
End-to-End Content and Plan Selection for Natural Language Generation
E2E NLG Challenge - HarvardNLP system

Sebastian Gehrmann
Harvard SEAS

gehrmann@seas.harvard.edu

Falcon Z. Dai
TTI-Chicago

dai@ttic.edu

Henry Elder
ADAPT

henry.elder@adaptcentre.ie

Alexander M. Rush
Harvard SEAS

srush@seas.harvard.edu

Abstract

This paper describes our entry for the INLG
2018 E2E NLG challenge. Generating flu-
ent natural language descriptions from struc-
tured data is a key sub-task for conversa-
tional agents. In the E2E NLG challenge, the
task is to generate these utterances conditioned
on multiple attributes and values. Our sys-
tem utilizes several extensions to the general-
purpose sequence-to-sequence (S2S) architec-
ture to model the latent content selection pro-
cess, particularly different variants of copy at-
tention and coverage decoding. In addition,
we propose a new training method based on
diverse ensembling to encourage the model to
learn latent plans in training. We empirically
evaluate these techniques and show that the
system increases the quality of generated text
across five automated metrics. Out of a total of
sixty submitted systems from 16 institutions,
our best system ranks first-place in three of the
five metrics, including ROUGE.

1 Introduction

Recent developments in end-to-end learning with
neural networks have significantly advanced the
state-of-the-art in text transduction tasks, such as
machine translation. These techniques have also
enabled researchers to develop systems for gener-
ating textual output from complex non-textual in-
puts such as images and tables. End-to-end meth-
ods may enable the creation of general-purpose
conditional text-generation models, and in recent
years they have been applied to increasingly com-
plex data to simultaneously learn sentence plan-
ning and surface realization (Wen et al., 2015; Mei
et al., 2015; Dušek and Jurčı́ček, 2016; Lampouras
and Vlachos, 2016).

The E2E NLG dataset (Novikova et al., 2017)
provides a new test bed for exploring the fron-
tier of automatic text generation. The dataset pro-
vides examples where an input, expressed as a di-

MR

name[The Golden Palace],
eatType[coffee shop],
food[Fast food],
priceRange[cheap],
customer rating[5 out of 5],
area[riverside]

Reference

A coffee shop located on the riverside
called The Golden Palace,
has a 5 out of 5 customer rating.
Its price range are fairly cheap
for its excellent Fast food.

Figure 1: An example MR and utterance from the E2E
NLG dataset. Each example consists of a set of key-
value pairs and a natural language description.

alogue act-based meaning representation (MR), is
aligned to on average 8.1 references. An exam-
ple is shown in Figure 1. The associated E2E
challenge prompts teams to develop a model that
learns the semantic alignment from MR to utter-
ance, and to generate a utterances that are similar
to reference texts, and highly rated by humans.

The report describes our entry to the E2E
Generation Challenge. We first survey how ex-
tensions to S2S models with attention mecha-
nism (Sutskever et al., 2014; Bahdanau et al.,
2014) perform in this task. These include: a mech-
anism to copy words from the input into the gen-
erated text (Vinyals et al., 2015), a coverage and a
length penalty (Tu et al., 2016) to ensure that the
model takes into account all of the input, and the
impact of changing the model architecture itself
from bidirectional LSTMs to the recently intro-
duced Transformer model (Vaswani et al., 2017).
We show that the extensions lead to an improve-
ment to metrics and further allow the system to
model the content selection aspect of the NLG
problem.
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Furthermore, we note that the training data
contains different types of responses to similar
inputs. These include detailed responses, but also
some incoherent fragments (Not family friendly
Alimentum across from Burger King). In order
to develop a model that is robust to different
response styles, we employ a diverse training
technique (Guzman-Rivera et al., 2012) to learn
multiple submodels, implicitly modeling different
types of responses. This method effectively
partitions out the training data during the process
of training the model itself, i.e. end-to-end. We
show that the technique can lead to a model that
picks a specific type of response to a given query.

Our final system increases the quality of gen-
erated text across five different automated metrics
(BLEU, NIST, METEOR, ROUGE, and CIDEr)
over the TGEN baseline (Dušek and Jurčı́ček,
2016), a strong S2S model (Bahdanau et al.,
2014) with a penalty for straying away from the
input representation. Among the 60 submissions
to the E2E NLG challenge, our system ranks
first in METEOR, ROUGE, and CIDEr scores,
third in BLEU, and sixth in NIST. Results of an
evaluation of quality and naturalness using the
TrueSkill algorithm (Sakaguchi et al., 2014) place
our submission tied for second place with several
other approaches.

2 Data for E2E NLG

Traditional approaches to natural language gener-
ation separate the generation of a sentence plan
from the surface realization. First, an input is
mapped into a format that represents the lay-
out of the output sentence, for example an ade-
quate pre-defined template. Then, the surface real-
ization transforms the intermediary structure into
text (Stent et al., 2004). First steps away from
hand-crafted templates and rules aimed to learn
with little dependence on heuristics, for example
by using phrase-based language models during the
generation (Oh and Rudnicky, 2000; Mairesse and
Young, 2014). More recent work combines both
steps by learning plan and realization jointly using
end-to-end trained models (e.g. Wen et al., 2015).
However, corpus-based approached are restricted
by the limited availability of data.

In this work we use the crowd-sourced E2E
NLG dataset by Novikova et al. (2017) provid-
ing 50,000 examples of MR and reference pairs
in the restaurant domain. Each datapoint com-
prises a meaning representation of on average 5.43

Attribute Example

area city centre, riverside, . . .
customerRating 1 out of 5, average, . . .
eatType coffee shop, restaurant, . . .
familyFriendly yes / no
food Chinese, English, . . .
name Wildwood, The Wrestlers, . . .
near Café Sicilia, Clare Hall, . . .
priceRange less than £20, cheap, . . .

Table 1: List of possible attributes in the E2E NLG
dataset and examples.

attribute-value pairs, and a corresponding natural
language utterance. A list of attributes and cor-
responding examples is shown in Table 1. The
dataset is split into 76% training, and 9% valida-
tion , and 15% test data. The validation data is
multi-reference with on average 8.1 references for
each MR. An additional test set has 630 MR’s and
unseen utterances.

3 Sequence-to-Sequence Generation

Our main approach begins with a sequence-
to-sequence (S2S) model for text transduc-
tion. In the standard text-to-text problems let
(x(0), y(0)), . . . (x(N), y(N)) ∈ (X ,Y) be a set
of N aligned source and target sequence pairs,
with (x(i), y(i)) denoting the ith element in (X ,Y)
pairs. Further, let x = x1, . . . , xm be the sequence
of m tokens in the source, and y = y1, . . . , yn the
target sequence of length n. Let V be the vocabu-
lary of possible tokens, and let [n] denote the list
of integers up to n, [1, . . . , n].

S2S aims to learn a function f parametrized
by θ that maximizes the conditional probability
of pθ(y|x). We further assume that the target is
generated from left to right, such that pθ(y|x) =∏n
t=1 pθ(yt|y[t−1], x). f takes the form of an

encoder-decoder architecture with attention, in
which an encoder-function e encodes the source
and a decoder function d generates the target from
the output of e, such that f(x) = d(e(x)). Train-
ing uses stochastic gradient descent to minimize
the negative log-likelihood of the training data.

In order to apply E2E models, we need to trans-
form the given MR into a sequence of tokens.
This is not trivial, since not all attributes appear
at all times, and each attribute might have multi-
token values, such as area[city centre]. In our ap-
proach, we introduce special start and stop tokens
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for each of the attributes, and use these to mark the
boundaries of its value; for example, an attribute
area[city centre] becomes start area city cen-
tre end area . We then concatenate these frag-
ments into a long sequence to represent the orig-
inal MR as an input sequence to our models. In
this approach, restaurant names were not delexi-
calized. We note that this approach works best if
the attributes always appear in the same order.

3.1 Attention Mechanisms
We model both encoder and decoder as bidi-
rectional LSTM (Hochreiter and Schmidhuber,
1997), where ci represents the hidden state of the
encoder LSTM at timestep i, and ht represents the
hidden state of the decoder at timestep t. Let dhid
denote the size of the hidden state of the decoder.

We investigate two different calculations of the
attention distribution. The first formulation fol-
lows Bahdanau et al. (2014) and uses an multi-
layer perceptron. Given a timestep t and the soft-
max function sm, the attention distribution at is
defined such that

eti = vT tanh(Wcci +Whht + battn)

at = sm(et),

where v ∈ Rdhid , Wc ∈ Rdhid×dhid , Wh ∈ Rdhid×dhid ,
and battn ∈ Rdhid are all trainable parameters.
Given the attention distribution, the context vector
is a sum of hidden states in the encoder, weighted
by its attention

c∗t =
∑
i

atici.

Let [ht, c
∗
t ] denote the concatenation of hidden

state and context vector. This can be used to cal-
culate an intermediate representation pout ∈ Rdhid

as
pout =Wout[ht, c

∗
t ] + bout.

Finally, a generator calculates the conditional
probability distribution over the vocabulary V

p(yt|y[t−1], x) = sm(Wgenpout + bgen).

Wout ∈ R2·dhid×dhid , bout ∈ Rdhid , Wgen ∈
Rdhid×|V|, and bgen ∈ R|V|, are trainable parame-
ters.

We additionally explore a second formulation
for the attention mechanism, first introduced by
Luong et al. (2015), that includes two changes
to this calculation. The most notable change is

Figure 2: Replication of an illustration of the Trans-
former S2S model by Vaswani et al. (2017).

that the calculation of the attention distribution no
longer uses an MLP. Instead, the dot product be-
tween the hidden states of encoder and decoder
eti = htc

T
i is applied. The other change to the pre-

viously described procedure is that pout includes
an additional nonlinearity

pout = tanh(Wout[ht, c
∗
t ] + bout).

Hereafter, we will refer to the two types of atten-
tion as MLP and dot.

3.2 Transformer Model
We give a brief overview of the Transformer
model and refer to the original paper by Vaswani
et al. (2017) for an in-depth description. The
premise of this model is that recurrent neural net-
works can be replaced as encoder and decoders.
The Transformer only uses attention over the em-
beddings of inputs and outputs. An overview of
the model is shown in Figure 2. The model is
composed of multiple layers, each comprising two
parts – a multi-head self-attention and a position-
wise feed-forward network. Each part additionally
has a residual connection (He et al., 2016) fol-
lowed by a layer normalization (Ba et al., 2016).
The last addition is a positional encoding of the
input.

The first change from the attention described so
far is that this model uses multiple heads, each of
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which uses a different linear projection of the in-
put. Each attention uses the dot attention with the
change that eti is scaled by the root of the dimen-
sion of the vectors

eti =
ht · cTi√

dhid
.

Then, all attentions are concatenated and linearly
transformed into Rdhid . Each layer of the model
contains a feed-forward network that is applied to
every single position individually, similar to a con-
volutional neural network with a filter-width of 1.
The network uses two layers with a ReLu activa-
tion function

f(x) = max(0, xW1 + b1)W2 + b2.

However, without any recurrence, there is no po-
sitional information in the model. To address this,
the Transformer uses a positional encoding based
on the sine and cosine functions

PE(pos, 2i) = sin
pos

100002i/demb

PE(pos, 2i+ 1) = cos
pos

100002i/demb

Here, pos is the position within a sequence, i is the
dimension, and demb is the size of the word em-
bedding. The resulting vector is added to the word
embedding. The function is chosen since it repre-
sents a geometric progression from 2π to 20,000π
which allows the model to learn to attend by rel-
ative positions. The new representations for each
position in the text are then used as context for the
attention layer.

4 Copy and Coverage

We additionally extend the S2S system based on
ideas that have been shown to be useful for the re-
lated problem of sentence summary. In particular
we implement the pointer-generator network simi-
lar to that introduced by Nallapati et al. (2016) and
further extended by See et al. (2017).

Copy Model The copy model introduces a bi-
nary variable zt for each decoding step t that acts
as a switch between copying from the source and
generating words. We model the joint probabil-
ity following the procedure described by Gulcehre
et al. (2016) as

p(yt, zt|y[t−1], x) =
∑

z∈{0,1}

p(yt, zt = z|y[t−1], x)

To calculate the switching probability
p(zt|y[t−1], x), let v ∈ Rdhid be a trainable
parameter. The hidden state of the decoder ht is
used to compute p(zt) = σ(hTt v) and decompose
the joint distribution into two parts:

p(yt|y[t−1], x) = p(zt = 1)p(yt|zt = 1)

+ p(zt = 0)p(yt|zt = 0),

where every term is conditioned on x and y[t−1].
Here, p(yt|zt = 0) is the distribution generated
by the previously described S2S model, and
p(yt|zt = 0) is a distribution over x that is
computed using the same attention mechanism
(with separate parameters). In the E2E NLG case,
all the values in the MR’s should occur in the
generated text and they are generally words that
would not be generated by a language model.
This allows us to follow Gulcehre et al. (2016)
by assuming that every word that occurs in both
source and target was copied to avoid having
to marginalize over z. Then, we minimize the
negative joint log-likelihood of yt and zt. This
approach has the further advantage that it can
handle previously unseen input by learning to
copy these words into the correct position.

Coverage and Length Penalty We observed
that generated text using vanilla S2S models with
or without copy mechanism commonly omits
some of the inputs. To prevent this, we use two
penalty terms during inference; a length and a cov-
erage penalty. We are using a coverage penalty
during inference only, compared to Tu et al. (2016)
who first introduced a coverage penalty term into
the attention of an S2S model for neural machine
translation and See et al. (2017) who used the
same idea for abstractive summarization. Instead,
we follow Wu et al. (2016) and introduce a penalty
term cp defined as

cp(x, y) = β ·
|x|∑
i=1

log(min(

|y|∑
t=1

ati, 1.0)).

Here, β is a parameter to control the strength of
the penalty. This penalty term increases when too
many generated words attend to the same input.
We typically do not want to repeat the name of the
restaurant or the type of food it serves. Thus, we
only want to attend to the restaurant name once
when we actually generate it. We also use the
length penalty lp by Wu et al. (2016), defined as

lp(y) =
(5 + |y|)α

(5 + 1)α
,
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start_name end_name end_areacentrecityEagle start_area ...

<s>       Near       the        city       centre ...

<s>      Eagle        is        near        the ...
...

Figure 3: An illustration of the diverse ensembling method with K = 2 and a shared encoder. The encoder, shown
on the left, reads the meaning representation and generates the context vectors. The context is then used in parallel
by into the two separate decoders. Here,⊕ represents the duplication of the input representation. The two decoders
generate text independently from each other. Finally, only the decoder with the better generated text is chosen to
receive a parameter update. The exclusive choice is illustrated by the ⊗ operation.

where α is a tunable parameter. The penalties are
used to re-rank beams during the inference proce-
dure such that the full score function s becomes

s(x, y, z) =
log p(y, z|x)

lp(y)
+ cp(x, y).

5 Learning Latent Plans

Finally, we target an issue with this style of hu-
man based training data. Each sentence in the cor-
pus follows an implicit latent sentence plan, that
is independent of the input attributes. We observe
that ignoring this variable leads to unnatural gener-
ated text, as if multiple underlying templates were
combined into one. To more directly model the
sentence planning step, we learn a mixture of mod-
els that operate over full sequences. Instead of
training each part of the mixture on all the train-
ing data, we hope to implicitly cut out sentences
that would divert from a possible plan.

The challenge here is to separate the training
data, while simultaneously training different mod-
els that focus on one (or several) template struc-
tures. To find this segmentation, we assume that
we have K models f1, . . . , fK . These models can
be completely disjoint or share a subset of their pa-
rameters (e.g. the word embeddings, the encoder,
or both encoder and decoder). Following Guzman-
Rivera et al. (2012), we introduce a random vari-
able w ∼ Cat(1/K) that assigns a weight to each
model for a given data point. The optimization tar-

get for each point becomes

argminw,θ

|X |∑
i=1

K∑
k=1

wik · `(yi, fk(xi)),

where `(y, ŷ) denotes the negative log-likelihood
for one specific prediction. Thus, the optimization
problem over the whole dataset is a joint optimiza-
tion of assignments of models to data points and
parameters to models.

In order to minimize the target, Guzman-Rivera
et al. (2012) introduced the idea of a multiple-
choice loss (MCL) to segment training data sim-
ilar to a hard EM algorithm or k-Means cluster-
ing. With MCL, all K models are trained for
one epoch. Then, each training point is assigned
to the model with the minimal loss. After this
segmentation, each model is trained for a fur-
ther epoch using only the assigned data points.
This process is repeated until the point assign-
ments converge. Further work by Lee et al. (2016)
reduce the computational overhead by introduc-
ing a stochastic MCL (sMCL) variant that does
not require retraining. They define the E-Step as
k̂ = argmaxk∈[K]pθ(y|x, w = k). Setting wĥ to 1
and all other entries inw to 0 achieves the segmen-
tation. Following the objective above, only the
model with the minimal negative log-likelihood is
updated in the M-Step such that the problem be-
comes argmaxθ pθ(y|x, w).

We found that separating the models on the per-
word loss leads to behavior where one of the mod-
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Measure Description

BLEU
Measures precision as ratio
of correctly generated n-grams

NIST
Modification of BLEU,
weights the n-grams rarity

METEOR
Aligns hypothesis to references
and computes F-measure

ROUGE-L
Recall-based measure that finds
longest common subsequence

CIDEr
Consensus based, compares
similarity of n-grams
to majority of references

Table 2: Short descriptions of automated metrics.

els specializes in predicting a single token 100% of
the time. Therefore, we conduct the E-Step on the
the total probability of the target sequence instead.
We illustrate in Figure 3 how this training regime
works on S2S models with shared encoder param-
eters. Since each model is specialized on different
sentence plans, averaging predictions of multiple
models during inference, a technique commonly
used with traditional ensembling approaches, does
not lead to increased performance. Moreover, we
confirm findings by Lee et al. (2017) who state
that the models trained with sMCL overestimate
their confidence when generating text. Therefore,
choosing the model with the maximum likelihood
prediction for a given input during inference does
not lead to increased performance either. Since
it is our goal to train a model that learns the best
underlying template instead of generating diverse
predictions, we instead generate text using only
the model in the ensemble with the best perplexity
on the validation set.

6 Experimental Details

For all experiments, we use a two-layer bidi-
rectional encoder LSTM with dhid=750, and
demb=750. During training, we apply dropout
with probability 0.2 and train models with
Adam (Kingma and Ba, 2014) and an initial learn-
ing rate of 0.002. During experiments, we found
Adam to significantly outperform stochatic gradi-
ent descent. We evaluate both mlp and dot at-
tention types. The Transformer model is trained
with 4 layers and dhid and demb=512. We use the
training rate schedule described by Vaswani et al.
(2017), using Adam and a maximum learning rate
of 0.1 after 2,000 warm-up steps. We apply the
diverse ensembling technique to all approaches,

Figure 4: Relative change of performance (averaged
over all 5 metrics) when Varying the α and β parame-
ters for model (8).

training all models simultaneously for 4 epochs
and then activating the sMCL loss. Finally, we
show the change of a single model when activating
different penalties. All models are implemented in
OpenNMT-py (Klein et al., 2017)1. We note that
due to its complexity, our re-implementation of the
Transformer model still underperforms compared
to the original paper. The parameters were found
by grid search starting from the parameters used in
the official baseline (Dušek and Jurčı́ček, 2016).

Since the test set was blind and used only for
the submitted systems, we show results on the
multi-reference validation set for the five metrics
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
ROUGE (Lin, 2004), and CIDEr (Vedantam
et al., 2015). Short descriptions of the metrics are
shown in Table 2. We also report the validation
perplexity, which does not correlate well with the
other metrics.

7 Results

7.1 Validation Results

Table 3 shows results for different system con-
figurations without penalties (α, β = 0.0), using
beam search with a beam size of 10 during in-
ference. We compare our models to the official
baseline that uses the TGEN (Dušek and Jurčı́ček,
2016) model. Except for the copy-only condition,
dot outperforms mlp. Both copy-attention and di-
verse ensembling increase performance, and com-

1Code can be found at https://github.com/
sebastianGehrmann/OpenNMT-py/tree/
diverse_ensemble
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# Setup PPL BLEU NIST METEOR ROUGE CIDEr

(0) Baseline - 69.3 8.47 47.0 72.6 2.39
(1) mlp 3.29 70.6 8.35 47.3 73.8 2.38
(2) dot 3.31 71.1 8.43 47.4 73.7 2.35
(3) mlp, copy 3.13 71.4 8.44 47.0 74.1 2.43
(4) dot, copy 3.13 69.8 8.20 47.8 74.3 2.51

(5) mlp, K = 2 3.27 72.6 8.70 48.5 74.8 2.52
(6) dot, K = 2 3.14 73.3 8.68 49.2 76.3 2.61
(7) mlp, copy, K = 2 3.22 73.6 8.74 48.5 75.5 2.62
(8) dot, copy, K = 2 3.27 74.3 8.76 48.1 75.3 2.55

(9) Transformer 3.22 69.0 8.22 47.8 74.9 2.45
(10) Transformer, K = 2 3.22 73.7 8.75 48.9 76.3 2.56

Table 3: Results of different system configurations without length and coverage penalty.

MR name[Wildwood] eat-
Type[coffee shop] food[English]
priceRange[moderate] customerRat-
ing[3 out of 5] near[Ranch]

(1) Wildwood is a coffee shop providing
English food in the moderate price
range. It is located near Ranch.

(4) Wildwood is a coffee shop providing
English food in the moderate price
range. It is near Ranch. Its customer
rating is 3 out of 5.

(8).1 Wildwood is a moderately priced
English coffee shop near Ranch. It
has a customer rating of 3 out of 5.

(8).2 Wildwood is an English coffee shop
near Ranch. It has a moderate price
range and a customer rating of 3 out
of 5.

Table 4: Examples of generated text by different sys-
tems. Numbers correspond to Table 3.

bining the two methods yields the highest BLEU
and NIST scores across all conditions. Diverse
ensembling also increases the performance with
the Transformer model, which performs slightly
worse than the standard model. Table 4 shows
generated text from different models. We can ob-
serve that without copy, the model omits the rat-
ing, and that without ensembling, the sentence
structure repeats and thus looks unnatural. With
ensembling, both models produce sensible output.
For the following results, we select model (8) from
the table as the model configuration.

To investigate length and coverage penalties, we

show the average relative change across all metrics
while varying α and β in Figure 4. Both penal-
ties increase average performance by up to 0.82%.
Upon further investigation, we find that recall-
based metrics (METEOR, ROUGE, CIDEr) in-
crease while the precision-based metrics (BLEU,
NIST) decrease when applying the penalty. We
can explain this phenomenon with an increase
in average length of the generated text by up to
2.4 words, which decreases the precision, but im-
proves recall of the texts. Results for ensembling
variations are shown in Table 5. While increasing
K can lead to better template representations, ev-
ery individual model will be trained on fewer data
points. This can result in an increased general-
ization error. Therefore, we evaluate updating the
top 2 models during the E step and setting K=3.
While increasing K from 2 to 3 does not show
a major increase in performance when updating
only one model, the K=3 approach slightly out-
performs the K=2 one with the top 2 updates.

Having the K models model completely dis-
joint data sets and use a disjoint set of parame-
ters could be too strong of a separation. There-
fore, we investigate the effect of sharing a subset
of the parameters between individual models. Our
results in rows (5)-(7) of Table 5 show only a mi-
nor improvement in recall-based approaches when
sharing the word embeddings between models, but
at the cost of a much lower BLEU and NIST
score. Sharing more parameters further harms the
model’s performance. This is in line with our ob-
servations for other model configurations for this
problem.
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# Setup BLEU NIST METEOR ROUGE CIDEr

(1) K = 1 69.8 8.20 47.8 74.3 2.51
(2) K = 2 74.3 8.76 48.1 75.3 2.55
(3) K = 3 73.6 8.73 48.8 75.5 2.64
(4) K = 3, top 2 74.2 8.81 48.6 76.1 2.56

(5) K = 2, share embedding 73.1 8.61 48.6 75.4 2.58
(6) K = 2, share encoder 72.2 8.56 47.8 74.4 2.50
(7) K = 2, share encoder + decoder 72.4 8.43 47.3 74.6 2.50

Table 5: The results of varying number of models and shared parameters while keeping setup (8) from Table 3

Setup BLEU NIST METEOR ROUGE CIDEr

Main 65.0 8.53 43.9 68.7 2.09
Support 1 65.8 8.57 (8) 44.1 68.9 (9) 2.11
Support 2 66.2 (8) 8.60 (7) 45.7 (1) 70.4 (3) 2.34 (1)
Support 3 67.4 (3) 8.61 (6) 45.2 (4) 70.8 (1) 2.31 (3)

Table 6: The results of the submitted systems on the official test set. Notable rankings within the 60 submitted
systems in parentheses.

7.2 Official Results

To evaluate results of our different approaches, we
submitted the following four configurations of our
system: Main dot, K = 3, top 2, no repeated sen-
tence beginnings, Support 1 dot, K = 3, top 2,
Support 2 Transformer, K = 2, Support 3 dot,
copy, K = 2

Since we observed that the models would often
repeat the same sentence structure multiple times,
we constrained the beam search in the main sys-
tem to avoid beginning multiple sentences with the
same bigram. While this modification leads to re-
duced scores on the automated metrics, it makes
the text look more natural. We chose the Trans-
former model as another supporting system since
it presents a drastically different approach from
the other systems. All submitted models use di-
verse ensembling, since it improved performance
across all configurations on the validation set. We
used penalty parameters α = 0.4 and β = 0.1 for
all systems to focus on recall-based metrics. The
official results (Dušek et al., 2018) shown in Ta-
ble 6 confirm the validity of the approach, as our
systems outperform competing systems in these;
ranking first in ROUGE and CIDEr and sharing
the first rank in METEOR.

The main system was also evaluated in a human
evaluation by comparing its output to the other 18
primary systems. For a single meaning represen-
tation, crowd workers were asked to rank output

from five systems at a time. Separate ranks were
collected for the quality and naturalness. The re-
sults were then analyzed using the TrueSkill al-
gorithm by Sakaguchi et al. (2014). The algorithm
produced 5 clusters of systems for both quality and
naturalness. Within clusters, no statistically sig-
nificant difference between systems can be found.
In both evaluations, our main system was placed
into the second best cluster.

8 Conclusion

In this paper, we have shown three contributions
towards the problem of natural language genera-
tion. We surveyed existing S2S modeling methods
for their applicability to the NLG problem. We
further showed that explicitly modeling different
underlying structures in the data by applying the
diverse ensembling technique can lead to a more
robust learning process for structured, but noisy,
data. Finally, we empirically evaluated the inves-
tigated methods and showed that a combination of
them can lead to major improvements in multiple
automatic evaluation metrics.
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