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Abstract
Natural language generation lies at the core
of generative dialogue systems and conversa-
tional agents. We describe an ensemble neural
language generator, and present several novel
methods for data representation and augmen-
tation that yield improved results in our model.
We test the model on three datasets in the
restaurant, TV and laptop domains, and re-
port both objective and subjective evaluations
of our best model. Using a range of automatic
metrics, as well as human evaluators, we show
that our approach achieves better results than
state-of-the-art models on the same datasets.

1 Introduction

There has recently been a substantial amount of
research in natural language processing (NLP) in
the context of personal assistants, such as Cortana
or Alexa. The capabilities of these conversational
agents are still fairly limited and lacking in vari-
ous aspects, one of the most challenging of which
is the ability to produce utterances with human-
like coherence and naturalness for many different
kinds of content. This is the responsibility of the
natural language generation (NLG) component.

Our work focuses on language generators
whose inputs are structured meaning representa-
tions (MRs). An MR describes a single dialogue
act with a list of key concepts which need to be
conveyed to the human user during the dialogue.
Each piece of information is represented by a slot-
value pair, where the slot identifies the type of in-
formation and the value is the corresponding con-
tent (see Table 3). Dialogue act (DA) types vary
depending on the dialogue manager, ranging from
simple ones, such as a goodbye DA with no slots
at all, to complex ones, such as an inform DA con-
taining multiple slots with various types of values.

A natural language generator must produce a
syntactically and semantically correct utterance

from a given MR. The utterance should express
all the information contained in the MR, in a nat-
ural and conversational way. In traditional lan-
guage generator architectures, the process of as-
sembling an utterance from an MR is performed
in two stages: sentence planning, which enforces
semantic correctness and determines the structure
of the utterance (order in which the information is
presented, number of sentences, etc.), and surface
realization, which enforces syntactic correctness
and produces the final utterance form.

Earlier work on statistical NLG (SNLG) ap-
proaches were typically hybrids of a handcrafted
component and a statistical training method. One
of the first such generators, from Langkilde and
Knight (1998), augmented a highly unconstrained
rule-based surface realizer with statistical rerank-
ing based on an n-gram language model. Stent
et al. (2004) took this idea further by applying
it to sentence planning, and training the ranking
function from human feedback. Other research
on SNLG applied reinforcement learning to train
a language generation policy (Rieser and Lemon,
2010). In all of these approaches, the handcrafted
aspects lead to decreased portability and poten-
tially limit the variability of the outputs. New
corpus-based approaches emerged that used se-
mantically aligned data to train language mod-
els that output utterances directly from their MRs
(Mairesse et al., 2010; Mairesse and Young, 2014).
The alignment provides valuable information dur-
ing training, but the semantic annotation is costly.

The most recent methods do not require aligned
data and use an end-to-end approach to training,
performing sentence planning and surface realiza-
tion simultaneously (Konstas and Lapata, 2013).
The most successful systems trained on unaligned
data use recurrent neural networks paired with an
encoder-decoder system design (Wen et al., 2015;
Mei et al., 2016; Dušek and Jurčı́ček, 2016), or



Table 1: Overview of the number of samples, as
well as different DA and slot types, in each dataset.

E2E TV Laptop

|training set| 42061 4221 7944
|validation set| 4672 1407 2649
|test set| 630 1407 2649

total 47363 7035 13242

DA types 1 14 14
slot types 8 16 20

other concepts, such as imitation learning (Lam-
pouras and Vlachos, 2016). These language gen-
eration models, however, typically require greater
amount of data for training, due to the lack of
semantic alignment, and they still have problems
producing syntactically and semantically correct
output, as well as being limited in naturalness
(Nayak et al., 2017).

Here we present a deep ensemble atten-
tional encoder-decoder natural language genera-
tor, which we train and test on three large un-
aligned datasets in the restaurant, television, and
laptop domains. We explore novel ways to rep-
resent the MR inputs, including novel methods
for delexicalizing slots and their values, automatic
slot alignment, as well as the use of a seman-
tic reranker. We use automatic evaluation met-
rics to show that these novel methods appreciably
improve the performance of our model. On the
largest of the datasets, the E2E dataset (Novikova
et al., 2017b) with 50K samples, we also demon-
strate that our model significantly outperforms the
baseline E2E NLG system in human evaluation.
Finally, after augmenting our model with stylistic
data selection, subjective evaluations reveal that
it can still produce overall better results despite a
significantly reduced training set.

2 Datasets

We evaluated the models on three datasets from
different domains. The primary one is the recently
released E2E restaurant dataset (Novikova et al.,
2017b) with 48K samples. For benchmarking we
use the TV dataset and the Laptop dataset (Wen
et al., 2016) with 7K and 13K samples. Table 1
summarizes the proportions of the training, vali-
dation, and test sets for each dataset.

2.1 E2E Dataset
The E2E dataset is by far the largest one avail-
able for task-oriented language generation in the

Figure 1: Proportion of unique MRs in the datasets.
Note that the number of MRs in the E2E dataset
was cut off at 10K for the sake of visibility of the
small differences between other column pairs.

restaurant domain. The human references were
collected using pictures as the source of infor-
mation, which was shown to inspire more infor-
mative and natural utterances (Novikova et al.,
2016). With nearly 50K samples, it offers al-
most 10 times more data than the San Francisco
restaurant dataset introduced in Wen et al. (2015),
which has frequently been used for benchmarks.
The reference utterances in the E2E dataset ex-
hibit superior lexical richness and syntactic vari-
ation, including more complex discourse phenom-
ena. It aims to provide higher-quality training
data for end-to-end language generation systems
to learn to produce more naturally sounding utter-
ances. The dataset was released as a part of the
E2E NLG Challenge1.

Although the E2E dataset contains a large num-
ber of samples, each MR is associated on aver-
age with 8.65 different reference utterances, ef-
fectively offering less than 5K unique MRs in
the training set (Fig. 1). Explicitly providing the
model with multiple ground truths, it offers multi-
ple alternative utterance structures the model can
learn to apply for the same type of MR. The delex-
icalization, as detailed later in Section 4.1, im-
proves the ability of the model to share the con-
cepts across different MRs.

The dataset contains only 8 different slot types,
which are fairly equally distributed in the dataset.
The number of slots in each MR ranges between
3 and 8, whereas the majority of MRs consist of
5 and 6 slots. Even though most of the MRs con-
tain many slots, the majority of the correspond-
ing human utterances, however, consist of one or
two sentences only (Table 2), suggesting a reason-
ably high level of sentence complexity in the ref-
erences.

1http://www.macs.hw.ac.uk/InteractionLab/E2E/



Table 2: Average number of sentences in the refer-
ence utterance for a given number of slots in the
corresponding MR, along with the proportion of
MRs with specific slot counts.

slots 3 4 5 6 7 8

sent. 1.09 1.23 1.41 1.65 1.84 1.92
prop. 5% 18% 32% 28% 14% 3%

Figure 2: Proportion of DAs in the Laptop dataset.

2.2 TV and Laptop Datasets

The reference utterances in the TV and the Laptop
datasets were collected using Amazon Mechanical
Turk (AMT), one utterance per MR. Seeing only a
single realization of each MR while training, the
model must learn phrases and abstract constructs
that it will need to apply to unseen MRs in or-
der to perform well. Performing a delexicalization
is thus even more essential here than in the E2E
dataset. These two datasets are similar in struc-
ture, both using the same 14 DA types. The Lap-
top dataset, however, is almost twice as large and
contains 25% more slot types. We noticed that
the MRs with the ?request DA type in the TV
dataset have no slots provided, as opposed to the
Laptop dataset, so we imputed these in order to
obtain valid MRs.

Although both of these datasets contain more
than a dozen different DA types, the vast majority
(68% and 80% respectively) of the MRs describe
a DA of either type inform or recommend
(Fig. 2), which in most cases have very simi-
larly structured realizations, comparable to those
in the E2E dataset. DAs such as suggest,
?request, or goodbye are represented by less
than a dozen samples, but are significantly easier
to learn to generate an utterance from because the
corresponding MRs contain three slots at the most.
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Figure 3: Standard architecture of a single-layer
encoder-decoder LSTM model with attention. For
each time step t in the output sequence, we calcu-
late the attention scores αt,1, . . . , αt,L. This dia-
gram shows the attention scores only for t = 2.

3 Ensemble Neural Language Generator

3.1 Encoder-Decoder with Attention

For our sequence-to-sequence NLG model we use
the standard encoder-decoder (Cho et al., 2014)
architecture equipped with an attention mecha-
nism as defined in Bahdanau et al. (2014). By en-
coding the input into a sequence of context vectors
instead of a single vector, it enables the decoder to
learn what specific parts of the input sequence to
pay attention to, given the output generated so far.

In this attentional encoder-decoder architecture,
the probability of the output at each time step t of
the decoder depends on a distinct context vector qt
in the following way:

P (ut|u1, . . . , ut−1,w) = g(ut−1, st, qt) ,

where in the place of function g we use the soft-
max function over the size of the vocabulary, and
st is a hidden state of the decoder RNN at time
step t, calculated as:

st = f(st−1, ut−1, qt) .

The context vector qt is obtained as a weighted
sum of all the hidden states h1, . . . , hL of the en-
coder:

qt =
L∑
i=1

αt,ihi ,

where αt,i corresponds to the attention score the
t-th word in the target sentence assigns to the i-th
item in the input MR.



We compute the attention score αt,i using a
multi-layer perceptron (MLP) jointly trained with
the entire system (Bahdanau et al., 2014). The en-
coder’s and decoder’s hidden states at time i and t,
respectively, are concatenated and used as the in-
put to the MLP, namely:

αt,i = softmax
(
wT tanh (W [hi; st])

)
,

where W and w represent the weight matrix and
the vector of the first and the second layer of the
MLP, respectively.

In order to further improve the prediction per-
formance of the decoder, during the testing we use
beam search with the beam width equal to 10.

3.2 Ensembling

In order to enhance the quality of the predicted ut-
terances, we create three attentional neural mod-
els with different encoder cell types. Two of the
models contain a bidirectional LSTM encoder cell
type, whereas the third model contains a CNN en-
coder cell type. We train these models individually
for a different number of epochs and then combine
their predictions.

Initially, we attempted to combine the pre-
dictions of the models by averaging the log-
probability at every given time step and then
selecting the word with the maximum log-
probability. We noticed that the quality as well
as the BLEU score of our utterances decreased
significantly. We believe that this is due to the
fact that different models learn different sentence
structures and hence combining predictions at the
probability level results in incoherent utterances.

Therefore, instead of combining the models
at the log-probability level, we accumulate the
ten most probable predicted utterances from each
model type using beam search, and allow the
reranker (see Section 3.4) to rank all candidate ut-
terances based on the proportion of slots they re-
alized. Finally, our system predicts the utterance
that received the highest score.

3.3 Slot Alignment

Our training data is inherently unaligned, meaning
our model isn’t certain which sentence in a multi-
sentence utterance contains a given slot, which
limits the model’s robustness. To accommodate
this, we create a heuristic-based slot aligner which
automatically preprocesses the data. Its primary
goal is to align chunks of text from the reference

utterances with an expected value from the MR.
Applications of our slot aligner are described in
subsequent sections and in Table 3.

In our task, we have a finite set of slot realiza-
tions which must be detected. Moreover, from our
training data we can see that most slots are realized
by inserting a specific set of phrases into an utter-
ance. Using this insight we construct a gazetteer
which primarily searches for overlapping content
between the MR and each sentence in an utterance.
We construct our gazetteer by associating all pos-
sible slot realizations with their appropriate slot
type. We additionally augment the gazetteer us-
ing a small set of handcrafted rules which capture
cases not easily encapsulated by the above pro-
cess, for example, associating the priceRange
slot with a chunk of text using currency sym-
bols or relevant lexemes, such as “cheap” or “high
end”. While handcrafted, these rules are transfer-
able across domains, as they target the slots, not
the domains, and mostly serve to counteract the
noise in the E2E dataset. Finally, we use Word-
Net (Fellbaum, 1998) to further augment the size
of our gazetteer by accounting for synonyms and
other semantic relationships, such as associating
“pasta” with the food[Italian] slot.

Originally our model assumed that, if a given
slot is present in the MR, it is also present in the ut-
terance. After further inspecting our training data,
we realized there was a noticeable percentage of
slots which were never realized, or realized incor-
rectly. Therefore, our aligner was designed with
respect to precision – if a slot is indicated by the
original MR, but not observable to our aligner, we
remove it from the MR.

3.4 Reranker

As discussed in Section 3.2, our model uses beam
search to produce a pool of the most probable pre-
dictions for a given MR. While these results have a
probability score provided by the model, we found
that relying entirely on this score often results in
the system picking a candidate which is objec-
tively worse than a lower scoring utterance (i.e.
one missing more slots and/or realizing slots in-
correctly). We therefore augment that score by
multiplying it by the following score which takes
the slot alignment into consideration:

salign =
N

(Nu + 1) · (No + 1)
,



where N is the number of all slots in the given
MR, and Nu and No represent the number of
unaligned slots (those not observed by our slot
aligner) and over-generated slots (those which
have been realized but were not present in the orig-
inal MR), respectively.

4 Data Preprocessing

4.1 Delexicalization

We enhance the ability of our model to general-
ize the learned concepts to unseen MRs by delex-
icalizing the training data. Moreover, it reduces
the amount of data required to train the model.
We identify the categorical slots whose values al-
ways propagate verbatim to the utterance, and re-
place the corresponding values in the utterance
with placeholder tokens. The placeholders are
eventually replaced in the output utterance in post-
processing by copying the values from the input
MR. Examples of such slots would be name or
near in the E2E dataset, and screensize or
processor in the TV and the Laptop dataset.

Previous work identifies categorical slots as
good delexicalization candidates that improve the
performance of the model (Wen et al., 2015;
Nayak et al., 2017). However, we chose not to
delexicalize those categorical slots whose values
can be expressed in alternative ways, such as “less
than $20” and “cheap”, or “on the riverside” and
“by the river”. Excluding these from delexical-
ization may lead to an increased number of incor-
rect realizations, but it encourages diversity of the
model’s outputs by giving it a freedom to choose
among alternative ways of expressing a slot-value
in different contexts. This, however, assumes that
the training set contains a sufficient number of
samples displaying these type of alternations so
that the model can learn that certain phrases are
synonymous. With its multiple human references
for each MR, the E2E dataset has this property.

As Nayak et al. (2017) point out, delex-
icalization affects the sentence planning and
the lexical choice around the delexicalized slot
value. For example, the realization of the
slot food[Italian] in the phrase “serves
Italian food” is valid, while the realization of
food[fast food] in “serves fast food food”
is clearly undesired. Similarly, a naive delexical-
ization can result in “a Italian restaurant”, whereas
the article should be “an”. Another problem with
articles is singular versus plural nouns in the slot

value. For example, the slot accessories in
the TV dataset, can take on values such as “remote
control”, as well as “3D glasses”, where only the
former requires an article before the value.

We tackle this issue by defining different
placeholder tokens for values requiring differ-
ent treatment in the realization. For exam-
ple, the value “Italian” of the food slot is re-
placed by slot vow cuisine food, indicat-
ing that the value starts with a vowel and rep-
resents a cuisine, while “fast food” is replaced
by slot con food, indicating that the value
starts with a consonant and cannot be used as a
term for cuisine. The model thus learns to gener-
ate “a” before slot con food and “an” before
slot vow cuisine food whenever relevant,
as well as to avoid generating the word “food” af-
ter food-slot placeholders that do not contain the
word “cuisine”.

4.2 Data Expansion
Slot Permutation
In our initial experiments, we tried expanding the
training set by permuting the slot ordering in the
MRs as suggested in Nayak et al. (2017). From
different slot orderings of every MR we sampled
five random permutations (in addition to the orig-
inal MR), and created new pseudo-samples with
the same reference utterance. The training set thus
increased six times in size.

Using such an augmented training set might add
to the model’s robustness, nevertheless it did not
prove to be helpful with the E2E dataset. In this
dataset, we observed the slot order to be fixed
across all the MRs, both in the training and the
test set. As a result, for the majority of the time,
the model was training on MRs with slot orders it
would never encounter in the test set, which ulti-
mately led to a decreased performance in predic-
tion on the test set.

Utterance/MR Splitting
Taking a more utterance-oriented approach, we
augment the training set with single-sentence ut-
terances paired with their corresponding MRs.
These new pseudo-samples are generated by split-
ting the existing reference utterances into single
sentences and using the slot aligner introduced in
Section 3.3 to identify the slots that correspond to
each sentence. The MRs of the new samples are
created as the corresponding subsets of slots and,
whenever the sentence contains the name (of the



Table 3: An example of the utterance/MR splitting.

MR

name [The Waterman], food [English],
priceRange [cheap], customer rating [av-
erage], area [city centre], familyFriendly
[yes]

Utt.

There is a family-friendly, cheap restaurant
in the city centre, called The Waterman. It
serves English food and has an average rat-
ing by customers.

New MR
#1

name [The Waterman], priceRange
[cheap], area [city centre], familyFriendly
[yes], position [outer]

New MR
#2

name [The Waterman], food [English],
customer rating [average], position [inner]

restaurant/TV/etc.) or a pronoun referring to it
(such as “it” or “its”), the name slot is included
too. Finally, a new position slot is appended
to every new MR, indicating whether it represents
the first sentence or a subsequent sentence in the
original utterance. An example of this splitting
technique can be seen in Table 3. The training set
almost doubled in size through this process.

Since the slot aligner works heuristically, not all
utterances are successfully aligned with the MR.
The vast majority of such cases is caused by refer-
ence utterances in the datasets having incorrect or
entirely missing slot mentions. Nevertheless, there
is only a small proportion of those, and we leave
them in the training set with the unaligned slots re-
moved from the MR, so as to avoid confusing the
model when learning from such samples.

4.3 Sentence Planning via Data Selection

The quality of the training data inherently imposes
an upper bound on the quality of the predictions
of our model. Therefore, in order to bring our
model to produce more sophisticated utterances,
we experimented with filtering the training data to
contain only the most natural sounding and struc-
turally complex utterances for each MR.

We assess the complexity and naturalness of
each utterance by the use of discourse phenom-
ena, such as contrastive cues, subordinate clauses,
aggregations, and the number of sentences used
to convey all the information in the corresponding
MR. We identify these in the utterance’s parse-tree
produced by the Stanford CoreNLP toolkit (Man-
ning et al., 2014) by defining a set of rules for ex-
tracting the discourse phenomena.

5 Evaluation

Researchers have generally used both automatic
and human evaluation for this NLG task. In our

results we report the following standard automatic
evaluation metrics: BLEU (Papineni et al., 2002),
NIST (Przybocki et al., 2009), METEOR (Lavie
and Agarwal, 2007), and ROUGE-L (Lin, 2004).
For the E2E dataset experiments, we additionally
report the results of the human evaluation carried
out on the CrowdFlower platform as a part of the
E2E NLG Challenge.

5.1 Experimental Setup

We have built our ensemble model using the
seq2seq framework (Britz et al., 2017) for Ten-
sorFlow. Our individual LSTM models used a
bidirectional LSTM encoder with 512 cells per
layer, and the CNN models used a pooling en-
coder as described in Gehring et al. (2017). The
decoder in all models was a 4-layer RNN decoder
with 512 LSTM cells per layer and with atten-
tion. The hyperparameters were determined em-
pirically through a series of experiments. After
experimenting with different beam search param-
eters, we settled on the beam width of 10. More-
over, we employed the length normalization of the
beams as defined in Wu et al. (2016), in order to
encourage the decoder to favor longer sequences.
The length penalty providing the best results on
the E2E dataset was 0.6, whereas for the TV and
Laptop datasets it was 0.9 and 1.0, respectively.

5.2 Experiments on the E2E Dataset

We start by evaluating our system on the E2E
dataset. Since the reference utterances in the test
set were kept secret for the E2E NLG Challenge,
we carried out the metric evaluation using the val-
idation set. This was necessary for us to be able to
narrow down the models that perform well com-
pared to the baseline model. The final model se-
lection was done based on a human evaluation of
the models’ outputs on the test set.

5.2.1 Automatic Metric Evaluation
In the first experiment, we assess what effect the
augmenting of the training set via utterance split-
ting has on the performance of different models.
The results in Table 4 show that both the LSTM
and the CNN models clearly benefit from addi-
tional pseudo-samples in the training set. This can
likely be attributed to the model having access to
more granular information about which parts of
the utterance correspond to which slots in the MR.
This may assist the model in sentence planning
and building a stronger association between parts



Table 4: Automatic metric scores of different mod-
els tested on the E2E dataset, both unmodified (s)
and augmented (s) by the utterance splitting.

BLEU NIST METEOR ROUGE

LSTM s 0.6664 8.0150 0.4420 0.7062
s 0.6930 8.4198 0.4379 0.7099

CNN s 0.6599 7.8520 0.4333 0.7018
s 0.6760 8.0440 0.4448 0.7055

Table 5: Automatic metric scores of three different
models and their ensemble, tested on the valida-
tion set of the E2E dataset. LSTM2 differs from
LSTM1 in that it was trained longer.

BLEU NIST METEOR ROUGE

LSTM1 0.6661 8.1626 0.4644 0.7018
LSTM2 0.6493 7.9996 0.4649 0.6995
CNN 0.6636 7.9617 0.4700 0.7107

Ensem. 0.6576 8.0761 0.4675 0.7029

of the utterance and certain slots, such as that “it”
is a substitute for the name.

Testing our ensembling approach reveals that
pooling and reranking predictions from different
models produces an ensemble model that is over-
all more robust than the individual models, when
we take all four different metrics into considera-
tion. The individual models fail to perform well
in all the metrics at once, whereas the ensembling
creates a new model that is more consistent across
the different metric types (Table 5). When eval-
uated on the official E2E test set, our ensemble
model performs comparably to the baseline model,
TGen (Dušek and Jurčı́ček, 2016), in terms of au-
tomatic metrics (Table 6).

5.2.2 Human Evaluation
It is known that automatic metrics function only as
a general and vague indication of the quality of an
utterance in a dialogue (Liu et al., 2016; Novikova
et al., 2017a). Systems which score similarly ac-
cording to these metrics could produce utterances
that are significantly different because automatic
metrics fail to capture many of the characteris-
tics of natural sounding utterances. Therefore, to
better assess the structural complexity of the pre-
dictions of our model, we present the results of a
human evaluation of the models’ outputs in terms
of both naturalness and quality, carried out by the
E2E NLG Challenge organizers.

Table 6: Automatic metric scores of our ensem-
ble model compared against TGen (the baseline
model), tested on the test set of the E2E dataset.

BLEU NIST METEOR ROUGE

TGen 0.6593 8.6094 0.4483 0.6850

Ensem. 0.6619 8.6130 0.4454 0.6772

Quality examines the grammatical correctness
and adequacy of an utterance given an MR,
whereas naturalness assesses whether a predicted
utterance could have been produced by a native
speaker, disregarding the corresponding MR. In
order to obtain these scores, the crowd workers
were presented with the outputs of five randomly
selected systems, which they ranked from the best
to worst. The systems’ final scores were then pro-
duced using the TrueSkill algorithm (Sakaguchi
et al., 2014) performing pairwise comparisons of
the human evaluation scores among the twenty
competing systems.

Our system, trained on the E2E dataset without
the stylistic data selection (Section 4.3), achieved
the highest quality score in the E2E NLG Chal-
lenge, and was ranked second in naturalness2. The
system’s performance in quality (the primary met-
ric) was statistically significantly better than the
competition according to the TrueSkill evaluation,
which used bootstrap resampling with a p-level of
p ≤ 0.05.

Comparing these results with the scores
achieved by the baseline model in quality and
naturalness (5th and 6th place, respectively) re-
inforces our belief that models performing simi-
larly according to automatic metrics (Table 6) can
have vast differences in the structural complexity
of their generated utterances.

5.2.3 Experiments with Data Selection
After reducing the E2E training set as described in
Section 4.3, the new training set consisted of ap-
proximately 20K pairs of MRs and utterances. De-
spite this drastic reduction in training samples, the
model was able to learn more complex utterances
that contained the natural variations of the human
language, such as aggregations or contrastive sen-
tences using “but”. Nevertheless, the model also
failed to realize slots more frequently.

In order to observe the effect of stylistic data se-

2Note that the system that surpassed ours in naturalness
was ranked the last according to the quality metric.



Table 7: Average error rate and naturalness metrics
obtained from six annotators for different ensem-
ble models.

Ensemble model Error rate Naturalness

Conservative 0.40% 2.196
Progressive 1.60% 2.118

Hybrid 0.40% 2.435

lection, we conducted a human evaluation where
we assessed the utterances based on error rate and
naturalness. The error rate is calculated as the per-
centage of slots the model failed to realize divided
by the total number of slots present among all sam-
ples. The annotators ranked samples of utterance
triples – corresponding to three different ensemble
models – by naturalness from 1 to 3 (3 being the
most natural, with possible ties). The conservative
model combines three submodels all trained on
the full dataset, the progressive one combines sub-
models solely trained on the filtered dataset, and
finally, the hybrid is an ensemble of three models
only one of which is trained on the full dataset, so
as to serve as a fallback.

The impact of the reduction of the number
of training samples becomes evident by looking
at the score of the progressive model (Table 7),
where this model trained solely on the reduced
dataset had the highest error rate. We observe,
however, that a hybrid ensemble model manages
to perform the best in terms of the error rate, as
well as the naturalness. These results suggest that
filtering the dataset can actually help to achieve
better and more natural sounding utterances.

5.3 Experiments on TV and Laptop Datasets
In order to provide a better frame of reference for
the performance of our proposed model, we uti-
lize the RNNLG benchmark toolkit3 to evaluate
our system on two additional, widely used datasets
in NLG, and compare our results with those of
a state-of-the-art model, SCLSTM (Wen et al.,
2015). As Table 8 shows, our ensemble model per-
forms competitively with the baseline on the TV
dataset, and it outperforms it on the Laptop dataset
by a wide margin. We believe the higher error rate
of our model can be explained by the significantly
less aggressive slot delexicalization than the one
used in SCLSTM. That, however, gives our model
a greater lexical freedom and, with it, the ability to

3https://github.com/shawnwun/RNNLG

Table 8: Automatic metric scores of our ensem-
ble model evaluated on the test sets of the TV and
Laptop datasets, and compared against SCLSTM.
The ERR column indicates the slot error rate, as
computed by the RNNLG toolkit (for our models
calculated in post-processing).

TV Laptop
BLEU ERR BLEU ERR

SCLSTM 0.5265 2.31% 0.5116 0.79%

LSTM 0.5012 3.86% 0.5083 4.43%
CNN 0.5287 1.87% 0.5231 2.25%

Ensem. 0.5226 1.67% 0.5238 1.55%

produce more natural sounding utterances.
The model trained on the Laptop dataset is also

a prime example of how an ensemble model is ca-
pable of extracting the best learned concepts from
each individual submodel. By combining their
knowledge and compensating thus for each other’s
weaknesses, the ensemble model can achieve a
lower error rate, as well as a better overall qual-
ity, than any of the submodels individually.

6 Conclusion and Future Work

In this paper we have presented our ensemble
attentional encoder-decoder NLG which is capa-
ble of generating natural utterances from MRs.
Moreover we have also presented novel methods
of representing the MRs to improve performance.
Our results indicate that the proposed ensembling
method, as well as the experimental stylistic data
selection, greatly improve our model’s ability to
generalize and produce more natural sounding ut-
terances, while minimizing the number of slots
that are not realized during the generation.

In this paper we have seen that automatic slot
alignment can expand our training data and rerank
utterances. Our slot alignment currently relies in
part on empirically observed heuristics, a more ro-
bust aligner would allow for more flexible expan-
sion into new domains. Since the stylistic data
selection noticeably improved the diversity of our
system’s outputs, we believe this is a method with
future potential. Finally, it is clear that current au-
tomatic evaluation metrics are only sufficient at
providing a vague idea as to the systems perfor-
mance; we postulate that leveraging the reference
data to train a classifier will result in a more con-
clusive automatic evaluation metric.
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Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.
In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR .

http://www.aclweb.org/anthology/W14-3301
http://www.aclweb.org/anthology/W14-3301

