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Abstract

We describe the two systems, and their varia-
tions, that were submitted by the University of
Sheffield to the E2E NLG challenge. Our sys-
tems consist of different approaches to struc-
tured prediction for end-to-end language gen-
eration. Our first submitted system employs
imitation learning for structured prediction to
explore the large search space without explic-
itly enumerating it. Our second submitted sys-
tem uses encoder-decoder architectures to gen-
erate sequences of words. Our submitted runs
for each system achieved BLEU scores of 0.60
and 0.54 respectively. On human evaluation
our imitation learning model were placed in
the 2nd best quality and 3rd best naturalness
clusters according to Trueskill scores, while
our encoder-decoder model was the best per-
forming system on naturalness but on quality
it was placed in the 5th best cluster.

1 Introduction

Concept-to-text natural language generation
(NLG) is the task of expressing the components
(attributes and values) of a meaning representation
(MR) as a fluent natural language (NL) text.

Recently, many ML-based approaches have
emerged that aim to generate natural language
from input MRs while incorporating an end-to-end
design, i.e. without having intermediary stages
disjoint from each other, as was traditional in NLG

models (e.g. separate content selection, or ag-
gregation modules). An advantage of these ap-
proaches is that by bypassing intermediary stages,
they also bypass the need for expensive stage-
specific training resources, e.g. manually anno-
tated alignments between an MR’s components
and NL sentences’ words. This also helps bigger
and more complex datasets to be constucted.

Wen et al. (2015) recently introduced an end-
to-end approach to NLG, using a Long Short-term

Memory (LSTM) network to learn from unaligned
data and jointly address sentence planning and sur-
face realization. To keep track of the MR while
generating words, they augmented each cell of the
LSTM with a gate that conditions it on the MR.
Dušek and Jurcicek (2016) proposed a sequence-
to-sequence architecture with attention, and ap-
plied it to generating linearized deep syntax trees
which are in turn converted to sentences. They
applied the same model to also directly generate
sentences word by word. The final sentence is
produced by decoding with beam search, and sub-
sequently reranking the outputs to ensure maxi-
mum coverage over the MR’s components. Mei
et al. (2016) proposed an encoder-aligner-decoder
model to perform content selection and surface
realization. Their work employed bidirectional
LSTM-RNN models and a coarse-to-fine aligner.

Our submissions to the E2E NLG challenge
(Novikova et al., 2017) consist of two systems and
their variations. The first system applies imitation
learning to structured prediction NLG models, and
is based on previous work by Lampouras and Vla-
chos (2016). The submitted run for this system
achieved a BLEU score of 0.60 and was placed in
the 2nd best quality and 3rd best naturalness clus-
ters according to Trueskill scores based on a series
of human evaluations (Dušek et al., 2018). Our
second system employs an encoder-decoder archi-
tecture with attention and attempts to directly gen-
erate an output sequence of words. It achieved a
BLEU score of 0.54 and was placed in the 5th best
quality and top best naturalness Trueskill clusters,
i.e. it was the highest system on naturalness.

2 Dataset pre-preprocessing

The NLG input in the E2E dataset is a meaning rep-
resentation (MR), which consists of an unordered
set of attributes and corresponding values; the out-



name = "Midsummer House"
food = Italian
priceRange = high
customer rating = average
near = All Bar One

Reference:
There is an Italian place, Midsummer House, situated near
All Bar One with average customer rating and high pricing.
Reference with replaced verbatim values:
There is an Italian place, X-name, situated near
X-near with average customer rating and high pricing.

Figure 1: Sample MR and corresponding NL refer-
ence from the E2E dataset.

put is a NL sentence, and the dataset provides mul-
tiple possible NL references per MR. Given that
there is at least one available NL reference in the
dataset that fully expresses all the available at-
tributes in the corresponding MR, we aim to flu-
ently express all available attributes and values in
our models’ output. Figure 1 shows a sample from
the E2E dataset (Novikova et al., 2017).

Each attribute has a single value, and each at-
tribute corresponds to a specific value data type,
e.g. familyFriendly takes boolean values, and
food takes values from a closed set dictionary of
different food types. The attributes name and near

are the only ones that may take any string value,
but their values are guaranteed to appear verba-
tim in the NL reference. To minimize noise in the
training signal, we preprocess all MR-NL pairs and
replace the values of name and near with variables
(“X-”) in the MRs and NLs (see Figure 1).

3 Imitation learning system

This section describes the first system and its
variations (namely LOLS-NLG) we submitted to
the E2E challenge. LOLS-NLG employ imitation
learning to train structured prediction NLG mod-
els, and is based on previous work by Lampouras
and Vlachos (2016). In this paper, we will briefly
describe the system, focusing on adjustments per-
taining to this task, but we refer the reader to the
original article for a more detailed overview.

To begin, we formulate the generation of a NL

sentence from a MR as a sequence of two types
of actions, content prediction actions ac and word
prediction actions aw (see Figure 2). To generate
an NL sentence, each content prediction action se-
lects which attribute c (and corresponding value)
should be expressed next, in effect ordering the set
of available attributes in the MR. Once the con-
tent prediction action sequence is completed, for
each selected attribute c, we generate a sequence

of words chosen from its corresponding dictionary
Dc. This dictionary consists of all the words that
we have observed to co-occur with attribute c in
the training data. From the action sequence pro-
duced, it is straightforward to derive the final sen-
tence by keeping the word prediction actions; the
content prediction actions are discarded.

The aforementioned content and word actions
are generated from trained classifiers; we use
adaptive regularization of weight vectors (AROW)
classifiers (Crammer et al., 2013). To train them
we employ the imitation learning Locally Opti-
mal Learning to Search (LOLS) framework (Chang
et al., 2015). LOLS explores the search space of
possible action sequences by considering alterna-
tive action trajectories at each time-step, while
avoiding explicitly enumerating all possible tra-
jectories. Additionally, imitation learning allows
us to train classifiers using non-decomposable loss
functions (e.g. BLEU in the case of NLG) by requir-
ing only evaluation of the complete output NL sen-
tence instead of distinct content or word actions.

3.1 Expert policy

During training, an expert policy (also referred to
as dynamic oracle) is required to determine which
content or word action would be optimal given the
current state of generation (i.e. which words have
been predicted already) and the gold standard NL

references corresponding to that instance’s MR.
If a word action is to be predicted by the ex-

pert policy we locate the word that makes the se-
quence (ignoring content actions) best match (i.e.
minimize the loss function to) the NL reference.
To determine an optimal content action, the expert
policy needs to determine their order in the NL ref-
erence. To estimate this, we match the attribute
values with unaligned word n-grams in the refer-
ence, based on their Levenshtein distance. Specifi-
cally, for boolean attributes, we match the attribute
name (e.g. family friendly=yes to “it is a fam-
ily restaurant”) instead of the value.

As the loss function for training, we use the har-
monic mean of BLEU-4, ROUGE-4 and ERR(%).
ERR(%) tries to estimate how many attribute val-
ues in the MR are not expressed in the NL gener-
ated sentence; it considers the word actions exclu-
sively. Content actions, which are ignored by the
loss function as they are not part of the sentence,
are evaluated based on their impact on word ac-
tions that follow.



X-name | is a restaurant | at the side of the river | near X-near | ...

CONTENT PREDICTION

X-name restaurant riverside X-near high
name eattype near area pricerange

WORD PREDICTION

Figure 2: Example of the NLG process with content and word prediction action sequences.

3.2 Reducing the action space

Each MR in the E2E dataset has multiple refer-
ences, which while beneficial since they capture
lexical variation for the same meaning, also pose
a challenge to model learning as they provide ad-
ditional, and possibly infrequent, actions and am-
biguous training signal. We experimented with re-
ducing the available NL references per MR during
training, to a single sentence, with the goal of re-
ducing model complexity and training times. This
limits the lexical variety of the output, but we do
not consider variety as a goal of the model. Un-
der this configuration, for each MR we only kept
the reference whose words had the highest average
frequency in the training set, among all available.

To further reduce the computational complex-
ity introduced by the number of word actions in
the E2E dataset, we modified LOLS to use targeted
exploration (Goodman et al., 2016) during train-
ing. This reduces the number of alternative action
trajectories that LOLS explores during training, to
those considered optimal by the expert policy, and
the ones that are highly scored by the classifier.

4 Encoder-decoder systems

In this section, we describe the second system,
and variations, (namely ENC-DEC-NLG) that we
submitted to the E2E challenge. ENC-DEC-NLG

use encoder-decoder architectures to generate an
output sequence of words, given a particular in-
put MR. In contrast to LOLS-NLG, ENC-DEC-NLG

only generates words and no content actions. We
present two variations of this system, one based on
an LSTM2LSTM architecture and another based on
a CNN2LSTM architecture.

4.1 LSTM2LSTM architecture

The first variation of our ENC-DEC-NLG system,
employs Long Short-term Memory (LSTM) re-
current networks (Hochreiter and Schmidhuber,
1997) for both its encoder and decoder, with

an added attention mechanism (Bahdanau et al.,
2014) over the input sequence. The architecture
we employ is similar to the one used by Dušek
and Jurcicek (2016), with the exception that this
system does not perform any reranking on the out-
puts of the beam search after decoding.

We start by converting the input MR into a se-
quence of attributes (ai) and corresponding values
(vi): x = {a1, v1, ..., an, vn}. We ensure that the
order and position in the input sequence remains
consistent. For training we use the Adam (Kingma
and Ba, 2014) optimizer while employing cross
entropy to calculate the loss. To obtain the final
sentence we use beam search (with a beam size of
3) over the decoder’s output (softmax) layer.

4.2 CNN2LSTM architecture

As discussed in the previous section, in the
LSTM2LSTM architecture, we ensure a consistent
order on how the attributes and values of the MR

are input in the encoder. However, this may bias
the model towards a particular attribute order in
the output sentence. To minimize this bias, we
also experiment with a second variation on our
ENC-DEC-NLG system, where the input sequence
x = {a1, v1, ..., an, vn} is encoded with a con-
volutional neural network (CNN) (Lecun et al.,
1998), instead of an LSTM encoder.

The CNN encoder is defined as follows:

h = conv2d (xi) (1)

e = maxpooling (relu (h+ b)) (2)

where xi is the i-th component of the input se-
quence (it may correspond to an attribute or value),
b is a bias, and e is the CNN encoder’s output.

In our CNN2LSTM variant, we introduce a hier-
archical attention network to the LSTM decoder,
described by the following equations, and partly
inspired by the work of Yang et al. (2016). As de-
scribed by the equations, the attention considers



both the encoder’s input and output, due to the lat-
ter’s convolutional nature (Gehring et al., 2017).

ai =
∑
j

(vi · (ht + conv2d (xi)) (3)

zt,i = ai · xi (4)

zt = concat
(
zt,0 . . . zt,|x|

)
(5)

where ai are weights calculated by the current hid-
den state ht and the convolutional output, and vi
are the latent variables. The output of the attention
model is the concatenation of the zt,i vectors.

Furthermore, an additional memory cell is used
in an attempt to track how attention over the input
should change throughout the generation. The at-
tention memory cell is initialized randomly, and is
updated at each time-step according to the current
attention vector zi and weights w1 and w2.

ct = tanh (w1 · ct−1 + w2 · zt) (6)

Finally, at each time-step, the decoder’s output
layer considers the hidden state ht, attention zt,
and attention memory cell ct, to estimate the prob-
ability distribution over all possible words.

o = softmax (tanh (W · (ct + ht + zt) + b))
(7)

We should note that the CNN2LSTM model does
not use beam search during decoding.

5 Experiments and results

We examined a number of different configura-
tions in our experiments; the BLEU score results
from the development set are presented in Table 1.
For the LOLS-NLG model we tried configurations
that use all available NL references per MR dur-
ing training (multi) or instead use only one (sin-
gle) reference as detailed in section 3.2. The pa-
rameter e denotes the number of epochs imitation
learning was allowed to run over the training data;
e = 0 effectively means that no imitation learn-
ing was applied to the classifiers. We observe that
imitation learning had a consistent but small ef-
fect on the results. The differences between multi
and single configurations were also small but we
argue that the single configuration allows further
training of the models (e.g. additional imitation
learning epochs) to be computationally feasible.

The automatic results of the two ENC-DEC-NLG

system variations, LSTM2LSTM and CNN2LSTM,

are also included in Table 1. They seem to outper-
form the LOLS-NLG variations, but again the dif-
ferences are not significant. The ENC-DEC-NLG

systems always used all available references, and
were not examined under the single configuration.

System configuration BLEU
LOLS (multi, e=0) 0.68

LOLS (multi, e=2) 0.71

LOLS (single, e=0) 0.68

LOLS (single, e=3) 0.70

LSTM2LSTM 0.71

CNN2LSTM 0.72

Table 1: Automatic evaluation on development set.

A small-scale internal human evaluation was
conducted to assess the comparative performance
of the LOLS-NLG (multi, e=2), LSTM2LSTM, and
CNN2LSTM systems. We also included the output
of the E2E NLG challenge’s baseline model TGen
(Dušek and Jurcicek, 2016) to this comparison.

We examined generated sentences from all
aforementioned systems for a subset of 60 ran-
domly selected MRs of the development set. Each
generated sentence was examined independently
of the other systems’ output, and scored in terms
of naturalness (i.e. how grammatical and fluent
the text is) and informativeness (i.e. does the text
express all the information in the MR); a Likert
scale from 1 to 6 was used. The results are shown
in Table 2 and we can observe that the ENC-DEC

models tend to be more fluent, but the LOLS-NLG

model expresses all available information. How-
ever, we would like to stress that this evaluation
provides only an indication of comparative qual-
ity, as the examined subset was small, and the ob-
served differences were not significant.

System Informative Natural
TGen 4.87 4.87

LOLS (multi, e=2) 4.97 4.72

LSTM2LSTM 4.77 4.79

CNN2LSTM 4.61 4.82

Table 2: Human evaluation on development set.

Tables 3 and 4 detail the automatic and human
evaluation scores achieved by our submitted runs
on the challenge’s test data, as they are reported by
Dušek et al. (2018). The automatic metric results
suggest that the LOLS-NLG variations perform bet-



System configuration BLEU NIST METEOR ROUGE L CIDEr
LOLS (multi, e=2) 0.6015 8.3075 0.4405 0.6778 2.1775

LOLS (multi, e=0) 0.6233 8.1751 0.4378 0.6887 2.284

LOLS (single, e=0) 0.569 8.0382 0.4202 0.6348 2.0956

LOLS (single, e=3) 0.5799 7.9163 0.431 0.667 2.0691

LSTM2LSTM 0.5436 5.7462 0.3561 0.6152 1.413

CNN2LSTM 0.5356 7.8373 0.3831 0.5513 1.582

Table 3: Automatic evaluation on test set.

Quality Naturalness
System configuration Trueskill Cluster Trueskill Cluster
LOLS (multiRef, e=2) −0.012 2 −0.077 3

LSTM2LSTM −0.457 5 0.211 1

Table 4: Human evaluation on test set.

ter than the ENC-DEC-NLG variations, and that the
multi configuration performs better than the single.
The effect of imitation learning is less pronounced
than what was observed in the development data.

As pertains the human evaluation of the sub-
mitted runs (Table 4), again LSTM2LSTM outper-
forms LOLS-NLG in terms of fluency, but suffers in
terms of quality. Naturalness here is defined in the
same way as in our internal human evaluation, but
quality is defined as combination of ”grammatical
correctness, fluency, adequacy and other important
factors”. In contrast, our informativeness metric
only measured whether the sentences contained all
the information present in the corresponding MR.

All systems submitted in the challenge were
clustered by the organizers using bootstrap resam-
pling (p ≤ 0.05). The LSTM2LSTM variation was
the highest ranked among all participants in terms
of naturalness, while the LOLS-NLG was assigned
to the second best cluster in terms of quality.

6 Conclusion

We proposed two systems, and their variations;
the first employs imitation learning over structured
prediction models, while the second uses encoder-
decoder architectures to generate the output se-
quence of words. Our results suggest that encoder-
decoder architectures lead to the best results in
regards to fluency and naturalness, but suffer in
terms of expressing all the available information
in the MR. On the other hand, we observed that the
imitation learning-based models tend to exhaus-
tively express all the attributes and values in the
MR, but their output is less fluent in comparison.
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2017. The E2E dataset: New challenges for
end-to-end generation. In Proceedings of the
18th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Saarbrücken, Ger-
many. ArXiv:1706.09254. https://arxiv.
org/abs/1706.09254.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
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