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Abstract
The paper accompanies our submission to the
E2E NLG Challenge. This task involves gen-
erating human understandable utterances from
slot-value pair Meaning Representations (or
dialogue acts). Recently, word based neural
network approaches (particularly Sequence-
to-Sequence based approaches) came into
prominence which resorted to a pre- (respec-
tively post-) processing step called delexical-
ization (relexicalization) to handle the rare
word problem. In contrast, we first train
a character level seq2seq model with atten-
tion mechanism which requires no pre/post-
processing (delexicalization, tokenization or
even lowercasing). The utterances generated
by this model are rated excellent in terms of
fluency as well as quite reasonable in ade-
quacy, the primary downside being the pos-
sible omission of semantic material (slot val-
ues). However, in a significant number of
cases, a perfect solution can be found in the
top-k list. Thus, for further improvement, we
explore two different re-ranking approaches to
score candidates. During the process, we also
introduce a synthetic dataset creation proce-
dure, which opens up new directions for cre-
ating artificial datasets for Natural Language
Generation.

1 Introduction

Natural Language Generation from Dialogue Acts
involves generating human understandable utter-
ances from slot-value pairs in a Meaning Rep-
resentation (MR). This is a component in Spo-
ken Dialogue Systems, where recent advances in
Deep Learning are stimulating interest towards us-
ing end-to-end models.

Recurrent Neural Networks with gated cell vari-
ants such as LSTMs and GRUs (Hochreiter and
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Schmidhuber, 1997; Cho et al., 2014) are now ex-
tensively used in Natural Language Processing,
capitalizing on their ability to model sequential
data, where one treats the input text as a sequence
of words. This class of neural networks when in-
tegrated in a Sequence to Sequence (Cho et al.,
2014; Sutskever et al., 2014) framework have pro-
duced state-of-art results in Machine Translation
(Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015), Conversational Modeling (Vinyals
and Le, 2015), Semantic Parsing (Xiao et al.,
2016) and Natural Language Generation (Wen
et al., 2015; Mei et al., 2015).

While these models were initially developed to
be used at word level in NLP related tasks, there
has been a recent interest to use character level se-
quences, as in Machine Translation (Chung et al.,
2016; Zhao and Zhang, 2016; Ling et al., 2016).

Agarwal and Dymetman (2017) describes our
initial approach towards the E2E NLG challenge
(Novikova et al., 2017). We trained a char2char
model with attention mechanism. Moving for-
ward, we employed two different strategies for re-
ranking the top predictions to generate the best ut-
terance.

Our contributions in this paper and challenge
can, thus, be summarized as:

1. We show how a vanilla character-based
sequence-to-sequence model performs suc-
cessfully on the challenge test dataset in
terms of BLEU score, while having a ten-
dency to omit semantic material. However,
we found that in significant number of cases
a perfect solution (‘oracle prediction’) can be
found in the n-best (or top-k) list obtained us-
ing beam search. This opens up the space for
application of re-ranking techniques.

2. We propose a novel and very natural data
augmentation technique in Natural Language



Generation (NLG) with consists in ‘editing’
the Meaning Representation (MR) and using
the original ReFerences (RF). This fabricated
dataset will help us in extracting features (to
detect omissions), used for re-ranking in the
generated candidates (Section 3.2).

3. We introduce two different re-ranking strate-
gies corresponding to our primary and sec-
ondary submission (in the challenge), defined
in Section 3.3.

2 Related Work

Traditionally, the Natural Language Generation
(NLG) component in Spoken Dialogue Sys-
tems has been rule-based, involving a two stage
pipeline: ‘sentence planning’ (deciding the overall
structure of the sentence) and ‘surface realization’
(which renders actual utterances using this struc-
ture). The resulting utterances using these rule-
based systems tend to be rigid, repetitive and lim-
ited in scope. Recent approaches in dialogue gen-
eration tend to directly learn the utterances from
data (Mei et al., 2015; Lampouras and Vlachos,
2016; Dušek and Jurčı́ček, 2016; Wen et al., 2015).

Most of the RNN-based approaches to Natu-
ral Language Generation (NLG) generate the out-
put word-by-word and resort to delexicalization (a
process in which they replace named entities (slot
values) with special ‘placeholders’ (Wen et al.,
2015)) or copy mechanisms (Gu et al., 2016) to
handle rare or unknown words (possibly out-of-
vocabulary (OOV) words, even with a large vo-
cabulary), for instance restaurant names or tele-
phone numbers. It can be argued that this de-
lexicalization is unable to account for phenomena
such as morphological agreement (gender, num-
bers) in the generated text (Sharma et al., 2016;
Nayak et al., 2017).

One motivation to use char2char models for dia-
logue generation comes from the above mentioned
drawbacks: we do not have to employ any pre- or
post-processing (not even tokenization or lower-
casing) technique. Goyal et al. (2016) employ a
char-based seq2seq model where the input MR is
simply represented as a character sequence, and
the output is also generated char-by-char; avoid-
ing the rare word problem, as the character vocab-
ulary is very small. Inspired by their work, we
experimented with different numbers of layers in
the encoder and decoder as well as different beam
widths, while using a bi-directional encoder along

with an attention mechanism. While they used
an additional finite-state mechanism to guide the
production of well-formed (and input-motivated)
character sequences, our char-based model never
produced non-words, contrary to their findings.
This can probably be attributed to the nature of
the comparatively larger E2E NLG dataset which
contains a small number of different entity names
(restaurant names, locations) and no addresses
and telephone numbers. Our vanilla char2char
model uses character embeddings instead of one-
hot encodings and a non-null ‘length-penalty’ (i.e.
length normalization (Wu et al., 2016)) when us-
ing beam search for inference. As also observed
by (Britz et al., 2017), using a non-zero length-
penalty significantly improves the decoding re-
sults, for the same beam width.

Recently, tf-seq2seq1 was released as a general
encoder-decoder framework based on Tensorflow
(Abadi et al., 2016), provided along with Britz
et al. (2017), with some standard configuration op-
tions. We experimented with some of these set-
tings and found they worked well for our model.

This work follows up from Agarwal and Dymet-
man (2017) and can be considered as a more ex-
tensive proposal in the context of the challenge
submission. We further explore re-ranking tech-
niques in order to identify the perfect utterance
‘oracle prediction’. One of the strategies for re-
ranking uses an approach similar to the ‘inverted
generation’ technique of (Chisholm et al., 2017).
Konstas et al. (2017) also trained a similar reverse
model for parsing and generation. The synthetic
data creation technique is also used by Dušek et al.
(2017) but as far as we know, our protocol is novel.

3 Model

In the sequel, we will refer to our vanilla char2char
model with the term Forward Model.

3.1 Forward Model

We use a Character-based Sequence-to-Sequence
(commonly termed as Encoder Decoder Recurrent
Neural Networks (RNN)) model (Sutskever et al.,
2014; Cho et al., 2014) with attention mechanism
(Bahdanau et al., 2015). We feed a sequence of
embeddings of the individual characters compos-
ing the source Meaning Representation (MR) -
seen as a string- to the Encoder RNN and try to

1https://github.com/google/seq2seq .

https://github.com/google/seq2seq


predict the character sequence of the correspond-
ing utterances (RF) in the generation stage with
the Decoder RNN.

Coupled with the attention mechanism, Se-
quence to Sequence models have become de-facto
standard in generation tasks. The encoder RNN
embeds each of the source characters into vec-
tors exploiting the hidden states computed by the
RNN. The decoder RNN predicts the next char-
acter based on its current hidden state, previous
character, and also the “context” vector ci, com-
puted by the attention model.

Figure 1: Vanilla Seq2Seq architecture with atten-
tion mechanism (source (Britz et al., 2017)). We use
character-based sequences for generating utterances.

Figure 1 provides an overview of the frame-
work. While many options are configurable (num-
ber of layers, unidirectional vs bidirectional en-
coder, additive vs multiplicative attention mech-
anism, GRU (Cho et al., 2014) vs LSTM cells
(Hochreiter and Schmidhuber, 1997), etc.), the
core architecture is common to all models (Bah-
danau et al., 2015; Luong et al., 2015).

While several strategies have been proposed to
improve results using Beam Search in Machine
Translation (Freitag and Al-Onaizan, 2017), we
used the length normalization (aka length penalty)
approach Wu et al. (2016) for our task. A heuris-
tically derived length penalty term is added to the
scoring function which ranks the probable candi-
dates used to generate the best prediction.

lp(Y ) =
(5 + |Y |)α

(5 + 1)α
(1)

s(Y,X) = log(P (Y |X))/lp(Y ) (2)

where α ∈ (0, 1] is the length penalty fac-
tor. α > 0 encourages longer sequences while a
value of α = 0 reverts back to traditional beam
search. s(Y,X) denotes the scoring function that

rank candidate utterances produced by the vanilla
model.

3.2 Protocol for synthetic dataset creation

We artificially create a training set for the classifier
(defined in Section 3.3.2) to detect errors (primar-
ily omission) in the generated utterances, by a data
augmentation technique. Because of the system-
atic structure of the slots in MR, this gives us free-
dom to naturally augment data for our use case. To
the best of our knowledge, this is the first approach
of using data augmentation in this way and opens
up new directions to create artificial datasets for
Natural Language Generation. We define the pro-
cedure first for creating a dataset to detect omis-
sion and then we show how a similar approach can
be used to create a synthetic dataset to detect ad-
ditions.

The basic idea assumes that there are no omis-
sions in RF for a given MR. These can be consid-
ered as positive pairs when detecting omissions.
Now if we artificially add another slot to the orig-
inal MR and use the same RF for this new MR,
naturally the original RF tends to show omission
of the added slot.

MRoriginal
+ Added slot−−−−−−−→MRnew (3)

This is now a two stage procedure:

• Select a slot to add.

• Select a corresponding slot value.

Instead of sampling a particular slot to add, we add
all the slots that could be augmented in the MR
apart from the currently present slots, one by one.
Having chosen the slot type to be added, we add
the slot value according to the probability distri-
bution of the slot values for that slot type. The
original (MR,RF) pair is assigned a class label of
1 while the new artificial pairs a label of 0, denot-
ing a case of omission. Thus, these triplets (MR,
RF, Class Label) allow us to treat this as a classifi-
cation task.

On the other hand, when we want to create
a dataset which would be used for training our
model to detect additions, we systematically re-
move one slot in the original MR to create new
MRs. We do not remove the ‘name’ slot as it was
present in all the MRs.

MRoriginal
- Selected slot−−−−−−−→MRnew (4)



Figure 2: Our data augmentation approach. (a) shows
the procedure to create a dataset which can be used to
train our model to detect omissions. (b) on the other
hand creates a dataset to detect additions.

In both cases, we control the procedure by ma-
nipulating MRs instead of the Natural Language
RF. This kind of augmented dataset opens up the
possibility of using any classifier to detect these
kinds of errors.

3.3 Re-ranking Models

In this section, we define two techniques to re-rank
the n-best list and these serve as primary and sec-
ondary submissions to the challenge.

3.3.1 Reverse Model

We generated a list of top-k predictions (using
Beam Search) for each MR in what we call the for-
ward phase of the model. In parallel, we trained a
reverse model which tries to reconstruct the MR
given the target RF, similar to the autoencoder
model by Chisholm et al. (2017) (See Figure 3).
This is guided by an intuition that if our prediction
omits some information, the reverse reconstruc-
tion of MR would also tend to omit slot-value pairs
for the omitted slot values in the prediction. We
then score and re-rank the top-k predictions based
on a distance metric, namely the edit distance be-
tween the original MR and the MR generated by
the reverse model, starting from the utterance pre-
dicted in the forward direction. Edit distance is
commonly used in Natural Language Processing
to capture the dissimilarity between two strings, in
our case, original MR and reconstructed MR.

To avoid defining the weights to combine edit
distance with the log probability of the model, we
used a simplified mechanism. At the time of re-
ranking, we choose the first output in our n-best
list with zero edit distance. If no such prediction
can be found, we rely upon the first prediction
in our (probabilistically) sorted n-best list. The
pipeline for this approach is depicted in Fig. 4.

Figure 3: In the forward direction we try to model RF
using MR. In the reverse direction we construct inverse
generations of the MR from RF.

3.3.2 Classifier as a re-ranker

To treat omission (or more generally any kind
of semantic adequacy mis-representation such as
repetition or addition of content) in the predictions
as a classification task, we developed a dataset
(consisting of triplets) using a protocol defined
earlier. However, to train the classifier we relied
on hand-crafted features based on string matching
in the prediction (with corresponding slot value in
the MR) 2. In total, there were 7 features, corre-
sponding to each slot; as our human evaluation
Agarwal and Dymetman (2017) showed no issues
while copying restaurant names, we did not have
a corresponding feature. To maintain the class
balance, we replicated the original (MR,RF) pair
(with a class label of 1) for each artificially gener-
ated (MR,RF) pair (with a class label of 0; corre-
sponding to omissions).

We used a logistic regression classifier to detect
omissions following a similar re-ranking strategy
as for the reverse model. For each probable candi-
date by the forward model, we first extracted these
features to have a prediction label by the logistic
regression classifier. The first output in our n-best
list with a class label 1 is then chosen as the re-
sulting utterance. As a fallback mechanism, we
rely on the best prediction by the forward model
(similar to the reverse model).

2The corresponding string templates used to define these
features can be accessed at
https://docs.google.com/spreadsheets/d/
1b-lm45TmowfZztk842c6UF59Z8rimPfzrE8aRJVfsIg/
edit?usp=sharing

https://docs.google.com/spreadsheets/d/1b-lm45TmowfZztk842c6UF59Z8rimPfzrE8aRJVfsIg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1b-lm45TmowfZztk842c6UF59Z8rimPfzrE8aRJVfsIg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1b-lm45TmowfZztk842c6UF59Z8rimPfzrE8aRJVfsIg/edit?usp=sharing


Figure 4: Illustration of the pipeline for the re-ranking approach (based on inverse reconstructions using reverse
model). Apart from Forward and Reverse seq2seq models, we have a re-ranker based on the edit distance of the
actual MR and the inverse reconstructed MR.

Thus, the primary submission to the challenge
was chosen as the pipeline model with classifier
as re-ranker. Our second submission was based
on re-ranking using the reverse model while the
vanilla forward char2char model was our third
submission.

4 Experiments

4.1 Dataset

The updated challenge dataset comprises 50K
canonically ordered and systematically structured
(MR,RF) pairs. This dataset was collected fol-
lowing the crowdsourcing protocol explained in
Novikova et al. (2016). Consisting of 8 different
slots (and their respective different values3), note
that the statistics in the test set differ significantly
from the training set (Table 1).

4.2 Implementation and technical details

We used the open source tf-seq2seq framework4,
built over TensorFlow (Abadi et al., 2016) and pro-
vided along with (Britz et al., 2017), with some
standard configuration options.5 However, to di-
rectly use this framework for our character based
models, we had to replace non-ascii characters
(such as £ and é) with ascii characters not present
in our source and target vocabulary ($ and ˆ sym-

3More detailed statistics of the slot values can be found at
https://docs.google.com/spreadsheets/d/
1lNSlwDawoQGeow1n8XD79D5JCW3U4Z8I1qId6rF\
5SnI/edit?usp=sharing

4https://github.com/google/seq2seq .
5Code for processing of the data, conversion to paral-

lel text format as well as our configuration files for the tf-
seq2seq model can be found at: https://github.com/
shubhamagarwal92/sigdialSubmission/

bol respectively) as we faced file encoding related
issues6. All other implementations were also done
using Tensorflow and Python.

Agarwal and Dymetman (2017) provide a more
detailed analysis of the selection of our parame-
ters for the forward model. We experimented with
different numbers of layers in the encoder and de-
coder as well as different beam widths, while us-
ing the bi-directional encoder with an “additive”
attention mechanism. In terms of BLEU, our best
performing model had the following configura-
tion: encoder 1 layer, decoder 2 layers, GRU cell,
beam-width 20, length penalty 1.

5 Evaluation

We followed the same evaluation strategy, as de-
scribed in Agarwal and Dymetman (2017). We
used BLEU as the automatic evaluation metric on
the dev set. We defined ‘oracle prediction’ as a
generated utterance which could be considered as
perfect in both adequacy as well as linguistic qual-
ity. Table 2 summarizes our results on the dev set7.

We chose our primary system to be the re-ranker
using the classifier. Table 3 summarizes our rank-
ing among all the 60+ submissions (primary as
well as additional) on the test set.

Comparing just the primary systems, our pri-
mary model is placed at the 4th place (apart from
the baseline); See Table 4 of (Dušek et al., 2018).

Results for human evaluation, as released by the

6Issue #153 https://github.com/google/
seq2seq/issues/153.

7Much higher scores were obtained with multi-ref BLEU
on the updated devset, compared to Agarwal and Dymetman
(2017)

https://docs.google.com/spreadsheets/d/1lNSlwDawoQGeow1n8XD79D5JCW3U4Z8I1qId6rF\5SnI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1lNSlwDawoQGeow1n8XD79D5JCW3U4Z8I1qId6rF\5SnI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1lNSlwDawoQGeow1n8XD79D5JCW3U4Z8I1qId6rF\5SnI/edit?usp=sharing
https://github.com/google/seq2seq
https://github.com/shubhamagarwal92/sigdialSubmission/
https://github.com/shubhamagarwal92/sigdialSubmission/
https://github.com/google/seq2seq/issues/153
https://github.com/google/seq2seq/issues/153


Slot
Train Set Dev Set Test Set

Count Percent Count Percent Count Percent
area 24716 59% 420 77% 558 89%

customer rating 28090 67% 481 88% 318 50%
eatType 20111 48% 465 85% 630 100%

familyFriendly 26295 63% 397 73% 572 91%
food 35126 84% 450 82% 546 87%
name 42061 100% 547 100% 630 100%
near 20546 49% 339 62% 618 98%

priceRange 29127 69% 346 63% 480 76%
Total MRs 42061 547 630

Table 1: Frequency distribution of the slots present in MRs. Name slot is always present in the MR. As we go from
train to test set, we find that the statistics of slots change significantly, which helps us better analyse the different
observations on dev and test set.

Model Oracle Predictions BLEU
Re-ranking using classifier (Primary) 75 0.7052
Re-ranking using reverse (Secondary) 63 0.714
Forward (Third) 54 0.730

Table 2: Oracle (semantically adequate and linguisti-
cally correct) Predictions vs BLEU score on a random
sample of 100 of the dev set for all our models. We
found an inverse trend of the BLEU score compared
against the observations by human judges.

Submission BLEU Overall Rank
Re-ranking using classifier (Primary) 0.653 18
Re-ranking using reverse (Secondary) 0.666 5
Forward (Third) 0.667 4
Baseline 0.659 10

Table 3: Automatic BLEU evaluations released by or-
ganizers on the final challenge submission. We had 3
submissions as described in Section 3. Two of our sys-
tems were in the top 5 among all 60+ submissions.

challenge organizers, are summarized in Table 5 of
(Dušek et al., 2018). They followed the TrueSkill
algorithm (Sakaguchi et al., 2014) judging all the
primary systems on Quality and Naturalness. We
obtained balance results in terms of both metrics,
our system being in the 2nd cluster out of 5 (for
both evaluations). On the other hand, most sys-
tems ranked high on quality tend to have lower
ranks for naturalness and vice versa.

6 Analysis

We found that the presence of an oracle prediction
was dependent on the number of slots in the MR.
When the number of slots was 7 or 8, the presence
of an oracle in the top-20 predictions decreased
significantly, as opposed to when the number of
slots was less than 7.

Primary Systems BLEU
Participant-13 0.6619

Baseline 0.659
Participant-15 0.6561
Participant-1 0.6545

Ours 0.6534

Table 4: Comparing just the top 5 primary systems, we
are at 4th position (not counting the baseline)

Metric TrueSkill Range Cluster
Quality 0.048 (8-12) 2

Naturalness 0.105 (4-8) 2

Table 5: Human evaluation was crowd-sourced on the
primary system according to the TrueSkill algorithm
(Sakaguchi et al., 2014)

However, the most prominent issue was that of
omissions, among the utterances produced in first
position. There were no additions or non-words.
We observed a similar issue of omissions in hu-
man references (target for our model) as well. It
may be conjectured that the seq2seq model, by
“averaging” over many linguistically diverse and
sometimes incorrect training examples, was still
able to learn what amounts to a reasonable linguis-
tic model for its predictions.

Our two different strategies, thus, improved
the semantic adequacy by re-ranking the probable
candidates and successfully finding the ‘oracle’
prediction in the top-20 list. However, in terms of
automatic evaluation, the BLEU score showed an
inverse relationship with adequacy. Nevertheless,
we chose our primary system to be the re-ranker
with a classifier over the forward model.



We did not find any issues while “copying” the
restaurant ‘name’ or ‘near’ slots on the dev set.
However, on the test set, as the statistics of the
data changed in terms of both slots, we found a
tendency of the model to generate the more fre-
quent slot values (corresponding to restaurant and
near slots) in the training dataset, instead of copy-
ing the actual slot value.8 We also found the same
effect when we introduced new slot values (restau-
rant names) which were completely unseen in the
training set. Thus, we feel that our char2char
model may show degraded performance when the
statistics of the training and test sets diverge sig-
nificantly.

7 Conclusion

We show how a char2char model can be employed
for the task of NLG and show competitive re-
sults in this challenge. Our vanilla character based
model required minimal effort in terms of any pro-
cessing of dataset while also producing great di-
versity in the generated utterances.

Building on top of this previous work (Agarwal
and Dymetman, 2017), we propose two simple re-
ranking strategies for further improvements. Even
though re-ranking methods improve in terms of
semantic adequacy, we found a reversal of trend
in terms of BLEU. Our synthetic data creation
technique could be adapted for augmenting NLG
datasets and the classifier-based score could also
be used as a reward in a Reinforcement Learning
paradigm.
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Appendix: Sample predictions

Slots Type Utterance

3
MR name[Blue Spice], eatType[coffee shop], area[city centre]
Pred Blue Spice is a coffee shop located in the city centre.

4
MR

name[Blue Spice], eatType[coffee shop], customer rating[5 out of 5], near[Crowne
Plaza Hotel]

Pred
Blue Spice is a coffee shop near Crowne Plaza Hotel with a customer rating of 5
out of 5.

5
MR

name[The Cricketers], eatType[coffee shop], customer rating[1 out of 5],
familyFriendly[yes], near[Avalon]

Pred
The Cricketers is a children friendly coffee shop near Avalon with a customer rating of
1 out of 5.

6
MR

name[Blue Spice], eatType[pub], food[Chinese], area[city centre],
familyFriendly[no], near[Rainbow Vegetarian Café]

Pred
Blue Spice is a Chinese pub located in the city centre near Rainbow Vegetarian Café.
It is not family friendly.

7
MR

name[The Mill], eatType[pub], food[English], priceRange[high], area[riverside],
familyFriendly[yes], near[Raja Indian Cuisine]

Pred
The Mill is a children friendly English pub with a high price range near Raja Indian
Cuisine in riverside.

8
MR

name[The Cricketers], eatType[restaurant], food[Chinese], priceRange[£20-25],
customer rating[high], area[city centre], familyFriendly[no], near[All Bar One]

Pred
The Cricketers is a restaurant providing Chinese food in the £20-25 price range. It is
located in the city centre near All Bar One. It has a high customer rating and is not
kid friendly.

Table 6: Sample predictions. For the first MR of each arity (3 to 8) in the testset, we show the prediction of our
primary submission.


