NL system

3.1 Preprocessing: De-lexicalization of the
Meaning Representations and the
Natural Language Sentences

One of the challenges in NLG is generating accu-
rate texts which reflect the ground truth (i.e. the
fact in a knowledge base of a given domain). Hav-
ing enough large parallel texts to train a Sequence-
to-Sequence model is necessary to generate texts
which reflect to the ground truth. However, among
the attributes of the E2E data, most of the non-
categorical attributes are very sparse which makes
the learning process difficult. Thus, in order to
generate accurate sentences based on the mean-
ing representations, we de-lexicalized the val-
ues of some of the attributes to avoid data spar-
sity. The de-lexicalization process involves replac-
ing the values of the attributes with placeholders.
Among the E2E attributes, we de-lexicalized the
values of the attributes which seem to take a value
from an open set of values. These include name,
price range, customer rating and near. We de-
lexicalized both the meaning representations and
their corresponding natural language sentences.
De-lexicalizing price range and customer rating
is more challenging than the others because both
attributes have more value variations in the mean-
ing representations and the natural language texts
than the other attributes do. Hence, the learning
task is between a MR template and a NL template.
Figure 2 shows an example of a de-lexicalized
meaning representation and its corresponding de-
lexicalized natural language sentence. The de-
lexicalized meaning representations are used as in-
put of our Sequence-to-Sequence model, in which
the de-lexicalized natural language sentences are
the model target output.

3.2 Seq-to-Seq Model

Neural Machine Translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014) is an end-to-end approach for machine

translation. Sequence-to-Sequence models are
encoder-decoder models, in which an input se-
quence (e.g. sequence of tokens in one language)
is encoded by the encoder and the output sequence
(e.g. sequence of tokens in another language) is
generated by the decoder (Jean et al., 2014; Luong
et al., 2014; Sennrich et al., 2016).

In this challenge, we considered the task as
a translation problem which takes a sequence of
tokens (i.e., de-lexicalized meaning representa-
tions) as input, and generates a sequence of to-
kens (de-lexicalized natural language sentences)
in the same language. In our current implemen-
tation, we used the state-of-the-art neural machine
translation model (Britz et al., 2017).

3.3 Post Processing: Re-lexicalization of the
Automatically Generated Sentences

As the last step of our approach, the placeholders
in the automatically generated de-lexicalized sen-
tences should be replaced by their actual values.
Thus, for the training and development set, we
kept the values of the attributes as they appeared in
the original sentences and re-lexicalized the place-
holders with these values. Since there is no corre-
sponding sentence for meaning representations of
the test sets, we used the value of the placeholders
as they appeared in the original meaning represen-
tation. This may have a negative impact on the
quality and naturalness.

4 Experiments

Based on the model architecture given in sec-
tion 3, we train two models, each with two varia-
tions. We apply the same de-lexicalization and re-
lexicalization processes to both models and their
variations. The first model (Model #1) uses the de-
lexicalized meaning representations as the input,
and de-lexicalized sentences as target output. The
two variations of this model are different in de-
coding: one variation uses beam search decoder,



Original Meaning Representation Original Natural Language Sentences
name [The Rice Boat], food [Indian], priceRange
[e20-25], customer rating [high], area [city cen-
tre], familyFriendly [yes], near [Express by Hol-
iday Inn]

The Rice Boat is an Indian restaurant in the city
centre near the Express by Holiday Inn, it is kid
friendly highly rated and costs 20-25 euros.

De-lexicalized Meaning Representation De-lexicalized Natural Language Sentences
name [name x], food [Indian], priceRange
[priceRange x], customer rating [customerRat-
ing x], area [city centre], familyFriendly [yes],
near [near x]

name x is an Indian restaurant in the city centre
near near x, it is kid friendly customerRating x
rated and costs priceRange x.

Figure 2: An example of the de-lexicalized meaning representation and its corresponding natural language sen-
tence.

Model #1 Model #2
Batch size 64 16
# of hidden units 256 256
# of encoder layers 3 3
# of decoder layers 1 1
RNN cell GRU GRU
Optimizer Adam Adam
Input Dropout 0.8 1.0
Output Dropout 0.5 0.5

Table 1: The list of hyper-parameters tuned for both
models.

while the other one does not. The second model
(Model #2) differs from the first one in the way
the input sequence is created. It uses the concate-
nation of the de-lexicalized meaning representa-
tions (the same input as the first model takes) and
the sequence of values of attributes of the meaning
representations. Figure 3 shows an example of the
input of the first and the second model.

We tune the hyper-parameters of the models
based on the automatic evaluation metrics (i.e.
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
ROUGE L (Lin, 2004) and CIDEr (Vedantam
et al., 2015)). Table 1 shows the optimized values
of the hyper-parameters for both models.

5 Results & Discussion

The parameter tuning helps us to choose the best
model. We evaluated the trained models on the
validation set to choose the best model configura-
tion (see Table 1). Table 2 shows the results of the
two models on the validation set.

For both models, we tried beam search decoder

Evaluation Metric Model #1 Model #2
BLEU 0.8629 0.8611
NIST 8.2834 8.2004
METEOR 0.4569 0.4763
ROUGE L 0.7159 0.7305
CIDEr 2.2774 2.3166

Table 2: The results of automatic evaluation on the val-
idation set.

with various beam sizes. On the validation set,
the beam search decoder shows no difference. On
the test set, we used the beam search decoder with
beam size of 5. The automatically generated sen-
tences of the test set were evaluated automatically
(using BLEU, NIST, METEOR, ROUGE L and
CIDEr) and by human annotators (Dušek et al.,
2018). Table 3 shows the results of automatic eval-
uation of the test set. The manual evaluation is per-
formed only for our primary submission, which is
Model #2 with beam search. The reasons for se-
lecting Model #2 as one of our primary submis-
sions are: (1) according to Table 2, Model #2 out-
performs Model #1 in 3 out of the 5 automatic
metrics, (2) though Model #2 has a lower BLEU
score compared to Model #1, this difference is not
substantial, and (3) Model #2 uses the concate-
nated values as input and we were expecting this
provide more information to the seq-to-seq model
for better generations. The two metrics used for
manual evaluation are quality and naturalness. In
terms of quality, our submission ranked as third
(in a scale of one to four) with the quality score of
-0.169. Also, our primary submission achieves the
naturalness score of -0.051, ranking in third place
(in a scale of one to five).



The input sequence for Model #1 The input sequence for Model #2
name name x, food Indian, priceRange
priceRange x, customer rating customer-
Rating x, area city centre, familyFriendly yes,
near near x.

name name x, food Indian, priceRange
priceRange x, customer rating customer-
Rating x, area city centre, familyFriendly yes,
near near x. name x, Indian, priceRange x,
customerRating x, city centre, yes, near x.

Figure 3: An example of the input of Model #1 (left) and Model #2 (right).

Evaluation Baseline Model #1 Model #2
Metric beam search w/o beam search beam search w/o beam search

BLEU 0.6593 0.6201 0.6182 0.6336 0.6208
NIST 8.6094 8.0938 8.0616 8.1848 8.0632
METEOR 0.4483 0.4419 0.4417 0.4322 0.4417
ROUGE L 0.6850 0.6740 0.6729 0.6828 0.6692
CIDEr 2.2338 2.1251 2.0783 2.1425 2.1127

Table 3: The results of automatic evaluation on the test set.

Although this proposed model is an end-to-end
approach, there are some limitations that should
be explored further. One of the limitations is
that we do not have any control on the decoder
to generate all the attributes that appeared in the
meaning representations. As a result, the model
may suffer from not generating all the attributes
or generating extra attributes. In both cases,
the re-lexicalization component either cannot re-
lexicalize all the placeholders or there are extra
placeholders that cannot be re-lexicalized. For fu-
ture work, we will put some restrictions on the
decoder such that it would not generate repetitive
tokens (including placeholders) and also push the
model to generate all the attributes mentioned in
the corresponding meaning representation. In ad-
dition, this model needs to be trained on a larger
training set. For future work, we plan to use the re-
leased data set for generating semantically similar
sentences for the meaning representations.
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